后处理来自生产羟胺或羟铵盐的系统的废气的方法

文档序号:3458520阅读:279来源:国知局
专利名称:后处理来自生产羟胺或羟铵盐的系统的废气的方法
后处理来自生产羟胺或羟铵盐的系统的废气的方法
本专利申请要求2010年9月30日提交的未决美国临时专利申请序列号61/388,019的权益,该申请整体引入本文作为参考。
本发明涉及一种后处理来自生产羟胺或羟铵盐的系统的废气的方法,其中至少一些存在于废气A中的氢气借助气密膜-电极组件以电化学方式分离出来。
在通过用氢气催化氢化一氧化氮生产羟胺或羟铵盐中,尤其作为副产物形成一氧化二氮、氮气和氨。此时,氢气以大过量使用且一氧化氮仅部分反应。得到的废气包含氢气、一氧化氮、一氧化二氮和可能的话惰性物质。这些废气混合物不能直接再循环进入该合成中,因为否则的话一氧化二氮将聚集并出现氢气、一氧化氮和一氧化二氮的爆炸性混合物。一氧化二氮在生产羟胺或羟铵盐的方法中呈惰性。
氮气和一氧化二氮在氢化反应条件下不转化成羟胺。
此外,该羟铵合成的废气包含在再循环到该方法中时同样聚集并因此导致时空产率显著降低的氮气。因此,通常燃烧废气,其中在该工艺过程中释放的能量可以用于产生蒸汽。
然而,经济上更有利的是分离废气中存在的有价值物质并将它们再循环到生产羟胺或羟铵盐的方法中。
然而,当将有价值物质再循环到生产羟胺或羟铵盐的方法中时,尤其是在生产羟胺或羟铵盐的方法中呈惰性的一氧化二氮一定不能一起再循环,以防止其聚集,因为否则的话如上所述将得到可燃性混合物。
因此,在现有技术中提出了其中将一氧化二氮从羟胺合成的废气(包含氢气、一氧化二氮、一氧化氮和惰性物质)中分离出来的方法。
例如,在DE-A03244370中,为此提出了在分子筛上的变压吸附。该方法的缺点是该气体混合物包含为自由基且快速攻击吸附材料的侵蚀性(aggressive)组分一氧化氮,因此需要经常更换。
W0-A02/30549描述了一种从生产羟胺的废气中分离出一氧化二氮的方法,更准确的是通过使用半渗透性透气膜。在该方法中一氧化氮的侵蚀性也导致膜稳定性降低且因此导致该方法的经济效力受限。此外,使用该方法仅可部分分离一氧化二氮。
因此,本发明的目的是提供一种后处理来自通过用氢气催化还原一氧化氮而生产羟胺或羟铵盐的系统的废气的方法,其中废气中存在的有价值物质之一可以至少部分地从该废气中经济地分离出来。
该目的由一种后处理来自通过用氢气催化还原一氧化氮而生产羟胺或羟铵盐的系统的废气A的方法实现, 其中废气A包含一氧化氮、氢气、一氧化二氮、氮气和氨并且至少一些存在于废气A中的氢气借助气密膜-电极组件从废气A中分离出来,该组件包括至少一个选择性质子传导膜、保留物侧、渗透物侧以及在该膜各侧上的至少一种电极催化剂,其中在该膜的保留物侧上在阳极催化剂处将至少一些氢气氧化成质子并且质子在穿过该膜之后在渗透物侧上在阴极催化剂处I被还原成氢气和/或II与氧气反应形成水,其中该氧气来源于与渗透物侧接触的含氧料流O。
现有技术中所述用于分离出废气A中存在的有价值物质的方法的目的是分离出一氧化二氮并将残留物质再循环。
惊人地发现借助气密膜-电极组件分离出废气A中存在的氢气也有效并可能。本发明方法与现有技术中所述方法相比具有的优点是可以分离出有价值物质一氢气。氢气分离的驱动力基于选择性透过质子(方案I)的膜两侧之间的电势差或者基于氢气和氧气反应形成水的负自由焓(方案II)。因此可以不用昂贵的方法如变压吸附。此外,使用气密选择性质子传导膜导致该方法基本与使用透气性半透膜时必需的压差无关。结果可以在较低压力和压差下进行氢气分离,其中任选地可以完全省略外部施加的压差。该膜的机械应力由此显著降低,这导致其长期稳定性提高。此外,该膜可以考虑的材料的选择增加。
此外,借助选择性质子传导膜电化学分离氢气非常有效。因此,可以降低所要求的膜面积或者对于相同膜面积可以由该废气分离出显著更多氢气。在分离之后残留在废气A中的氢气量此时与借助透气性半透膜的分离相比显著更小。
若根据方案I操作本发明方法,则在该方法中得到非常纯的氢气。非常纯的氢气可以用于对杂质反应敏感的许多其他反应或方法中且因此为有价值副产物。在优选实施方案中,由废气A分离出的氢气再次在羟胺或羟铵盐的生产中用作原料。
若根据方案II操作本发明方法,则在该方法中释放电能和热。该能量可以用于操作生产羟胺或羟铵盐的方法。本发明方法的能量平衡由此进一步改善。
取决于操作模式,用户可以控制在该方法中得到更多氢气或仅得到氢气还是获得更多电能和热或仅获得电能和热。还可以将根据方案II获得的电能用于根据方案I分离出氢气。此时,进行一种组合方法,其中根据方案II获得电能,将该电能用于根据方案I分离出氢气。根据方案I的氢气分离和获得电能(方案II)的工艺步骤此时可以以任何顺序进行。为此,例如可以将废气料流A分离成两股废气子流Al和A2,其中根据方案I从一股废气子流分离出氢气 并根据方案II从另一股废气子流分离出氢气,产生电能。
在下文详细描述本发明。
羟胺合成
羟胺或羟铵盐的工业合成经由用氢气在酸性水溶液中还原一氧化氮而进行。在本发明上下文中,“羟胺的生产”、“羟铵盐的生产”和“羟胺或羟铵盐的生产”同义使用。
为了生产Imol硫酸羟铵(NH3OH)2SO4,使2mol —氧化氮(NO)、3mol氢气(H2)和Imol硫酸(H2SO4)在水溶液中在/[隹化剂存在下反应。
所用催化剂通常为包含钼和石墨的催化剂,其悬浮于包含硫酸的水溶液中。任选地还可以向该催化剂中加入添加剂如促进剂。
其中催化剂悬浮的水溶液通常以5-50体积%,优选10-30体积%,更优选15_25体积%的浓度包含硫酸,在每种情况下基于该水溶液的总体积。
氢气和一氧化氮的反应通常在0-100° C,优选10-70° C,更优选30-60° C,特别优选40-50° C的温度下进行。
为此,将包含一氧化氮和氢气的原料料流E引入包含该水溶液和悬浮于其中的催化剂的搅拌釜中。氢气和一氧化氮的反应在该悬浮催化剂存在下在该水溶液中进行,其中立即形成硫酸羟铵。将所得硫酸羟铵溶于该水溶液中。还可以串联设置多个搅拌釜,以形成搅拌釜级联。通常设置2-20个,优选4-15个,更优选4-10个,特别优选5_8个搅拌釜以形成搅拌釜级联。当该反应在搅拌釜级联中进行时,硫酸羟铵通过在搅拌釜级联中的增进转化浓缩。离开该搅拌釜级联的最后搅拌釜的水溶液通常具有浓度为5-50重量%,优选10-40重量%,更优选15-35重量%,特别优选20-30重量%的硫酸羟铵,在每种情况下基于该水溶液的总重量。
硫酸羟铵可以在下游步骤中通过本领域熟练技术人员已知的方法裂解成羟胺和硫fe。
离开搅拌釜或搅拌釜级联的废气料流A通常包含60-80体积%氢气,5_10体积%一氧化氮,5-10体积% —氧化二氮和0-40体积%其他组分如氮气和氨。
氢气分离
根据本发明,至少一些存在于废气A中的氢气借助气密膜-电极组件以电化学方式分离出来,其中待分离出的氢气以质子形式输送通过该膜。为此,将离开搅拌釜或搅拌釜级联的废气A通过包含至少一个MEA的装置。在其间设置有膜的电极称为膜-电极组件(MEA)。根据本发明,该气密MEA包含至少一个选择性质子传导膜。
任选地,可以从离开搅拌釜或搅拌釜级联的废气A中分离出一种或多种其他有价值物质。一种或多种其他有价值物质的分离可以在分离有价值物质氢气之前和/或之后进行。还可以在与分离出氢气的同时分离出一种或多种其他物质。
由废气A分离一种或多种其他物质可以通过本领域熟练技术人员熟知的通常已知方法进行,例如通过冷凝、蒸馏或萃取进行。压力和温度范围的选择取决于待分离的化合物的物理性能且为本领域熟练技术人员已知。
MEA优选成型为平板或管,其中可以使用由分离气体混合物的现有技术已知的常规膜设置。
废气A沿该膜的一侧传导。该侧在下文称为保留物侧。该膜的另一侧在下文称为渗透物侧。在渗透物侧上除去根据方案I形成的氢气和/或根据方案II形成的水。该膜在各侧包括至少一种电极催化剂,其中在本说明书上下文中,位于保留物侧上的电极催化剂称为阳极催化剂且位于渗透物侧上的电极催化剂称为阴极催化剂。在保留物侧上氢气在阳极催化剂处氧化形成质子,这些质子穿过该膜并在渗透物侧上在阴极催化剂处被还原成氢气(方案I)或者与氧气 反应形成水(方案II)。根据方案II,为此含氧料流O沿着渗透物侧上传导并与渗透物侧接触。
含氧料流O包含至少15体积%氧气。特别优选将空气用作含氧料流O。
在方案I的情况下,为了将质子输送通过该膜,必须使用电能,该电能通过借助电极对该膜的两侧施加DC电压而供应。在方案II的情况下形成电能。
在优选实施方案中,直接使用废气A。就此而言,直接是指废气A在没有预先提纯或后处理下立即用于本发明方法中。
根据方案I得到的氢气具有高纯度。可以将它收集并销售或用于产生能量。由于高纯度,氢气还可以用于对杂质反应敏感的其他化学反应或方法。在根据方案II的方法中释放热和电能。该热例如可以用于加热其中形成废气A的反应。在优选实施方案中,将该氢气再用于用氢气催化还原一氧化氮以生产硫酸羟铵中。分离出的氢气可以直接再循环到搅拌釜或搅拌釜级联中,即没有进一步后处理。还可以对该氢气进行其他后处理步骤。该氢气此时可以通过单独的进料管线再循环到搅拌釜或搅拌釜级联中。还可以将该氢气加入原料料流E中。在优选实施方案中,将分离出的氢气加入原料料流E中。
为了确保该膜与位于保留物侧的氢气的良好接触以及在渗透物侧分离出的氢气或水的良好除去,通常使电极层与导电气体分配层接触。这些例如为具有细通道体系的格栅状表面结构的板或多孔导电材料如无纺织物、机织物或复写纸的层。气体分配层和电极层的整体通常称为气体扩散电极(GDE)。借助该气体分配层,待分离出的氢气在保留物侧上传导至接近该膜和阳极催化剂并在渗透物侧上促进形成的氢气或水的除去。
本发明所用MEA是气密的,即它基本没有气体可以以原子或分子形式通过由该MEA的一侧达到另一侧的孔隙,也没有气体可以借此非选择性输送通过该MEA,例如通过吸附、在该膜中溶解、扩散和解吸而非选择性输送通过该MEA的机构。气密在本发明上下文中是指在根据方案I以氢气形式或根据方案II以水形式分离出的该氢气总量中,至少95%,优选至少97%,更优选至少98%,特别优选至少99.5%以质子形式穿过该膜。
本发明所用膜选择性传导质子,也就是说具体而言它不是电子传导的。在本发明方法中,作为质子传导膜,原则上可以使用在现有技术中用作燃料电池的膜材料的所有材料。
为了将质子输送通过该膜,根据方案I,必须使用通过借助电极将DC电压施加于该膜两侧而供应的电能。
因此,通过施加电压而在该膜两侧产生电势差,由此根据方案I分离出氢气。该分离在0.05-2000mV,优选100_900mV,特别优选100_800mV的电压下进行,这相对于氢气参比电极(RHE)测量。通常在0.1-2.0A/cm2的电流密度下分离出该氢气。
根据方案II,将含氧料流O沿着该膜的渗透物侧上传输。根据方案II,在渗透物侧上质子在阴极催化剂处与氧气反应形成水。驱动力为氧气的还原。在整个反应中,能量以热的形式释放并且通过使用者的中间连接(zwischenschalten)而以电流形式释放。
氢气可以通过本发明方法不仅根据方案I而且根据方案II在0-1000° C的温度下分离出来。
合适温度范围的选择此时关键取决于所用膜材料。在使用聚合物膜a)的情况下,氢气通常在0-100° C,优选20-100° C,特别优选60-100° C,特别优选70-90° C的温度下分离。在使用聚合物膜a)的情况下,还可以在20-120° C,优选20-110° C的温度下分离出该氢气。
在使用PAFC (磷酸燃料电池)膜b)的情况下,该氢气通常在100-200° C的温度下分离出来。
在使用陶瓷膜c)的情况下,该氢气通常在200-1000° C的温度下分离出来。
氢气通过本发明方法优选在0.5-10巴,优选1-6巴,特别优选1_3巴的压力下,尤其是在大气压力下分离出来。根据本发明的优选实施方案,在该膜的保留物侧和渗透物侧之间压差在I巴以下,优选在0.5巴以下,特别优选没有压差。
此外,在根据方案I分离氢气的情况下,可以在渗透物侧上压缩该氢气。当该氢气不在渗透物侧上除去时确实如此。该压缩的进行使得该氢气由于形成电势差而由废气A通过该MEA传输至渗透物侧。借助本发明方法可以在渗透物侧上产生至多50巴,优选至多15巴,特别优选至多10巴的压力。
根据本发明,分离出至少一些存在于废气A中的氢气。通常分离出至少10%,优选至少50%,特别优选至少70%,非常特别优选至少95%,特别优选至少98%。
根据方案I在渗透物侧上得到的氢气包含最多5mol%,优选最多2mol%,特别优选最多lmol%杂质如一氧化氮、一氧化二氮、氮气和氨。
根据方案I在渗透物侧上得到的氢气包含最多5体积%,优选最多2体积%,特别优选最多I体积%杂质如一氧化氮、一氧化二氮、氮气和氨。
取决于所用选择性质子传导膜,氢气可以包含至多60体积%,优选至多10体积%,特别优选至多2体积%水。要求水的存在以在某些膜类型中,例如在某些聚合物膜中润湿聚合物膜。
该氢气的电化学分离根据本发明在其中进行羟胺生产的搅拌釜或搅拌釜级联之外进行。
根据优选实施方案,该氢气在装有至少一个气密MEA的反应器中由废气A分离出来。在一个实施方案中,该分离可以例如在反应器中进行,该反应器的外壁至少部分由气密MEA形成。
根据本发明,氢气可以通过方案1、方案II或这两种方案分离出来。后者是指至少一些氢气作为氢气得到且至少一些氢气作为水得到,产生电能。废气A中存在的氢气在每种情况下根据方案I和II有多少分离出来可以通过用户根据需要进行调节。根据本发明的优选实施方案,当该氢气通过方案I和II分离出来时,根据方案II分离出至少与此时产生的电流足以补偿根据方案I的氢气分离的能量需求的氢气。
若根据方案I和II 二者由废气A分离出氢气,则这总是在空间上分开地进行,因为在渗透物侧上氧气的存在下,质子通常直接反应形成水。废气A例如可以首先沿着在渗透物侧上与料流O接触的MEA依次通过,以使得一些氢气作为水分离出来。然后将废气A沿着施加有电压的MEA传输,以使得该氢气作为氢气分离出来。在两个方案I和II之间的空间分离也可以使得废气A在两个膜,例如两个相对膜之间通过,其中一个在渗透物侧上与料流O接触并对另一个施加电压。
分离出的氢气可以在进一步使用之前进一步干燥,若该分离经由必须润湿的聚合物膜进行则尤其进行这一干燥。
电极催化剂:
为了由废气A分离出氢气,可以使用本领域熟练技术人员已知的所有电极催化剂。
电极催化剂的功能例如描述于Journal of Power Sourcesl77 (2008), 478-484,K.A.Perry, G.A.Eisman, B.C.Benicewicz “Electrochemicalhydrogen pumping using ahigh-temperature polybenzimidazole (PBI) membrane中。
为了确保该膜与位于保留物侧的氢气的良好接触以及在渗透物侧分离出的氢气的良好除去,通常使电极层与气体分配层接触。这些例如为具有细通道体系的格栅状表面结构的板或多孔材料如无纺织物、机织物或纸张的层。气体分配层和电极层的整体通常称为气体扩散电极(GDE)。借助该气体分配层,待分离出的氢气在保留物侧上传导至接近该膜和阳极催化剂并在渗透物侧上促进形成的氢气的除去。
取决于本发明的实施方案, 阳极还可以同时用作阳极催化剂且阴极还可以同时用作阴极催化剂。然而,在每种情况下可以将不同材料用于阳极和阳极催化剂或用于阴极和阴极催化剂。
作为电极催化剂材料,可以使用本领域熟练技术人员已知的可以催化分子氢离解成原子氢、氢气氧化成质子以及质子还原成氢气的常规化合物和元素。合适的物质例如为Pd, Pt, Cu, Ni, Ru, Fe, Co, Cr, Mn, V, W,碳化鹤,Mo,碳化钥,Zr, Rh, Ag, Ir, Au, Re, Y, Nb 以及还有其合金和混合物,根据本发明优选Pd,Pt和Ni。上面作为电极催化剂材料所述元素和化合物也可以存在于载体上,此时优选碳作为载体。
根据本发明的优选实施方案,使用优选含有碳作为导电材料的电极。此时优选将该碳和电极催化剂施用于多孔载体如无纺织物、机织物或纸张上。该碳此时可以与该催化剂混合,或者可以先施用该碳,然后施用该催化剂。特别优选将碳载钼用于阳极和和阴极。
根据本发明的另一实施方案,用作电极和电极催化剂的导电材料直接施用于该膜上。
腹j
该膜优选构造成平板或管,其中可以使用由分离气体混合物的现有技术已知的常规膜设置。
本发明所用MEA是气密的,即它基本没有气体可以以原子或分子形式通过该MEA的一侧达到另一侧的孔隙,也没有气体可以借此非选择性输送通过该MEA,例如通过吸附、在该膜中溶解、扩散和解吸而非选择性输送通过该MEA的机构。该膜-电极组件(MEA)的气密性可以由气密膜、气密电极或气密电极催化剂以及还有其组合确保。因此,作为气密电极例如可以使用薄金属箔,例如Pd、Pd-Ag或Pd-Cu箔。此外,使用金属箔具有的优点是保护该质子传导膜以防废气A的侵蚀性组分,如一氧化氮和氨。此外,本发明所用膜选择性传导质子,也就是说具体而言它不是电子传导的。
根据本发明,对于该膜可以使用本领域熟练技术人员已知的可以由其形成选择性质子传导膜的所有材料。这些例如包括J.ff.Phair和S.P.S.Badwal在1nics (2006) 12,第103-115页中所列材料。根据本发明还可以使用由燃料电池技术已知的选择性质子传导膜。
膜材料在此可以根据三种传输机理区分:
a)聚合物膜。若所用膜为聚合物膜,则假定质子传输通过Grotthuss机理进行和/或该传输经由水合氢离子进行。也就是说该聚合物膜此时包含可以可逆地结合水合氢离子(H3O+离子)的官能基团。此时特别优选使用水溶胀聚合物膜。假定质子传输通过该膜此时通过该聚合物膜中存在的水与该聚合物膜中存在的可逆结合的水合氢离子之间氢键的反转进行。此外,假定质子传输以移动通过该聚合物膜的水合氢离子形式进行。
b)磷酸燃料电 池(PAFC)膜。若所用膜为PAFC膜,则该膜包括载体材料和磷酸(H3PO4)。磷酸用作该膜类型中的电解质。
c)陶瓷膜。若所用膜为陶瓷膜,则这包括在氢气分离的温度下包含缺陷的无机材料。质子输送通过该膜此时经由该陶瓷膜中的缺陷进行。
例如,可以使用下文的陶瓷膜c),例如某些杂多酸如H3Sb3B2O14.IOH2O,H2Ti4O9.12H20和HSbP2O8.IOH2O ;呈层状结构的酸性硅酸锆、酸性磷酸锆和酸性膦酸锆如K2ZrSi3O9, K2ZrSi3O9, a -Zr(HPO4)2.ηΗ20, y -Zr (PO4) - (H2PO4).2Η20,α-和 γ-Zr-磺基苯基膦酸盐或磺基芳基膦酸盐;非层状水合氧化物(oxidhydrate)如铺酸(Sb2O5.2Η20),V2O5 *nH20,Zr02 *nH20,Sn02.ηΗ20和Ce (HPO4)2.ηΗ20。此外,可以使用包含例如硫酸根、硒酸根、磷酸根、砷酸根、硝酸根基团等的含氧酸和盐。特别合适的那些是基于磷酸盐或络合杂多酸的含氧阴离子体系如聚磷酸盐玻璃、聚磷酸铝、聚磷酸铵和聚磷酸盐组合物如NH4PO3/(NH4) 2SiP4013和NH4P03/TiP207。此外,可以使用氧化物材料,如钙铁石、荧石和具有磷灰石结构的磷酸盐,烧绿石矿物和钙钛矿。通常可以使用所有质子传导材料,例如包括沸石、硅铝酸盐、XAl2O3 (1-x) Si02、SnP2O7' Sn1^xInxP2O7 (X=0.0-0.2)。
钙钛矿具有基础式ABhMx03_y,其中M为用于掺杂的三价稀土元素且y表示钙钛矿氧化物晶格中的氧欠缺。例如可以由Mg、Ca、Sr和Ba选择A。B尤其可以选自Ce、Zr和Ti。对于A、B和M,各种元素也可以相互独立地选自相应组。
此外,可以将结构改性玻璃用作陶瓷膜c),如硫属化物玻璃、PbO-SiO2,BaO-SiO2和CaO-SiO2。此外,合适的质子传导陶瓷和氧化物例如描述于SolidState 1nicsl25(1999),271-278 ;Journal of Power Sourcesl80(2008) , 15-22 ;1nicsl2(2006),103-115 ;Journal of Power Sourcesl79(2008)92-95 ;JournaI of PowerSourcesl76(2008) 122_127and Electrochemistry CommunicationslO(2008) 1005-1007中。
质子传导陶瓷c)和氧化物的其他实例是SrCeO3, BaCeO3, Yb:SrCeO3,NchBaCeO3, GchBaCeO3, SmiBaCeO3, BaCaNdO9, YiBaCeO3, YiBaZrCeO3, Pr 掺杂 YiBaCeO3,Gd:BaCeO3, BaCe0 9Y0.102 95 (BYC), SrCe0.95Yb0.0503_a,BaCe0.9Nd0.1003_a,CaZr0.96In0.0403_a ( ct表示每个单位式的钙钛矿类型氧化物的氧空穴数);Sr掺杂La3P3O9, Sr掺杂LaPO4,BaCe0 9Υαι03_α (BCY),BaZr0 9Υ0103_α (BZY),Ba3Ca118Nb182O8 73 (BCN18), (La1 95Caa(l5)Zr2O7-α,La2Ce2O7, Eu2Zr2O7, H2S/ (B2S3 或 Ga2S3) /GeS2, SiS2, As2S3 或 CsI ;BaCe0 8Gd0 203_a (BCGO);Gd 掺杂 BaCeO3,如 BaCe0 85Y0.1503_a (BCY15)和 BaCe0.8Sm0.203_α,XAl2O3 (l_x) SiO2, SnP2O7,Sn1^InxP2O7 (χ=0.0-0.2)。
适合生产气密选择性质子传导膜的另一类材料是聚合物膜a)。适合生产聚合物膜a)的聚合物例如为磺化聚醚醚酮(S-PEEK)、磺化聚醚砜、磺化聚苯并咪唑(S-PBI)和磺化的部分氟化或全氟化烃聚合物,如NAFION (Fa.DuPont)。此外,可以使用部分氟化或全氟化聚磺酸、基于苯乙烯的聚合物、聚(亚芳基醚)、聚酰亚胺和聚磷腈。
作为PAFC膜b)可以使用本领域熟练技术人员已知的所有与作为电解质的磷酸组合选择性传导质子的载体材料。例如,可以使用基于聚苯并咪唑和磷酸的聚苯并咪唑膜,其例如以名称Celtec-P 由BASF SE销售。此外,例如可以使用基于Teflon或碳化硅(SiC)的PAFC膜。合适的载体材料选自聚苯并咪唑、特氟隆和碳化硅(SiC)。
在优选实施方案中,可以使用聚合物膜a)。
当使用聚合物膜时,这些通常通过在该膜的至少一侧上存在水而润湿。为此,在该膜的至少一侧上提供包含0.5-60体积%水的气流。在阳极侧(保留物侧)上,可以将水加入废气A中。还可以在羟胺或羟铵盐生产中设定反应条件以使得废气A由于生产模式而包含足够的水。
本发明在下文由实施例说明,但不限于这些实施例。实施例
a)在500^燃料电池(Celtec-PlOOO腊)中分离氧气
在50cm2燃料电池中,使用包括气体扩散电极(阳极和阴极)和Celtec-PlOOO标准膜的MEA。该燃料电池的结构为本领域熟练技术人员已知。此时该MEA位于用作集电器(或用作触点)以及还用于气体进料的所谓流场之间。同时经由端板进行压制,借此可以对流场设定限定的压力。该压制是必要的,主要是为了在该电化学电池内良好接触。气体扩散电极具有lmgPt/cm2的催化剂负荷且具有30-150 μ m的催化剂层厚。作为膜使用Celtec-P标准膜。对于氢气分离工艺,将氢气(70%)、一氧化氮(8%)、一氧化二氮(8%)和氮气(14%)的混合物(组成基于干气体)送入阳极流场的气体进料中。该气流为500ml/min且在进入阳极流场中之前被水或水蒸气饱和。该氢气在阳极处根据下列方程反应:H2 —2H++2e_。形成的质子经由质子传导膜达到阴极,在此通过质子的还原进行逆反应2H++2e_ —H2。阴极气流同样被水或水蒸气饱和以防止该聚合物膜干透。该反应在160° C的电池温度下进行。最大电流密度为1.5A/cm2。使用该电化学电池使得可以压缩分离出的氢气。
b)在50(^燃料电池(Nafionll2腊)中分离氧气
在50cm2燃料电池中,使用包括气体扩散电极(阳极和阴极)和Nafionl 12膜的MEA。此时该膜电极结构位于用作集电器(或用作触点)以及还用于气体进料的所谓流场之间。同时经由端板进行压制,借此可以对流场设定限定的压力。该压制是必要的,主要是为了在该电化学电池内良好接触。气体扩散电极具有Img Pt/cm2的催化剂负荷且具有80-120 μ m的催化剂层厚。作为膜使用Nafionll2膜。对于氢气分离工艺,将氢气(70%)、一氧化氮(8%)、一氧化二氮(8%)和氮气(14%)的混合物(组成基于干气体)送入阳极流场的气体进料中。气流为500ml/min且在进入阳极流场中之前被水或水蒸气饱和。该氢气在阳极处根据下列方 程反应=H2 — 2Η++2Θ—。形成的质子经由质子传导膜达到阴极,在此通过质子的还原进行逆反应2H++2e_ — H2。阴极气流同样被水或水蒸气饱和以防止该聚合物膜干透.该反应在70° C的电池温度下进行。最大电流密度为2A/cm2。使用该电化学电池使得可以压缩分离出的氢气。
权利要求
1.一种后处理来自通过用氢气催化还原一氧化氮而生产羟胺或羟铵盐的系统的废气A的方法,其中废气A包含一氧化氮、氢气、一氧化二氮、氮气和氨并且至少一些存在于废气A中的氢气借助气密膜-电极组件从废气A中分离出来,所述组件包括至少一个选择性质子传导膜、保留物侧、渗透物侧以及在所述膜各侧上的至少一种电极催化剂,其中在所述膜的保留物侧上在阳极催化剂处将至少一些氢气氧化成质子并且质子在穿过所述膜之后在渗透物侧上在阴极催化剂处I被还原成氢气和/或II与氧气反应形成水,其中所述氧气来源于与渗透物侧接触的含氧料流O。
2.根据权利要求1的方法,其中在根据I和II同时分离氢气的情况下,将至少一些在II中产生的电流(Stroms)用于I中。
3.根据权利要求1或2的方法,其中在根据II分离氢气的情况下,将至少一些在II中形成的热供入所述 生产羟胺或羟铵盐的系统中。
4.根据权利要求1-3中任一项的方法,其中根据I,通过在氢气参比电极上施加0.05-2000mV的电压分尚氢气。
5.根据权利要求1-4中任一项的方法,其中所述含氧料流O包含至少15体积%氧气。
6.根据权利要求1-5中任一项的方法,其中将空气用作含氧料流O。
7.根据权利要求1-6中任一项的方法,其中将所述膜-电极组件的电极设计成气体扩散电极。
8.根据权利要求1-7中任一项的方法,其中将聚合物膜a)用作选择性质子传导膜。
9.根据权利要求1-7中任一项的方法,其中将含有载体材料和磷酸的膜用作选择性质子传导膜。
10.根据权利要求9的方法,其中所述膜含有选自聚苯并咪唑、特氟隆和碳化硅的载体材料。
11.根据权利要求1-7中任一项的方法,其中将陶瓷膜C)用作选择性质子传导膜。
12.根据权利要求1-8中任一项的方法,其中将部分氟化或全氟化烃聚合物用作选择性质子传导膜。
13.根据权利要求1-8中任一项的方法,其中将磺化聚醚醚酮(S-PEEK)用作选择性质子传导聚合物膜。
14.根据权利要求1-10中任一项的方法,其中所述氢气在0-200°C的温度下分离出来。
15.根据权利要求1-8中任一项的方法,其中所述氢气在70-90°C的温度下分离出来。
全文摘要
一种后处理来自通过用氢气催化还原一氧化氮而生产羟胺或羟铵盐的系统的废气(A)的方法,其中废气(A)包含一氧化氮、氢气、一氧化二氮、氮气和氨并且至少一些存在于废气(A)中的氢气借助气密膜-电极组件从废气(A)中分离出来,该组件包括至少一个选择性质子传导膜、保留物侧、渗透物侧以及在该膜各侧上的至少一种电极催化剂,其中在该膜的保留物侧上在阳极催化剂处将至少一些氢气氧化成质子并且质子在穿过该膜之后在渗透物侧上在阴极催化剂处(I)被还原成氢气和/或(II)与氧气反应形成水,其中该氧气来源于与渗透物侧接触的含氧料流(O)。
文档编号C01B5/00GK103140437SQ201180047604
公开日2013年6月5日 申请日期2011年9月27日 优先权日2010年9月30日
发明者A·加祖赫, A·潘琴科, S·布罗伊宁格, J·沙伊德尔, A·托默 申请人:巴斯夫欧洲公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1