生物可降解发泡材及其制品的制作方法

文档序号:13090708阅读:537来源:国知局

本发明涉及一种发泡材,尤其涉及一种生物可高度降解或全降解的发泡材。



背景技术:

随着网络时代来临,网络购物大大改变新世代人们的购物习惯,在家里不必出门即可轻轻松松购买日常生活所需的用品,但是方便的背后代表着货物运输量增加,为了保护货物在运输途中不致碰撞损坏,发泡缓冲材料的使用量因而大增,目前这些发泡缓冲材主要是依赖石化来源的塑料材料所制成,但石油原料逐渐减少,温室效应的增强以及石化塑料材料无法分解所造成的环境污染等议题的发酵,减少石化塑料材料的使用或是发展生物可降解塑料成为一新兴的塑料发展趋势。

生物可降解塑料中有一种淀粉基塑料,因部份含有来自于可再生资源的淀粉成分,因此具有可降解、可崩解及价格低廉的特性,因此逐渐受到业界注意并进行相关开发。目前淀粉基塑料可分为全降解型与部分降解型,全降解型的成本较高且耐用性较低,因此市面上多以部份降解型淀粉基材料来开发为发泡材。

部分降解型淀粉基塑料是经由淀粉与石化塑料如聚乙烯(pe)、聚丙烯(pp)、聚苯乙烯(ps)或乙烯-醋酸乙烯共聚物(eva)共混而得,市面上已有许多该类淀粉基塑料贩卖,由该部分降解型淀粉基塑料所制得的相关发泡产品,虽然制程较简单且价格较低,但其中所含的石化塑料成分依然存在着无法分解的问题,因此仍会对环境造成冲击。

且目前针对淀粉基塑料并未有周全的回收标志、分类等回收机制,使得淀粉基塑料与一般塑料一起回收时,因加工温度的不同,淀粉基塑料中所含的淀粉会产生焦化,使回收塑料物性变差,进而影响回收商回收的意愿,导致淀粉基塑料被任意弃置而产生塑料无法被环境分解的污染问题。

由于环保意识造成石化塑料有生物可分解的需求,因此生物降解助剂应运而生,这类助剂可以协助石化塑料加速老化、崩解甚至降解,生物可分解 助剂目前可分为二种,epi公司、symphony公司所开发的tdpa、d2w光氧降解助剂及earthecmbiofilms、bio-tecensoplastics、iqonecozyme…等的酵素控制型助剂,,该酵素控制型助剂之公开信息如以下网址:http://agbio.coa.gov.tw/information_detail.aspx?dno=34347&ito=87;http://technews.tw/2016/03/13/bacteria-eat-plastic/;http://www.bioindustry.cn/info/view/26856。

光氧降解助剂的缺点是内含重金属成分,且无法通过可堆肥测试,因此部分地区或国家已开始禁用,故酵素控制型助剂因无重金属残留问题,未来将会有相当程度的发展性。

酵素调控型助剂主要含有特殊蛋白质酵素可与塑料反应,可降低塑料分子间碳-碳键(c-c)和碳-氢键(c-h)的键能,促使微生物较容易分解该石化塑料,更有机会可作为作物堆肥使用。

酵素调控型助剂虽然是透过天然成分使塑料分解,但目前若单独使用在石化塑料如聚乙烯或聚丙烯中,其缺点是分解速度过慢,初期甚至只能稍微降低材料的机械强度,与一般认知的可分解仍有距离。另外,其促使石化塑料降解的速度及能力取决于酵素调控型助剂的多少,因该类助剂价格较高,这点将会反映在产品最终成本上,造成推广不易。



技术实现要素:

为了解决上述淀粉基塑料无法全分解造成的环境污染、不易回收,或是添加酵素调控型助剂后的石化塑料降解速度过慢及成本较高的问题,本发明提供一种生物可降解发泡材,其降解率至少达90wt%,其包含:一聚烯烃材料20~70wt%;含70~80wt%淀粉或纤维粉的一塑料母粒20~70wt%;一酵素调控型助剂1~10wt%;一功能助剂0~20wt%;以及该功能性助剂包含滑剂0.5~3wt%,抗氧化剂0.2~2wt%,成核剂0.1~2wt%,发泡剂2~10wt%、发泡助剂0.2~2wt%。

其中,该聚烯烃材料包含石化来源或植物来源的聚乙烯、聚丙烯、聚苯乙烯、乙烯-醋酸乙烯共聚物或聚氯乙烯;该塑料母粒进一步包含聚乙烯、聚丙烯、聚苯乙烯、乙烯-醋酸乙烯共聚物或聚氯乙烯;该纤维粉为竹粉、木粉、 米糠粉、秸秆粉、咖啡粉的一种或多种混合物;该生物可降解发泡材进一步包含色料、填充剂、增韧剂或加工助剂;及该酵素调控型助剂含有蛋白质酵素、微生物及微生物的营养来源。

其中,该填充剂包含碳酸钙或滑石等无机物填充剂;该增韧剂包含热塑性聚烯烃、热塑性弹性体、加硫型热塑性聚烯烃系弹性体类弹性体或橡胶;及该加工助剂包含脂肪酸、脂肪族酰胺类、酯类、石蜡类的分散剂。

其中,该发泡剂包含偶氮苯二甲酰胺发泡剂或小苏打,该发泡助剂包含氧化锌。

其中,该发泡剂包含甲烷、乙烷或丙烷,该发泡助剂包含氧化锌。

其中,该发泡剂为该塑料母粒的淀粉或纤维粉所内含的水份。

本发明进一步提供一种发泡包装缓冲材及一种发泡鞋材,其由上述的生物可降解发泡材所制成。

通过上述说明可知,本发明透过添加塑料母粒及酵素调控型助剂,不仅可减少无法分解的聚烯烃材料使用量外,更因发泡过后成品含有一定数量微孔,使塑料母粒和酵素调控型助剂与环境中微生物、细菌的接触面积变大,因此有助于塑料母粒中的基础塑料及聚烯烃材料的高度或完全分解。

本发明所添加的含淀粉或纤维粉的塑料母粒,可进一步提供微生物更多的营养源,使得微生物快速的增生,加速聚烯烃材料崩解及降解速率,且淀粉或纤维粉本身就具备良好且快速的降解特性,淀粉或纤维粉先分解后,更有助于增加酵素调控型助剂中所含酵素作用的表面积,再次加速整体材料的分解速率。

本发明透过添加如淀粉或植物纤维等成本较低的塑料母粒,除了可直接减少酵素调控型助剂的使用量,又可因聚烯烃材料比重降低间接减少酵素调控型助剂的使用量,达到降低成本又维持高度分解或全分解的效果外,也可同时降低无法分解的聚烯烃材料使用量,再通过本发明表1、表3的降解速率比较表证实,添加塑料母粒确实可进一步加快聚烯烃材料的分解速率。

具体实施方式

一种生物可降解发泡材,其包含一聚烯烃材料20~70wt%、含70~80wt%淀粉或纤维粉的一塑料母粒20~70wt%、一酵素调控型助剂1~10wt%及一功 能助剂0~20wt%,该功能性助剂包含滑剂0.5~3wt%、架桥剂0.1~3wt%、抗氧化剂0.2~2wt%、成核剂0.1~2wt%、发泡剂2~10wt%及发泡助剂0.2~2wt%。

本发明所述的生物可降解是指其中所含的聚烯烃材料于特定的自然环境中可高度降解或甚至是全降解,所谓的高度降解或全分解是可达到至少90%的降解率。

该聚烯烃材料为石化来源或植物来源的聚烯烃材料,例如聚乙烯(polyethylene,pe)、聚丙烯(polypropylene,pp)、聚苯乙烯(polystyrene,pe)、乙烯-醋酸乙烯共聚物(polyethylene-co-vinylacetate,eva)或聚氯乙烯(polyvinylchloride,pvc)等,该聚烯烃材料在未添加任何协助降解的成分前,无法自行于环境中降解。

该塑料母粒中除了含有70~80wt%淀粉或纤维粉外,另外含有一基础塑料20~30wt%,该基础塑料包含聚乙烯、聚丙烯、聚苯乙烯、乙烯-醋酸乙烯共聚物或聚氯乙烯等,所述的该纤维粉包含竹粉、木粉、米糠粉、秸秆粉、咖啡粉等植物纤维粉的一种或多种混合物。该塑料母粒为将淀粉或纤维粉与该基础塑料混练并造粒后,再与聚烯烃材料、酵素调控型助剂及功能助剂共同混合。

本发明所使用的酵素调控型助剂,即是现有技术中所述的含有特殊蛋白质酵素的酵素调控型助剂,其利用该蛋白质酵素对聚烯烃材料中特定化学结构的专一反应性,使聚烯烃材料可在土壤环境下通过酵素与细菌对聚烯烃材料进行分解,该酵素调控型助剂可进一步含有基础树脂如聚乙烯(pe)、聚丙烯(pp)、乙烯-醋酸乙烯共聚物(eva)等、微生物及微生物的营养源,但由于本发明透过添加含淀粉或纤维粉的成本较低的塑料母粒与酵素调控型助剂搭配,不仅可减少聚烯烃材料的使用量并加速其分解速率外,更可降低酵素调控型助剂的使用添加成本。

本发明可透过添加化学性发泡剂进行化学性发泡、通过石油气进行物理发泡,或甚至是透过该塑料母粒中的淀粉或纤维粉所内含的水进行发泡。该化学性发泡剂包含偶氮苯二甲酰胺发泡剂(azodicarbonamide,ac发泡剂)或小苏打(碳酸氢钠)等,发泡助剂包含氧化锌,该石油气包含甲烷、乙烷或丙烷等石油气。而上述该发泡剂添加的比例2~10wt%是利用化学性或物理性发泡剂的添加量,若本发明利用该该塑料母粒中的淀粉或纤维粉所内含的水进行发 泡时,可选择性的不添加化学或物理性发泡剂,或也可减少化学或物理性发泡剂使用量。

该功能性助剂中的滑剂包含聚乙烯蜡、石蜡、硬脂酸盐、脂肪酸类等,该架桥剂包含dcp架桥剂,该抗氧化剂为四-β-(3,5-二叔丁基-4-羟基苯基)丙酸-季戊四醇酯(又称1010抗氧化剂)或三-(2,4-二叔丁基苯基)-亚磷酸酯(又称168抗氧化剂)等,该成核剂包含碳酸钙、滑石、蒙托土、氮化硼或二氧化钛等,该架桥剂为dcp架桥剂。

另外,依据终端产品需求可进一步添加色料、填充剂、增韧剂或加工助剂等成分。其中填充剂包含碳酸钙或滑石等无机物填充剂,增韧剂包含热塑性聚烯烃(thermoplasticolefin,tpo)、热塑性弹性体(thermoplasticelastomer,tpe)、加硫型热塑性聚烯烃系弹性体(thermoplasticvulcanizate,tpv)类弹性体或橡胶等,该加工助剂包含脂肪酸、脂肪族酰胺类、酯类、石蜡类的分散剂。

本发明所提供的配方组成可利用一般塑料发泡加工方法成形为发泡材,于此不限定,如将该聚烯烃材料、该塑料母粒、该酵素调控型助剂及该功能助剂利用一双螺杆混练机均匀混练后,挤出造粒并发泡为该发泡材。而本发明的发泡材可应用的范围广泛,例如发泡缓冲材、发泡填充材、发泡鞋材、发泡鞋垫、发泡地垫、发泡护具、发泡胶、发泡板或发泡颗粒等。

一般而言,添加含有淀粉或纤维粉的塑料母粒和酵素调控型助剂时,因为在生产制造或储存过程中,容易因吸湿,导致产品容易变形瑕疵、质量不稳定且物性不佳,是故,在本发明将塑料母粒与酵素调控型助剂和石化来源的聚烯烃材料共混前,塑料母粒与酵素调控型助剂皆需干燥至含水率0.5wt%~5wt%,以减少后续制程中瑕疵的问题,且不影响发泡的效果。而本发明若选用含有植物粉的塑料母粒时,则可增加产品的物性及耐磨耗性,故可依据终端产品的特性,选用淀粉及纤维粉的任意组合,达到产品所需的物性及质量要求。

本发明可进一步透过添加加工助剂与奈米级无机物填充剂并搭配合适的设备规划,增加塑料母粒在整体材料中的分散性,生产出产品强度或印刷性都较佳的高质量片材。本发明含有淀粉或纤维粉的塑料母粒及酵素调控型助剂可通过该奈米级无机物填充剂与加工助剂的协助下,于螺杆中均匀分散,机台的螺杆需要长径比大于25,且有一定的剪切力设计。

本发明透过发泡制程使发泡材中含有一定数量微孔,除了使产品有轻量化效果外,也因微孔的产生使淀粉或纤维粉和酵素与细菌的接触面积变大,因此有助于淀粉、纤维粉或塑料材料的分解。且淀粉或纤维粉除了本身就具备良好且快速的降解特性,可提供微生物更多的营养源,使得微生物快速的增生,加速聚烯烃材料的崩解及降解速率外,淀粉或纤维粉先分解后,更有助于增加酵素调控型助剂中酵素的作用表面积,再次加速整体材料的分解速率。

请参考表1,为证实本发明透过塑料母粒及酵素调控型助剂的搭配,可进一步加速该聚烯烃材料分解速率的效能,通过对照组1仅添加酵素调控型助剂的聚乙烯(pe)发泡材、对照组2仅添加淀粉的聚乙烯(pe)发泡材,对比本发明1含塑料母粒及酵素调控型助剂的聚乙烯发泡材,于90天、150天、180天及300天的降解速率比较表。

表1

由表1可看出,单纯pe加淀粉的对照组2自150天后即不再降解,表示对照组2中可被分解的淀粉被分解完后,无法分解的pe就会永远残留在环境中造成污染。

而本发明1含pe、淀粉及酵素调控型助剂的组别,同样于150天所添加的淀粉约40wt%分解完后,自150天到180天短短的30天内,4wt%的酵素调控型助剂可将约50wt%的pe完全或高度分解,这是因为添加淀粉等生物基材料可造成产品中含有一定数量微孔,使淀粉和酵素与细菌的接触面积变大, 因此有助于酵素调控型助剂对于塑料材料的加速分解。且淀粉除了本身就具备良好且快速的降解特性,可提供微生物更多的营养源,使得微生物快速的增生,加速石化塑料的崩解及降解速率外,淀粉先分解后,更有助于增加酵素调控型助剂中酵素的作用表面积,再次加速整体材料的分解速率。

反观仅含pe及酵素调控型助剂对照组1,因为无添加淀粉等生物基材料以形成可增加反应表面积的微孔,故pe的分解速率在150天前相当缓慢,或甚至是无分解,即便是要分解其一半量的pe(约50wt%,即相当于本发明组别的pe添加量),还是至少要花上180天,相对于本发明在30天内(150天~180天)即可将50wt%左右的pe分解完,本发明可加快塑料材料分解速率至少5~6倍的时间。

请参考表2,其用上述表1的对照组1、本发明1及对照组2所做的物性比较表,可以发现本发明1加了淀粉及酵素调控型助剂的发泡材,相对于对照组1、2仅添加酵素调控型助剂或仅添加淀粉的对照组,物性影响不大。

表2

请参考表3,本发明进一步使用聚烯烃材料-乙烯-醋酸乙烯共聚物(eva)混合物所做的发泡材降解试验,通过对照组3仅添加酵素调控型助剂的乙烯-醋酸乙烯共聚物混合物发泡材料、对照组4仅添加淀粉的乙烯-醋酸乙烯共聚物混合物发泡材料,对比本发明2含淀粉及酵素调控型助剂的乙烯-醋酸乙烯共聚物混合物发泡材料,于90天、150天、180天及300天的降解速率比较表。

表3

表3所述的功能性助剂包含ac发泡剂、dcp架桥剂、硬脂酸盐类与tpe弹性体或橡胶。

请参考表4,其为本发明2与既有eva发泡产品的物性测试结果比较,由测试结果比较发现,本发明的物性与既有eva发泡材的物性相当,不因添加淀粉或纤维粉及酵素控制型助剂而使得产品物性降低,更可达到替代无法分解的聚烯烃材料的优势,进一步的透过添加酵素调控型助剂达到聚烯烃材料高度降解或甚至是全分解的功效。

表4

上述表1~4中所述仅为本发明的较佳实施例而已,并非用以限定本发明主张的权利范围,凡其它未脱离本发明所揭示的精神所完成的等效改变或修饰,均应包括在本发明的主张范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1