一种以喹唑啉酮衍生物为核心的化合物及其在OLED上的应用的制作方法

文档序号:12398691阅读:521来源:国知局
本发明涉及半导体
技术领域
,尤其是涉及一种喹唑啉衍生物的化合物,以及其作为发光层材料在有机发光二极管上的应用。
背景技术
:有机电致发光(OLED:OrganicLightEmissionDiodes)器件技术既可以用来制造新型显示产品,也可以用于制作新型照明产品,有望替代现有的液晶显示和荧光灯照明,应用前景十分广泛。OLED发光器件犹如三明治的结构,包括电极材料膜层,以及夹在不同电极膜层之间的有机功能材料,各种不同功能材料根据用途相互叠加在一起共同组成OLED发光器件。作为电流器件,当对OLED发光器件的两端电极施加电压,并通过电场作用有机层功能材料膜层中的正负电荷,正负电荷进一步在发光层中复合,即产生OLED电致发光。为了得到综合性能优异的有机电致发光器件,需要设计合适的主客体材料和优化器件结构,发光层主体材料通常包含空穴和/或电子传输单元,具有合适的载流子传输性能,并且要求其三重态能级高于发光体,这样才能保证三重态激子局限在发光层。此外,为了实现载流子高效注入以降低启动电压,主体材料还应该具有相对于邻近有机层的合适的能级。近年来,双极性主体材料因具有平衡的空穴和电子载流子流,提高了电子和空穴的复合效率,进而有利于增强器件的发光效率,降低效率的滚降。同时,双极性主体材料的给体和受体之间具有很强的分子内电荷转移,导致材料本身的三重态能级被拉低,限制了其在工业化生产中的应用。目前双极性主体材料的研究热点在包含有给体受体的基础上,采用饱和原子切断给体受体之间的π共轭,进而提高其三重态能级。就当前OLED显示照明产业的实际需求而言,目前OLED材料的发展还远远不够,落后于面板制造企业的要求,作为材料企业开发更高性能的有机功能材料显得尤为重要。技术实现要素:针对现有技术存在的上述问题,本申请人提供了一种以喹唑啉酮衍生物为核心的化合物及其在OLED上的应用。本发明化合物以喹唑啉酮衍生为核心,作为发光层材料应用于有机发光二极管,本发明制作的器件具有良好的光电性能,能够满足面板制造企业的要求。本发明的技术方案如下:本申请人提供了一种以喹唑啉酮衍生物为核心的化合物,所述化合物的结构如通式(1)所示:通式(1)中,Ar1、Ar2分别独立的表示或-R;其中,Ar表示C5-20的芳基;n取1或2;R选取氢、通式(2)或通式(3)所示结构,且Ar1、Ar2中的R至少有一个选取通式(2)或(3)所示结构:其中,R1、R2分别独立的选取氢、通式(4)或通式(5)所示结构;在通式(5)中,a选自X1、X2、X3分别独立的表示为氧原子、硫原子、硒原子、C1-10直链烷基取代的亚烷基、C1-10支链烷基取代的亚烷基、芳基取代的亚烷基、芳基取代的烷基或芳基取代的叔胺基中的一种;通式(5)、通式(6)通过标“*”的两个位点与通式(2)、通式(3)或通式(4)的CL1-CL2键、CL2-CL3键、CL3-CL4键、CL‘1-CL’2键、CL‘2-CL’3键、CL‘3-CL’4键或CL5-CL6键相连接;R3表示为氢、C5-20的芳基、C5-20的杂芳基或通式(7)所示结构;通式(7)中,R4、R5分别独立的选取C1-10直链或支链烷基、C5-20的环烷基、C5-20的芳基或C5-20的杂芳基。优选的,所述通式(3)中R3采用通式(8)、通式(9)或通式(10)表示:其中,通式(9)、通式(10)中所述X表示为氧原子、硫原子、硒原子、C1-10直链或支链烷基取代的亚烷基、芳基取代的亚烷基、烷基或芳基取代的胺基中的一种。优选的,所述通式(1)中R为:中的任一种。优选的,所述化合物的具体结构式为:中的任一种。本申请人还提供了一种包含所述化合物的发光器件,其特征在于所述化合物作为发光层的主体材料,用于制作OLED器件。本申请人还提供了一种制备所述化合物的方法,其特征在于制备过程中发生的反应方程式为:反应式1、2中X分别独立的表示Cl、Br或I;n,m分别独立的表示为0或1;其中反应式1的制备方法为:称取喹唑啉酮的溴代物、Ar1-H、Ar2-H,用甲苯溶解;再加入Pd2(dba)3、三叔丁基膦、叔丁醇钠;在惰性气氛下,将上述反应物的混合溶液于反应温度95~110℃,反应10~24小时,冷却并过滤反应溶液,滤液旋蒸,过硅胶柱,得到目标产物;所述喹唑啉酮的溴代物与Ar1-H、Ar2-H的摩尔比为1:0.8~2.0:0.8~2.0,Pd2(dba)3与喹唑啉酮的溴代物的摩尔比为0.006~0.02:1,三叔丁基膦与喹唑啉酮的溴代物的摩尔比为0.006~0.02:1,叔丁醇钠与溴代物的摩尔比为1.0~3.0:1;反应式2的制备方法为:称取喹唑啉酮的溴代物、Ar1-B(OH)2、Ar2-B(OH)2,用体积比为2~3:1的甲苯乙醇混合溶剂溶解;在惰性气氛下,再加入Na2CO3水溶液、Pd(PPh3)4;将上述反应物的混合溶液于反应温度95~110℃,反应10~24小时,冷却并过滤反应溶液,滤液旋蒸,过硅胶柱,得到目标产物;所述喹唑啉酮的溴代物与Ar1-B(OH)2、Ar2-B(OH)2的摩尔比为1:1.0~2.0:1.0~2.0;Na2CO3与喹唑啉酮的溴代物的摩尔比为1.0~3.0:1;Pd(PPh3)4与喹唑啉酮的溴代物的摩尔比为0.006~0.02:1。其中,所述Ar1-H、Ar2-H的合成步骤如反应式3所示,所述Ar1-B(OH)2、Ar2-B(OH)2的合成步骤如反应式4所示:其中,反应式3所述的反应过程为:称取液溴溶于冰醋酸中缓慢滴加于原料I中,室温搅拌直至反应完成,向反应液中加入碱液中和,加入氯仿萃取,干燥旋蒸,过硅胶柱,得到相应溴化物;所述硝基化合物与液溴的摩尔比例为1:1.5~3;称取上一步得到的溴化物、原料II,用体积比为2~3:1的甲苯乙醇混合溶剂溶解,在惰性气氛下,加入碳酸钾水溶液、四三苯基磷钯,在95~110℃下反应10~24小时,冷却至室温,过滤,滤液旋蒸,过硅胶柱,得到溴化中间体;其中溴化物与硼酸摩尔比例为1:1.2~1.5;溴化物与碳酸钾的摩尔比为1:2.0~3.0;溴化物与四三苯基磷钯的摩尔比为1:0.01~0.02;称取上一步的产物溶于二氯苯中,加入三苯基膦,180~200℃下反应12~24小时,反应结束后冷却至室温,过滤,滤液旋蒸,过硅胶柱,得到化合物Bn;反应式4所述的反应过程为:称取化合物Bn,二溴苯溶于甲苯中,再加入Pd2(dba)3、三叔丁基膦、叔丁醇钠;在惰性气氛下,将上述反应物的混合溶液于反应温度95~110℃,反应10~24小时,冷却并过滤反应溶液,滤液旋蒸,过硅胶柱,得到溴化的中间产物;在通氮气的气氛下,称取溴化的中间产物,双(频哪醇合)二硼,Pd(dppf)Cl2,醋酸钾溶于无水甲苯中,加热反应10~24小时,取样点板,反应完全,自然冷却,过滤,滤液旋蒸,向其中滴加盐酸稀溶液调节pH至3~5,有固体析出,用乙醇重结晶得到化合物Cn。本发明有益的技术效果在于:本发明化合物以喹唑啉酮的衍生物为母核,再连接芳香杂环基团,具备很强的刚性,破坏了分子对称性,从而破坏分子的结晶性,避免了分子间的聚集作用。所述化合物结构分子内包含咪唑并环作为电子受体(acceptor,A),有利于电子在发光层中的传输。连接的杂环基团是电子给体(donor,D),它有利于空穴在发光层中的传输。喹啉酮的内部的三价氮原子是饱和原子,它不仅具有很强的刚性,还有利于提高母核化合物三重态能级,电子给体和电子受体的组合可以提高电子和空穴的迁移率、降低启动电压,提高激子的复合效率,提高器件性能。母核喹唑啉酮并环具有较高的三重态能级,使化合物三重态激子局限在发光层中,提高发光效率,本发明化合物适合作为发光层主体材料使用。本发明所述化合物可作为发光层材料应用于OLED发光器件制作,作为发光层主体材料可以获得良好的器件表现,器件的电流效率,功率效率和外量子效率均得到很大改善;同时,对于器件寿命提升非常明显。本发明所述化合物材料在OLED发光器件中具有良好的应用效果,具有良好的产业化前景。附图说明图1为使用本发明化合物的器件结构示意图;其中,1为透明基板层,2为ITO阳极层,3为空穴注入层,4为空穴传输层,5为发光层,6为电子传输层,7为电子注入层,8为阴极反射电极层。具体实施方式中间体B6的合成路线如下:在氮气的氛围下,在500ml的三口烧瓶中将1-溴-2-硝基二苯并呋喃0.04mol,4-二苯并呋喃硼酸0.10mol溶于甲苯:乙醇为2:1的混合溶剂中,在加入0.12mol的碳酸钾水溶液,四三苯基磷钯0.0004mol在120℃下反应24小时,反应完成后冷却只室温,过滤,滤液旋蒸,过硅胶柱,得到目标产物,纯度95%,收率79.2%;将上一步得到的硝基化合物0.04mol溶于邻二氯苯中,加入0.04mol三苯基膦,在180℃下反应12小时。反应结束后冷却至室温,过滤,滤液旋蒸,过硅胶柱得到目标中间产物B6,纯度96.8%,收率70.6%。HPLC-MS(m/z):材料分子量:为347.09,实测分子量:348.16。中间体C3的合成路线:500ml的四口瓶在通入氮气的气氛下,加入0.4mol化合物B6,0.5mol1,4-二溴苯,1.20mol叔丁醇钠0.004molPd2(dba)3,0.004mol三叔丁基膦,250ml甲苯,加热回流24小时,取样点板,反应完全,自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,纯度94.36%,收率76.4%;在500mL的三口瓶在通氮气的气氛下,加入上一步的产物0.4mol,0.2mol双(频哪醇合)二硼,0.004molPd(dppf)Cl2,以及无水甲苯250mL,加热反应10~24小时,取样点板,反应完全,自然冷却,过滤,滤液旋蒸,向其中滴加盐酸稀溶液调节pH至3,有固体析出,用乙醇重结晶得到相应的硼酸,纯度95%,收率70%。HPLC-MS:材料分子量为:467.13,实测分子量:467.98。以上述合成方法制备反应通式中的中间体,具体结构如下表1所示。表1实施例1化合物5的合成250ml的四口瓶,在通入氮气的气氛下,加入0.01mol3-溴-6,6-二甲基吲哚并[2,1-b]喹唑啉12(6H)-酮,0.015mol化合物B1,0.03mol叔丁醇钠,1×10-4molPd2(dba)3,1×10-4mol三叔丁基膦,150ml甲苯,加热回流24小时,取样点板,反应完全,自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,纯度98.36%,收率55.4%。HPLC-MS(m/z):材料分子量为592.27,实测分子量592.36。实施例2化合物12的合成250ml的四口瓶,在通入氮气的气氛下,加入0.01mol3-溴-6,6-二甲基吲哚并[2,1-b]喹唑啉12(6H)-酮,0.015mol化合物B2,0.03mol叔丁醇钠,1×10-4molPd2(dba)3,1×10-4mol三叔丁基膦,150ml甲苯,加热回流24小时,取样点板,反应完全,自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,纯度97.59%,收率65.7%。HPLC-MS(m/z):材料分子量为667.26,实测分子量667.69。实施例3化合物22的合成250ml的四口瓶,在通入氮气的气氛下,加入0.01mol3-溴-6,6-二甲基-8-苯基咪唑并[2,1-b]喹唑啉12(6H)-酮,0.015mol化合物B3,0.03mol叔丁醇钠,1×10-4molPd2(dba)3,1×10-4mol三叔丁基膦,150ml甲苯,加热回流24小时,取样点板,反应完全,自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,纯度97.59%,收率75.4%。HPLC-MS(m/z):材料分子量为607.19,实测分子量607.57。实施例4化合物27的合成250ml的四口瓶,在通入氮气的气氛下,加入0.01mol3-溴-6,6-二甲基吲哚并[2,1-b]喹唑啉12(6H)-酮,0.015mol化合物B4,0.03mol叔丁醇钠,1×10-4molPd2(dba)3,1×10-4mol三叔丁基膦,150ml甲苯,加热回流24小时,取样点板,反应完全,自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,纯度97.77%,收率76.1%。HPLC-MS(m/z):材料分子量为659.29,实测分子量659.68。实施例5化合物28的合成250ml的四口瓶,在通入氮气的气氛下,加入0.01mol3-溴-6,6-二甲基吲哚并[2,1-b]喹唑啉12(6H)-酮,0.015mol化合物B5,0.03mol叔丁醇钠,1×10-4molPd2(dba)3,1×10-4mol三叔丁基膦,150ml甲苯,加热回流24小时,取样点板,反应完全,自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,纯度98.75%,收率57.29%。HPLC-MS(m/z):材料分子量为633.24,实测分子量761.89。实施例6化合物31的合成250ml的四口瓶,在通入氮气的气氛下,加入0.01mol0.01mol3-溴-6,6-二甲基吲哚并[2,1-b]喹唑啉12(6H)-酮,0.015mol化合物B6,0.03mol叔丁醇钠,1×10-4molPd2(dba)3,1×10-4mol三叔丁基膦,150ml甲苯,加热回流24小时,取样点板,反应完全,自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,纯度99.25%,收率58.12%。HPLC-MS(m/z):材料分子量为607.19,实测分子量607.65。实施例7化合物33的合成250ml的四口瓶,在通入氮气的气氛下,加入0.01mol0.01mol3-溴-6,6-二甲基吲哚并[2,1-b]喹唑啉12(6H)-酮,0.015mol化合物B7,0.03mol叔丁醇钠,1×10-4molPd2(dba)3,1×10-4mol三叔丁基膦,150ml甲苯,加热回流24小时,取样点板,反应完全,自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,纯度99.25%,收率59.12%。HPLC-MS(m/z):材料分子量为659.29,实测分子量659.78。实施例8化合物58的合成250ml的四口瓶,在通入氮气的气氛下,加入0.01mol3-溴-6,6-二甲基吲哚并[2,1-b]喹唑啉12(6H)-酮,0.015mol化合物B8,0.03mol叔丁醇钠,1×10-4molPd2(dba)3,1×10-4mol三叔丁基膦,150ml甲苯,加热回流24小时,取样点板,反应完全,自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,纯度97.60%,收率46.00%。HPLC-MS(m/z):材料分子量为724.28,测分子量724.36。实施例9化合物80的合成250ml的四口瓶,在通入氮气的气氛下,加入0.01mol2-溴-6,6-二甲基吲哚并[2,1-b]喹唑啉12(6H)-酮,0.015mol化合物B9,0.03mol叔丁醇钠,1×10-4molPd2(dba)3,1×10-4mol三叔丁基膦,150ml甲苯,加热回流24小时,取样点板,反应完全,自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,纯度99.15%,收率47.30%。HPLC-MS(m/z):材料分子量为592.23,实测分子量592.98。实施例10化合物82的合成250ml的四口瓶,在通入氮气的气氛下,加入0.01mol2-溴-6,6-二甲基吲哚并[2,1-b]喹唑啉12(6H)-酮,0.020mol化合物B2,0.03mol叔丁醇钠,1×10-4molPd2(dba)3,1×10-4mol三叔丁基膦,150ml甲苯,加热回流24小时,取样点板,反应完全,自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,纯度95.62%,收率42.15%。HPLC-MS(m/z):材料分子量为667.26,实测分子量667.89。实施例11化合物78的合成250ml的四口瓶,在通入氮气的气氛下,加入0.01mol8-二溴-6,6-二甲基吲哚并[2,1-B]喹唑啉12(6H)-酮,0.015mol化合物B10,0.03mol叔丁醇钠,1×10-4molPd2(dba)3,1×10-4mol三叔丁基膦,250ml甲苯,加热回流24小时,取样点板,反应完全,自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,纯度95.16,收率59.70%。HPLC-MS(m/z):材料分子量为757.28,实测分子量757.31。实施例12化合物101的合成250ml的四口瓶,在通入氮气的气氛下,加入0.01mol2,8-二溴-6,6-二甲基吲哚并[2,1-b]喹唑啉12(6H)-酮,0.015mol原料B6,0.03mol叔丁醇钠,1×10-4molPd2(dba)3,1×10-4mol三叔丁基膦,250ml甲苯,加热回流24小时,取样点板,反应完全,自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,纯度98.86,收率35.70%。HPLC-MS(m/z):材料分子量为607.19,实测分子量607.65。实施例13化合物116的合成500ml的四口瓶,在通入氮气的气氛下,加入0.01mol2-溴-苯并[d]苯并[4,5]咪唑[2,1-b]恶唑,0.015mol化合物B11,用混合溶剂溶解(180ml甲苯,90ml乙醇),然后加入0.03molNa2CO3水溶液(2M),然后加入0.0001molPd(PPh3)4,加热回流10-24小时,取样点板,反应完全。自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,HPLC纯度97.80%,收率69.50%。HPLC-MS(m/z):材料分子量为684.25,实测分子量684.98。实施例14化合物119的合成500ml的四口瓶,在通入氮气的气氛下,加入0.01mol3-溴-苯并[d]苯并[4,5]咪唑[2,1-b]恶唑,0.015mol化合物C1,用混合溶剂溶解(180ml甲苯,90ml乙醇),然后加入0.03molNa2CO3水溶液(2M),然后加入0.0001molPd(PPh3)4,加热回流10-24小时,取样点板,反应完全。自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,HPLC纯度98.80%,收率72.50%。HPLC-MS(m/z):材料分子量为735.32,实测分子量735.98。实施例15化合物120的合成500ml的四口瓶,在通入氮气的气氛下,加入0.01mol8-溴-苯并[d]苯并[4,5]咪唑[2,1-b]恶唑,0.015mol化合物C2,用混合溶剂溶解(180ml甲苯,90ml乙醇),然后加入0.03molNa2CO3水溶液(2M),然后加入0.0001molPd(PPh3)4,加热回流10-24小时,取样点板,反应完全。自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,HPLC纯度98.10%,收率63.20%。HPLC-MS(m/z):材料分子量为735.32,实测分子量735.91。实施例16化合物121的合成500ml的四口瓶,在通入氮气的气氛下,加入0.01mol3-溴-苯并[d]苯并[4,5]咪唑[2,1-b]恶唑,0.015mol化合物C3,用混合溶剂溶解(180ml甲苯,90ml乙醇),然后加入0.03molNa2CO3水溶液(2M),然后加入0.0001molPd(PPh3)4,加热回流10-24小时,取样点板,反应完全。自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,HPLC纯度97.80%,收率64.50%。HPLC-MS(m/z):材料分子量为683.22,实测分子量683.61。本发明化合物可以作为发光层材料使用,对本发明化合物12、化合物82和现有材料CBP分别进行热蒸镀状态、T1能级的测定,检测结果如表2所示。表2化合物热蒸镀状态T1(eV)功用化合物12熔融型2.84主体材料化合物82熔融型2.86主体材料化合物CBP升华型2.70主体材料注:热蒸镀状态由韩国ANS-INC(100*100)蒸镀设备进行测定,真空度<5×10-7Torr,第一升温区(0-200℃),升温速率10℃/min;第二升温区(200-400℃),升温速率5℃/min,以的蒸镀速率蒸镀10min后自然降至室温。T1是先测试化合物的磷光发射光谱,并由磷光发射峰计算得到(测试设备:利用EdinburghInstruments的FLS980荧光光谱仪,OxfordInstruments的OptistatDN-V2低温组件)。由上表数据可知,本发明化合物具有较高的热蒸镀速率稳定性,较升华型材料,其材料内部传热较好,避免了因传热不均局部过热引起的材料变质,有利于实现长时间蒸镀。此外,本发明化合物具有较高的T1能级,避免能量由掺杂材料回传到主体材料,适合作为发光层材料;同时,本发明化合物含有电子给体(donor,D)与电子受体(acceptor,A),使得应用本发明化合物的OLED器件电子和空穴达到平衡状态,保证了电子和空穴的复合率,使得器件效率和寿命得到提升。通过量子化学从头计算软件ORCA对本发明化合物的HOMO、LUMO能级进行计算并进行可视化,计算方法采用B3LYP杂化泛函,基组6-31g(d)。化合物12、化合物31、化合物82以及化合物CBP的可视化HOMO、LUMO分布图如表3所示;从HOMO、LUMO在分子中的空间分布可以看出,相比较化合物CBP本发明化合物的HOMO和LUMO能级处于空间分离状态,且HOMO、LUMO重叠度小。即本发明化合物同时具有电子给体(donor,D)与电子受体(acceptor,A)两个部分,这使得发明化合物的OLED器件电子和空穴更易达到平衡状态,保证了电子和空穴的复合率,使得器件效率和寿命得到提升。表3以下通过实施例17-24和比较例1-3详细说明本发明合成的化合物在器件中作为发光层主体材料的应用效果。实施例18-24与实施例17相比,所述器件的制作工艺完全相同,并且所采用了相同的基板材料和电极材料,电极材料的膜厚也保持一致,所不同的是器件中发光层材料发生了改变。实施例17-24与比较例1~3相比,比较例1所述器件的发光层材料采用的是现有常用原料,而实施例17-24的器件发光层材料采用的是本发明化合物。各实施例所得器件的结构组成如表4所示。各器件的性能测试结果如表5所示。实施例17透明基板层1/ITO阳极层2/空穴注入层3(三氧化钼MoO3,厚度10nm)/空穴传输层4(TAPC,厚度80nm)/发光层5(化合物5和GD-19按照100:5的重量比混掺,厚度30nm)/电子传输层6(TPBI,厚度40nm)/电子注入层7(LiF,厚度1nm)/阴极电极层8(Al)。相关材料的分子结构式如下所示:具体制备过程如下:透明基板层1采用透明材料。对ITO阳极层2(膜厚为150nm)进行洗涤,即依次进行碱洗涤、纯水洗涤、干燥后再进行紫外线-臭氧洗涤以清除透明ITO表面的有机残留物。在进行了上述洗涤之后的ITO阳极层2上,利用真空蒸镀装置,蒸镀膜厚为10nm的三氧化钼MoO3作为空穴注入层3使用。紧接着蒸镀80nm厚度的TAPC作为空穴传输层4。上述空穴传输材料蒸镀结束后,制作OLED发光器件的发光层5,其结构包括OLED发光层5所使用材料化合物5作为主体材料,GD-19作为掺杂材料,掺杂材料掺杂比例为5%重量比,发光层膜厚为30nm。在上述发光层5之后,继续真空蒸镀电子传输层材料为TPBI。该材料的真空蒸镀膜厚为40nm,此层为电子传输层6。在电子传输层6上,通过真空蒸镀装置,制作膜厚为1nm的氟化锂(LiF)层,此层为电子注入层7。在电子注入层7上,通过真空蒸镀装置,制作膜厚为80nm的铝(Al)层,此层为阴极反射电极层8使用。如上所述地完成OLED发光器件后,用公知的驱动电路将阳极和阴极连接起来,测量器件的发光效率,发光光谱以及器件的电流-电压特性。实施例18透明基板层1/ITO阳极层2/空穴注入层3(三氧化钼MoO3,厚度10nm)/空穴传输层4(TAPC,厚度80nm)/发光层5(化合物12和GD-19按照100:5的重量比混掺,厚度30nm)/电子传输层6(TPBI,厚度40nm)/电子注入层7(LiF,厚度1nm)/阴极反射电极层8(Al)。实施例19透明基板层1/ITO阳极层2/空穴注入层3(三氧化钼MoO3,厚度10nm)/空穴传输层4(TAPC,厚度80nm)/发光层5(化合物27和Ir(PPy)3按照100:10的重量比混掺,厚度30nm)/电子传输层6(TPBI,厚度40nm)/电子注入层7(LiF,厚度1nm)/阴极反射电极层8(Al)。实施例20透明基板层1/ITO阳极层2/空穴注入层3(三氧化钼MoO3,厚度10nm)/空穴传输层4(TAPC,厚度80nm)/发光层5(化合物80和Ir(PPy)3按照100:10的重量比混掺,厚度30nm)/电子传输层6(TPBI,厚度40nm)/电子注入层7(LiF,厚度1nm)/阴极反射电极层8(Al)。实施例21透明基板层1/ITO阳极层2/空穴注入层3(三氧化钼MoO3,厚度10nm)/空穴传输层4(TAPC,厚度80nm)/发光层5(化合物82和GD-PACTZ按照100:5的重量比混掺,厚度30nm)/电子传输层6(TPBI,厚度40nm)/电子注入层7(LiF,厚度1nm)/阴极反射电极层8(Al)。实施例22透明基板层1/ITO阳极层2/空穴注入层3(三氧化钼MoO3,厚度10nm)/空穴传输层4(TAPC,厚度80nm)/发光层5(化合物89和GD-PACTZ按照100:5的重量比混掺,厚度30nm)/电子传输层6(TPBI,厚度40nm)/电子注入层7(LiF,厚度1nm)/阴极反射电极层8(Al)。实施例23透明基板层1/ITO阳极层2/空穴注入层3(三氧化钼MoO3,厚度10nm)/空穴传输层4(TAPC,厚度80nm)/发光层5(化合物101、GH-204和Ir(PPy)3按照70:30:10的重量比混掺,厚度30nm)/电子传输层6(TPBI,厚度40nm)/电子注入层7(LiF,厚度1nm)/阴极反射电极层8(Al)。实施例24透明基板层1/ITO阳极层2/空穴注入层3(三氧化钼MoO3,厚度10nm)/空穴传输层4(TAPC,厚度80nm)/发光层5(化合物116、GH-204和GD-PACTZ按照70:30:5的重量比混掺,厚度30nm)/电子传输层6(TPBI,厚度40nm)/电子注入层7(LiF,厚度1nm)/阴极反射电极层8(Al)。比较例1透明基板层1/ITO阳极层2/空穴注入层3(三氧化钼MoO3,厚度10nm)/空穴传输层4(TAPC,厚度80nm)/发光层5(CBP和GD-19按照100:5的重量比混掺,厚度30nm)/电子传输层6(TPBI,厚度40nm)/电子注入层7(LiF,厚度1nm)/阴极反射电极层8(Al)。比较例2透明基板层1/ITO阳极层2/空穴注入层3(三氧化钼MoO3,厚度10nm)/空穴传输层4(TAPC,厚度80nm)/发光层5(CBP和Ir(PPy)3按照100:10的重量比混掺,厚度30nm)/电子传输层6(TPBI,厚度40nm)/电子注入层7(LiF,厚度1nm)/阴极反射电极层8(Al)。比较例3透明基板层1/ITO阳极层2/空穴注入层3(三氧化钼MoO3,厚度10nm)/空穴传输层4(TAPC,厚度80nm)/发光层5(CBP和GD-PACTZ按照100:5的重量比混掺,厚度30nm)/电子传输层6(TPBI,厚度40nm)/电子注入层7(LiF,厚度1nm)/阴极电极层8(Al)。所制作的OLED发光器件的测试结果见表5。表4表5器件代号电流效率色彩LT95寿命实施例177.34绿光6.4实施例187.96绿光5.7实施例1926.85绿光8.6实施例2029.90绿光7.6实施例2131.22绿光11.1实施例2229.15绿光12.9实施例2333.18绿光11.8实施例2436.60绿光10.9比较例16.50绿光3.80比较例224.60绿光4.30比较例325.10绿光7.80说明:比较例1的电流效率为6.5cd/A(@10mA/cm2);启动电压为4.3V(@1cd/m2),5000nit亮度下LT95寿命衰减为3.8Hr。比较例2的电流效率为24.6cd/A(@10mA/cm2);5000nit亮度下LT95寿命衰减为4.3Hr。比较例3的电流效率为25.1cd/A(@10mA/cm2);启动电压为3.5V(@1cd/m2),5000nit亮度下LT95寿命衰减为7.8Hr。寿命测试系统为本发明所有权人与上海大学共同研究的OLED器件寿命测试仪。表5的结果可以看出,本发明所述化合物作为发光层主体材料可应用于OLED发光器件制作;并且与比较例1相比,无论是效率、电压还是寿命均比已知OLED材料获得较大改观,特别是器件的驱动寿命获得较大的提升。为进一步体现本发明化合物在产业化应用的优势,本发明比较了不同掺杂材料比例下器件的性能变化情况,定义掺杂浓度依赖系数进行表示;它表示驱动电流为10mA/cm2下不同掺杂浓度的器件,其效率最大值μmax、最小值和平均值之间的均匀程度,值越大,说明掺杂比例对器件的效率影响越大,在产业化应用时要严格控制材料的蒸镀速率,工业应用窗口较小;反之,说明器件性能对掺杂比例的要求不好,容易实现工业化生产,降低生产成本,具有良好的产业化应用前景。参考实施例17-24的制备方法,并且采用了相同的基板材料和电极材料,电极材料的膜厚也保持一致,所不同的是对掺杂比例做了变换;各器件的结构及测试结果如表6所示:表6从以上数据应用来看,本发明化合物作为发光层材料在OLED发光器件中具有良好的应用效果,具有良好的产业化前景。虽然已通过实施例和优选实施方式公开了本发明,但应理解,本发明不限于所公开的实施方式。相反,本领域技术人员应明白,其意在涵盖各种变型和类似的安排。因此,所附权利要求的范围应与最宽的解释相一致以涵盖所有这样的变型和类似的安排。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1