一种羧基化磁性载铁有序介孔碳及其制备方法和应用的制作方法

文档序号:4945025阅读:197来源:国知局
一种羧基化磁性载铁有序介孔碳及其制备方法和应用的制作方法
【专利摘要】本发明提供了一种羧基化磁性载铁有序介孔碳及其制备方法和应用,羧基化磁性载铁有序介孔碳以有序介孔碳为载体,通过硝酸氧化法使有序介孔碳的表面和孔道中嫁接羧基基团得到羧基化有序介孔碳;磁性纳米粒子通过浸渍法负载在羧基化有序介孔碳上。本发明还提供了该羧基化磁性载铁有序介孔碳的制备方法,包括有序介孔碳羧基化、负载磁性纳米粒子步骤。本发明还涉及羧基化磁性载铁有序介孔碳在去除水体中农药2,4-二氯苯氧乙酸的应用。本发明涉及的羧基化磁性载铁有序介孔碳具有比表面积和孔体积大、亲水性好、对2,4-二氯苯氧乙酸的吸附量大,吸附速率快、性质稳定等优势。
【专利说明】一种羧基化磁性载铁有序介孔碳及其制备方法和应用

【技术领域】
[0001]本发明涉及材料【技术领域】,尤其涉及一种羧基化磁性载铁有序介孔碳,还涉及前述羧基化磁性载铁有序介孔碳的制备方法和在去除水体中2,4- 二氯苯氧乙酸的应用。

【背景技术】
[0002]2,4- 二氯苯氧乙酸(2,4-D)是一种选择性除草剂,在1946年实现商业化销售之后,由于其除草效果良好,并大大提高了种植小麦、玉米、稻以及其他谷类饲料作物农田中的杂草控制,在农田中广泛使用。也正是除草剂的广泛而大量的使用,导致了水体中出现2,4-D污染。当人体吸入2,4-D时,在上呼吸道和胸部会导致咳嗽和灼烧的感觉。而2,4-D的吸收会导致呕吐、腹部疼痛、腹泻、高血压的形成。对于2,4-D致癌危险性,1987年国际癌症研究机构(IRAC)将包括2,4-D归为2B级致癌物质,即“对人类可能致癌”。
[0003]目前,处理农药2,4-D废水的方法有光催化降解法、微波辅助和紫外照射共同降解的方法、生物降解法、电催化脱氯法、电催化与生物降解结合的方法、化学氧化法和吸附法等方法。其中,吸附法因其具有操作简单、成本低、有一定的抗毒性、工艺成熟、处理周期短及较高的处理效率等优点逐渐应用于农药废水处理领域。
[0004]有序介孔碳是一种具有大的比表面积、孔体积、较闻的水热稳定性和酸喊稳定性以及独特的物化的吸附剂。然而,有序介孔碳的亲水性较差,很难在水中均匀分散,而且有序介孔碳粉末粒径非常小,很难回收容易造成二次污染,导致有序介孔碳对农药废水处理效果有限。


【发明内容】

[0005]本发明要解决的技术问题是克服现有技术的不足,提供一种具有较好的亲水性和磁性,较大的比表面积和孔体积的羧基化磁性载铁有序介孔碳;还提供了一种步骤简单,成本低廉,纳米粒子不易团聚,不易堵塞孔道,生产效率高的羧基化磁性载铁有序介孔碳的制备方法;还相应提供了一种对农药2,4-D废水去除量大,去除效率高,可回收利用的羧基化磁性载铁有序介孔碳的应用方法。
[0006]为解决上述技术问题,本发明提供了一种羧基化磁性载铁有序介孔碳,前述羧基化磁性载铁有序介孔碳以有序介孔碳为载体,羧基基团通过硝酸氧化法嫁接在前述有序介孔碳的表面和孔道中得到羧基化有序介孔碳;前述磁性纳米粒子通过浸溃法负载在前述羧基化有序介孔碳上。
[0007]进一步的,前述羧基化磁性载铁有序介孔碳的比表面积为700m2/g?900m2/g,孔径为2nm?4nm,磁性纳米粒子的质量分数为7%?12%。
[0008]进一步的,前述磁性纳米粒子为四氧化三铁纳米粒子。
[0009]作为一个总的技术构思,本发明还提供了上述羧基化磁性载铁有序介孔碳的制备方法,包括以下步骤:
S1、有序介孔碳羧基化:将有序介孔碳加入硝酸溶液中混匀,通过水浴加热制得羧基化有序介孔碳;
S2、负载磁性纳米粒子:将铁源溶解于乙醇中得到含铁乙醇溶液,在前述含铁乙醇溶液中加入步骤SI中制备得到的羧基化有序介孔碳,通过加热搅拌得到混合物,将前述混合物进行真空干燥,然后加入乙二醇,以1°C /min?2V /min的速度升温至450°C?550°C煅烧并保持Ih?2h高温煅烧即得羧基化磁性载铁有序介孔碳。前述的羧基化有序介孔碳、铁源和乙醇的质量比优选为1: 0.9856?1.2: 0.3564?0.4。
[0010]进一步的,前述SI步骤之前还包括有序介孔碳的制备,具体包括以下步骤:
S1-1、填充碳源:在硫酸溶液中加入蔗糖得到双元混合物,将前述双元混合物逐滴加入至介孔娃SBA-15模板并不断搅拌,然后在95°C?105°C条件下热处理5h?6h,再于155°C?165°C条件下热处理5h?6h,得到C/Si复合物;硫酸溶液由质量分数为98%的浓硫酸通过蒸馏水稀释制备得到;前述的蔗糖、浓硫酸、蒸馏水和介孔硅SBA-15模板的质量比优选为 1.1 ?1.25: 0.1 ?0.145: 4.5 ?5.5: I ;
S1-2、高温碳化:将前述C/Si复合物在氮气氛围中,以2V /min?4°C /min速率升温至800°C?900°C进行高温碳化Ih?3h得到有序介孔碳。
[0011]进一步的,前述Sl-1步骤中前述介孔硅SBA-15模板的制备方法为:在盐酸溶液中加入聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物,于35°C水浴中搅拌溶解;然后与正硅酸乙酯经水热反应得到白色沉淀;再将前述白色沉淀于510°C?560°C煅烧3h?5h制备得到前述介孔硅SBA-15模板;前述聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物、正硅酸乙酯和盐酸溶液的质量比为1: 2.0?2.125: 38?40。
[0012]进一步的,前述水热反应条件为:将聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物的盐酸溶液与正硅酸乙酯于30°C?35°C的温度下混合搅拌19h?21h,再于135°C?145°C下水热反应23h?25h得到白色沉淀。
[0013]进一步的,前述S1-2步骤还包括去除介孔硅SBA-15模板步骤:取浓度为1.5mol/L?2.5mol/L的NaOH溶液加热至80°C?90°C ;将前述有序介孔碳硅模板的脱除使用NaOH热溶液。
[0014]进一步的,前述铁源为无水氯化铁。
[0015]进一步的,前述SI步骤中前述硝酸溶液的浓度为2?4mol/L,前述水浴加热的温度的70?90°C,水浴时间为I?2 h。
[0016]进一步的,前述步骤S2中前述加热搅拌的温度为50?70°C,搅拌时间为0.5?I h,前述真空干燥的温度为25 °C?45 °C,羧基化有序介孔碳、铁源和乙醇的质量比为1: 1.2: 0.4。
[0017]作为一个总的技术构思,本发明还提供了一种前述羧基化磁性载铁有序介孔碳或采用前述制备方法制备得到的羧基化磁性载铁有序介孔碳在去除水体中2,4-D的应用,将羧基化磁性载铁有序介孔碳加入到2,4- 二氯苯氧乙酸溶液中,进行振荡吸附、磁性分离步骤,完成对水体中2,4-二氯苯氧乙酸的去除。
[0018]进一步的,前述振荡吸附的温度为30?50°C,转速为140?160rpm,pH为2?4。
[0019]进一步的,2,4-D初始浓度为50mg/L?500mg/L ;羧基化磁性载铁有序介孔碳的加入量为0.5g/L?lg/L。
[0020]与现有技术相比,本发明的优点在于: (I)本发明通过在有序介孔碳表面和孔道嫁接羧基基团,改善了有序介孔碳的亲水性;同时将磁性纳米负载在羧基化有序介孔碳上得到羧基化磁性载铁有序介孔硅,具有较好的亲水性和磁性,较大的比表面积和孔体积,纳米粒子不易团聚,不易堵塞孔道的特点。
[0021](2)本发明提供了一种羧基化磁性载铁有序介孔碳的制备方法,以有序介孔碳作为载体,前述载体通过硬模板法制备得到具有较好的稳定性,羧基基团和磁性纳米粒子通过后浸溃法负载在有序介孔碳上,制备过程简单,操作简单,成本低廉。
[0022](3)本发明提供的羧基化磁性载铁有序介孔碳首次应用于吸附农药2,4-D,可以快速有效地去除水体中的农药2,4-D,吸附量大、吸附能力强、高的吸附效率,吸附速率快,操作简单,处理周期短且可回收利用,在吸附农药2,4-D方面具有较为明显的优势。羧基基团使有序介孔碳能均匀分散在水体中,从而提高吸附的量。磁性纳米粒子的负载使吸附剂具有磁性,易于与水体分离,使吸附剂的分离变得简单易行,也有利于对农药2,4-D的吸附。同时,在酸性条件下羧基化磁性载铁有序介孔碳对去除农药2,4-D的能力较强,并且羧基化磁性载铁有序介孔碳对农药2,4-D的吸附量最大可达到300.4mg/g0

【专利附图】

【附图说明】
[0023]为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述。
[0024]图1为本发明实施例1中羧基化磁性载铁有序介孔碳透射电镜图。
[0025]图2为本发明实施例1中羧基化磁性载铁有序介孔碳的傅里叶红外衍射光谱图。
[0026]图3为本发明实施例1中羧基化磁性载铁有序介孔碳的N2吸附-脱附图。
[0027]图4为本发明实施例1中羧基化磁性载铁有序介孔碳孔径分布图。
[0028]图5为本发明实施例2中羧基化磁性载铁有序介孔碳对2,4-D的吸附量随2,4_D的浓度及吸附时间变化的关系示意图。
[0029]图6为本发明实施例3中羧基化磁性载铁有序介孔碳对2,4-D的吸附量随吸温度变化的关系示意图。

【具体实施方式】
[0030]以下结合说明书附图和具体优选的实施例对本发明作进一步描述,但并不因此而限制本发明的保护范围。
[0031 ] 以下实施例中所采用的材料和仪器均为市售。
[0032]实施例1:
一种羧基化磁性载铁有序介孔碳,其中有序介孔碳为载体,通过硝酸氧化法使有序介孔碳羧基化,羧基化的有序介孔碳的表面和孔道内嫁接有羧基基团。Fe3O4纳米粒子通过浸溃法负载在羧基化的有序介孔碳的表面和孔道内。
[0033]实施例1的羧基化磁性载铁有序介孔碳按照以下步骤制备得到:
1、制备介孔硅模板SBA-15:
量取42mL的浓HCl (浓HCl的质量分数为36%)溶于270mL水中制得HCl溶液,用HCl溶液溶解8.0g的聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物(P123),并在35°C水浴下搅拌至溶解得到含P123的盐酸溶液,将17g的正硅酸乙酯逐滴加入至含P123的盐酸溶液中搅拌20h得到混合溶液,将混合溶液平均分散于6个消解瓶中拧紧置于烘箱中于140°C反应24h。待反应完成后取出消解瓶,并将消解瓶中的液体抽滤取白色沉淀,抽滤时不断加水稀释直至水溶液呈中性,然后取过滤后的白色沉淀放入坩埚中,于60°C烘箱中烘干20h至水分蒸干。接着在箱式炉中高温煅烧,控制升温速度为1°0化,上升至5501:(煅烧温度在510°C?560°C均可实施)保持4h (煅烧时间在3h?5h均可实施)后,制得SBA-15。
[0034]上述步骤I介孔硅模板的制备方法中,P123、正硅酸乙酯和36%盐酸的质量体积比为Ig: 2.125g: 39ml,在本发明中,前述P123、正硅酸乙酯和36%的盐酸溶液的质量体积比在Ig: 2.0?2.125g: 38?40ml范围内均可实施。
[0035]2、制备有序介孔碳(OMC):
(I)填充碳源:取0.145g的H2SO4和5mL超纯水混合制得硫酸溶液,称取1.25g蔗糖与前述制备的硫酸溶液搅拌溶解得到双元混合物,用200 μ L移液枪将前述的双元混合物逐滴加入到Ig的SBA-15中,同时要不断搅拌,接着放入100±5°C恒温箱中6h(5h?6h均可实施),再调节温度至160 ±5°C反应6h (5h?6h均可实施),得到C/Si复合物。
[0036](2)高温碳化:将C/Si复合物在N2保护下,以2V /min速率升温至900°C进行高温碳化2h,得到碳化产物。将前述碳化产物取出后用2M的NaOH溶液在90°C下恒温静置Ih,同流两次除去二氧化硅分子筛模板,过滤后用去离子水洗涤到中性,于50°C干燥24 h,获得有序介孔碳。
[0037]在上述步骤2的高温碳化过程中,升温速率还可以为2 V /min?4V /min,高温碳化的温度在800°C?900°C均可实施,碳化时间为Ih?3h。
[0038]3、有序介孔碳羧基化:将步骤2中制备得到的有序介孔碳加入浓度为2mol/L的硝酸溶液中混匀,在80°C下水浴加热1.5 h制得羧基化有序介孔碳。
[0039]在上述步骤3中,硝酸溶液的浓度还可以为2?4mol/L,水浴加热的温度还可以是70?90°C,水浴时间为I?2 h。
[0040]4、负载磁性纳米粒子:以乙醇为溶剂,将氯化铁与乙醇进行混合并完全溶解得到含铁乙醇溶液;在含铁乙醇溶液中加入步骤3中制备得到的羧基化有序介孔碳,控制羧基化有序介孔碳、氯化铁和乙醇的质量比为1: 1.2: 0.4。接着在60°C下加热搅拌lh,于30°C真空干燥,然后加入乙二醇,以2V /min (升温速度还可以是1°C /min?2V /min)的速度升温至510°C煅烧并保持Ih高温煅烧即得羧基化磁性载铁有序介孔碳。
[0041]在上述步骤4中加热搅拌的温度为50?70°C,搅拌时间为0.5?I h,前述真空干燥的温度为25°C?45°C,煅烧温度为450°C?550°C,煅烧时间为Ih?2h均可实施。
[0042]按照前述制备方法制备得到的羧基化磁性载铁有序介孔碳具有较好的亲水性和磁性,较大的比表面积和孔体积,不易团聚的纳米粒子,不易堵塞孔道,其中磁性纳米粒子的质量分数达到7%?12%,可以快速有效地去除水体中的农药2,4-D。
[0043]参见图1:对实施例1的羧基化磁性载铁有序介孔碳进行透射电镜成像,从图1中可以清晰看见竣基化磁性载铁有序介孔碳的有序条带,表明具有有序的介孔结构。同时,在图1中可以看到均匀分散在介孔碳孔道内部及表面的小黑点,大小15nm左右,其为Fe3O4纳米粒子,证明实施例1的羧基化磁性有序介孔碳中纳米离子不易团聚。
[0044]参见图2:对羧基化磁性介孔碳进行红外扫描,573CHT1的吸收峰代表Fe-O的伸缩振动,证明了 Fe3O4纳米粒子的存在。在1730CHT1处的吸收峰代表了 C=O的伸缩振动;3450cm-1的吸收峰代表了 -OH振动,这两处吸收峰的存在证明了羧基基团被嫁接在了有序介孔碳上,然而羧基是亲水性官能团,故而改变了介孔碳的亲水性。
[0045]参见图3:对实施例1的羧基化磁性载铁有序介孔碳进行了 N2吸附-解吸实验,在ASAP2020M+C全自动比表面积分析仪上进行比表面积分析。从图3中可知,羧基化磁性载铁有序介孔碳具有滞回环,符合Hl型磁滞曲线,与透射电镜相符合,表明羧基化磁性载铁有序介孔碳中存在介孔结构;羧基化磁性载铁有序介孔碳的比表面积用BET方法计算为882.5m2/g。
[0046]在本发明中,羧基化磁性载铁有序介孔碳可以为700m2/g?900m2/g。
[0047]参见图4:将实施例1中羧基化磁性载铁有序介孔碳的总粒径分布用BJH模型进行了估测,得到如图4所示的粒径分布图,由图4可知,本实施例的羧基化磁性载铁有序介孔碳载体的孔径分布在2nm?4nm,主要分布在2.83nm。
[0048]实施例2:羧基化磁性载铁有序介孔碳处理农药2,4-D溶液的应用。
[0049]取1mg羧基化磁性载铁有序介孔碳分别加入1mL的2,4_D浓度分别为100mg/L、300mg/L、500mg/L的废水中,在30°C、pH为3、150rpm转速条件下进行振荡吸附。并在反应开始后第 5min、10min、30min、60min、120min、180min、240min、300min、360min 和 420min 迅速经磁性分离,然后再利用紫外分光光度计测定溶液中剩余2,4-D的含量,并计算羧基化磁性载铁有序介孔碳对2,4-D的吸附量,吸附量的检测结果如图5所示。
[0050]从图5中可知:本发明的羧基化磁性载铁有序介孔碳可在5min内完成对2,4_D去除,吸附速率快;5min后逐渐稳定,随后逐渐达到吸附平衡。随着2,4-D浓度的逐渐增大,2,4-D的吸附量也逐渐增大。在2,4-D浓度为500mg/L时,吸附量最高达到310.78mg/g,由此可见,羧基化磁性载铁有序介孔碳对2,4-D的吸附速率快,基本上在5min内完成,并且可用于高浓度2,4-D废水的处理。
[0051]虽然实施例2中羧基化磁性载铁有序介孔碳的加入量为lg/L,但是本发明应用过程中,羧基化磁性载铁有序介孔碳的加入量为0.5g/L?lg/L,均能达到实施例2中所描述的效果。
[0052]实施例3:羧基化磁性载铁有序介孔碳处理2,4-D水溶液的应用。
[0053]取3组体积为10ml,温度分别为30、40、50°C的含2,4-D废水,每组废水中2,4-D的含量均为400mg/L。分别取1mg羧基化磁性载铁有序介孔碳加入各组含2,4-D废水中,在PH为3、转速150rpm条件下,振荡吸附2h后,迅速经磁性分离,然后再利用紫外分光光度计测定溶液中剩余2,4-D的含量,并计算羧基化磁性载铁有序介孔碳对2,4-D的吸附量,结果如图6所示。
[0054]由图6可知,羧基化磁性载铁有序介孔碳对2,4-D的去除率随着温度的增加而升高,说明整个吸附过程是放热反应,并且是自发进行的。
[0055]以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制。虽然本发明已以较佳实施例揭示如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明的精神实质和技术方案的情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同替换、等效变化及修饰,均仍属于本发明技术方案保护的范围内。
【权利要求】
1.一种羧基化磁性载铁有序介孔碳,其特征在于,所述羧基化磁性载铁有序介孔碳以有序介孔碳为载体,羧基基团通过硝酸氧化法嫁接在所述有序介孔碳的表面和孔道中得到羧基化有序介孔碳;所述磁性纳米粒子通过浸溃法负载在所述羧基化有序介孔碳上。
2.根据权利要求1所述的羧基化磁性载铁有序介孔碳,其特征在于,所述羧基化磁性载铁有序介孔碳的比表面积为700m2/g?900m2/g,孔径为2nm?4nm。
3.根据权利要求1或2所述的羧基化磁性载铁有序介孔碳,其特征在于,所述磁性纳米粒子为四氧化三铁纳米粒子。
4.一种权利要求1至3中任一项所述的羧基化磁性载铁有序介孔碳的制备方法,其特征在于,包括以下步骤: 51、有序介孔碳羧基化:将有序介孔碳加入硝酸溶液中混匀,通过水浴加热制得羧基化有序介孔碳; 52、负载磁性纳米粒子:将铁源溶解于乙醇中得到含铁乙醇溶液,在所述含铁乙醇溶液中加入所述步骤SI中制备得到的羧基化有序介孔碳,通过加热搅拌得到混合物,将所述混合物进行真空干燥,然后加入乙二醇,以l°c /min?2V /min的速度升温至450°C?550°C煅烧并保持Ih?2h即得所述羧基化磁性载铁有序介孔碳。
5.根据权利要求4所述的制备方法,其特征在于,所述SI步骤之前还包括有序介孔碳的制备,具体包括以下步骤: S1-1、填充碳源:在硫酸溶液中加入蔗糖得到双元混合物,将所述双元混合物逐滴加入至SBA-15模板并不断搅拌,然后在95°C?105°C条件下热处理5h?6h,再于155°C?165°C条件下热处理5h?6h,得到C/Si复合物; S1-2、高温碳化:将所述C/Si复合物在氮气氛围中,以2V /min?4°C /min速率升温至800°C?900°C进行高温碳化Ih?3h得到有序介孔碳。
6.根据权利要求5所述的制备方法,其特征在于,所述Sl-1步骤中所述介孔硅SBA-15模板的制备方法为:在盐酸溶液中加入聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物,于35°C水浴中搅拌溶解;然后与正硅酸乙酯经水热反应得到白色沉淀;再将所述白色沉淀于510°C?560°C煅烧3h?5h制备得到所述介孔硅SBA-15模板;所述聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物、正硅酸乙酯和盐酸溶液的质量体积比为Ig: 2.0g ?2.125g: 38ml ?40ml。
7.根据权利要求4至6任一项所述的制备方法,其特征在于,所述铁源为无水氯化铁,所述SI步骤中所述硝酸溶液的浓度为2?4mol/L,所述水浴加热的温度的70?90°C,水浴时间为I?2 h ;所述步骤S2中所述加热搅拌的温度为50?70°C,搅拌时间为0.5?I h,所述真空干燥的温度为25°C?45°C,所述羧基化有序介孔碳、铁源和乙醇的质量比为1: 1.2: 0.4。
8.—种权利要求1至3任一项所述的羧基化磁性载铁有序介孔碳或采用权利要求4至7任一项所述制备方法制备得到的羧基化磁性载铁有序介孔碳在去除水体中2,4- 二氯苯氧乙酸的应用。
9.根据权利要求8所述的应用,其特征在于,将所述羧基化磁性载铁有序介孔碳加入到2,4-二氯苯氧乙酸溶液中,进行振荡吸附、磁性分离步骤,完成对水体中2,4-二氯苯氧乙酸的去除。
10.根据权利要求9所述的应用,其特征在于,所述羧基化磁性载铁有序介孔碳的加入量为0.5g/L?lg/L ;所述振荡吸附的温度为30?50°C,转速为140?160rpm,pH为2?4。
【文档编号】B01J20/22GK104226258SQ201410434647
【公开日】2014年12月24日 申请日期:2014年8月29日 优先权日:2014年8月29日
【发明者】汤琳, 张盛, 杨贵德, 章毅, 陈俊, 周耀渝, 王佳佳, 方艳, 邓垚成 申请人:湖南大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1