含功能型纳米颗粒的聚合物电解质膜的制作方法

文档序号:7221994阅读:217来源:国知局

专利名称::含功能型纳米颗粒的聚合物电解质膜的制作方法
技术领域
:本发明涉及用于燃料电池的聚合物电解质膜及其制备和用途,特别是在高温燃料电池中的用途,所述聚合物电解质膜包括由至少一种碱性聚合物(basischenPolymer)和一种或多种掺杂齐'J(Dotierungsmittel)构成的聚合物基质(Polymermatrix),其中含可电离基团且平均粒径在纳米范围内的颗粒包埋在聚合物基质中,并且所述含可电离基团的颗粒以小于50%聚合物基质重量的浓度均匀地分布于聚合物基质中。
背景技术
:现有技术中已知有电解质膜,例如基于含全氟代磺酸基团的聚合物的Nafion型聚合物电解质膜。但是,由于存在水时膜中会形成电荷迁移,相应的聚合物电解质-燃料电池的工作范围受限为最高到100°C。为了实现更高的工作温度,提出将一种含有无机颗粒的膜用于燃料电池(参见DE19919988Al,DE10205849Al,WO03/063266A2和WO03/081691A2)。到目前为止,还不知道用于燃料电池的使用其他类型颗粒的膜。DE102004009396Al说明了用于燃料电池的膜,此燃料电池运行时具有改进的电学、机械和热学性能。该膜由聚合物构成,特别优选由塑料、天然材料、硅酮或橡胶和质子传导物质构成。但是,这种膜在室温下不表现出任何技术上显著的传导率,并且机械稳定性低。
发明内容由此,本发明的目的是提供一种用于燃料电池的聚合物膜,其在室温本发明还提供一种用于燃料电池的聚合物膜,其在燃料电池中在高运行温度下应当长时间地有效地运行,并且应当具有高质子传导率,并且在燃料电池运行期间不损失大量的参与质子传导的组分。这些技术问题是通过权利要求中所提供的实施方案得以解决的。特别地,本发明提供了一种聚合物电解质膜,其包括由至少一种碱性聚合物和一种或多种掺杂剂构成的聚合物基质,其中含可电离基团且平均粒径在纳米范围内的颗粒被包埋在聚合物基质中,并且含可电离基团的颗粒以小于50%聚合物基质重量的浓度均匀地分布于聚合物基质中。在本发明的聚合物电解质膜中,含可电离基团的颗粒以小于50%聚合物基质重量的浓度均匀地分布于聚合物基质中。由此实现了存在于基质中的、含可电离基团的颗粒基本不相互接触,并且被形成基质的聚合物包围。根据本发明聚合物电解质膜的优选的实施方案,含可电离基团的颗粒以小于40%、特别优选10~30%聚合物基质重量的浓度均匀地分布于聚合物基质中。根据本发明,将含可电离基团的颗粒理解为寡聚物(oligomere)颗粒和/或聚合物颗粒,其可与周围聚合物基质形成固体相界,然而不一定必须如此。所述含可电离基团的基本特性尤其是其不从聚合物基质或聚合物电解质膜中散布出去,如同低分子量的质子传导成分那样。合适的含可电离基团的颗粒首选是主要由一种或多种有机聚合物和/或寡聚物构成的有机颗粒。对适合作为含可电离基团有机颗粒的聚合物或寡聚物基本上没有限制。但是所述含可电离基团的颗粒优选的是主要由橡胶型聚合物或寡聚物构成,或者由非橡胶型聚合物或寡聚物构成,优选由热塑性聚合物或寡聚物构成。含可电离基团的颗粒可以是寡聚物和/或聚合物性质。例如,所述含可电离基团的颗粒可以主要由含至少一个、优选含至少两个、特别优选含两至四个可聚合的或可共聚的基团的基本单体构成,所述可聚合的或可共聚的基团特别是C=C双键。合适的基本单体优选含有一个到四个可聚合的或可共聚的基团,实例是丁二烯、苯乙烯、丙烯腈、异戊二烯、丙烯酸和曱基丙烯酸的酯、四氟乙烯、1,1-二氟乙烯、六氟丙烯、2-氯丁二烯、2,3-二氯丁二烯、含双键的羧酸(如丙烯酸、曱基丙烯酸、马来酸或亚甲基丁二酸)、含双键的磺酸、含双键的膦酸、含双键的羟基化合物(如曱基丙烯酸羟基乙酯、丙烯酸羟基乙酯或甲基丙烯酸羟基丁酯)、胺官能化的(曱基)丙烯酸酯、二异丙基苯、二乙烯基苯、二乙烯醚、二乙烯石风、邻苯二曱酸二烯丙酯、氰脲酸三烯丙酯、异氰脲酸三烯丙基酯、1,2-聚丁二烯、N,N,-m-亚苯基马来酰亚胺、2,4-曱代亚苯基二(马来酰亚胺)和/或偏苯三酸三烯丙酯。特别当需要有效交联时,5选择含两个至四个可聚合或可共聚基团的基本单体。此外,含可电离基团的颗粒可主要由优选多元醇、特别优选的是二元至四元醇的丙烯酸酯和/或曱基丙烯酸酯构成,这些醇例如乙二醇、1,2-丙二醇、丁二醇、己二醇,含2~20、优选2~8个氧乙烯单元的聚乙二醇,新戊二醇、双酚A、甘油、三羟曱基丙烷,含脂肪族二元醇或多元醇的不饱和聚酯的季戊四醇或山梨糖醇,及马来酸、富马酸和/或亚曱基丁二酸,或者它们的混合物。合适的基本单体的实例特别是下列化合物乙烯基。f唑、N-乙烯基-l-吡咯烷酮、N-烯丙基脲、N-烯丙基硫脲、仲胺_(曱基)_丙烯酸酯(如2-叔-丁基氨基乙基曱基丙烯酸酯,2-叔-丁基氨基乙基曱基丙烯酰胺、二曱基氨基丙基曱基丙烯酰胺、2-二甲基氨基乙基曱基丙烯酸酯)、乙蹄基咪唑如1-乙烯基咪唑、乙烯基吡咬如2-乙烯基吡咬和4-乙烯基吡啶、丙烯酰胺、2-丙烯酰氨基乙醇酸、2-丙烯基氨基-2-曱基-l-丙磺酸、丙烯酸[2-(((丁氨基)-羰基)氧)乙酯]、丙烯酸2-(二乙基氨基)乙酯、丙烯酸2-(二曱基氨基)乙基酯、丙烯酸3-(二曱基氨基)丙S旨、丙烯酸异丙酰胺、丙烯酸苯基酰胺、丙烯酸3-磺丙基酯钾盐、曱基丙烯酸酰胺、曱基丙歸酸2-氨基乙基酯盐酸盐、甲基丙烯酸2-(叔-丁基氨基)乙酯、曱基丙烯酸2-(二曱基氨基)曱酯、曱基丙烯酸3-(二曱基氨基)丙酰胺、曱基丙烯酸异丙酰胺、曱基丙烯酸3-磺丙基酯钾盐、3-乙烯基苯胺、4-乙烯基苯胺、N-乙烯基己内酰胺、N-乙烯基曱酰胺、l-乙烯基-2-吡咯烷酮,5-乙烯基尿嘧咬。根据一个优选实施方案,含可电离基团的颗粒在颗粒表面上或者颗粒整体中含有可电离基团。此外,也可以使用在化学反应(如脱保护反应、水解反应、加成反应或取代反应)后能转变成可电离基团、优选为酸基(Sauregruppen)的官能团。可以通过试剂与活性基团的化学反应引入所述可电离基团,特别是向颗粒的表面上引入可电离基团,其中所述试剂特别与C:C双键呈反应性,且所述活性基团存在于交联的或预交联的聚合物颗粒或寡聚物颗粒的表面上。可以与存在于交联的或预交联的颗粒表面上的活性基团、特别是C=C双键反应的试剂有醛、羟基化合物、羧基化合物、腈类化合物、含硫化合物(如含疏基的化合物、二硫代氨基曱酸酯(盐)、多硫化物、黄原酸酯(盐)、硫代苯并噻唑和/或二硫代膦酸基团)、不饱和的羧酸或二羧酸、不饱和的磺酸、不饱和的膦酸、N,N,-m-苯二胺、丙烯酸、曱基丙烯酸、羟乙基曱基丙烯酸酯、羟乙基丙烯酸酯、羟丁基曱基丙烯酸酯、丙烯酰胺、曱基丙烯酰胺、胺官能化的(甲基)丙烯酸酯(如丙烯腈、丙烯醛、n-乙烯基-2-吡咯烷酮、n-烯丙基脲和n-烯丙基硫脲),以及它们的衍生物和混合物。优选地,含可电离基团的颗粒在其表面上或整个颗粒中被可电离基团官能化,所述可电离基团优选为共价连接的酸基,如一元酸或多元酸的酸基,特别优选多元酸的酸基。共价连接在颗粒表面上或整个颗粒中的酸基优选为含有一个或多个酸基的羧酸基、磺酸基、膦酸基和/或磷酸基。然而,也可使用其他酸度类似的酸基或能转化成酸基的官能团。根据一个特别优选的实施方案,所述可电离基团选自下述官能团中的一种或多种-cooh、-S03h、-OS03h、-p(0)(oh)2、-0-p(oh)2和-0-p(0)(oh)2,和/或它们的盐和/或衍生物,特别是它们的偏酯。所述盐表示酸官能团的共轭碱,即-coct、画s(v、-oscv、-(0)2(011)-或"(0)33-、-o-p(o)22^-op(o)2(OHy或-op(o),的金属盐形式,优选碱金属盐形式或铵盐形式。因此,含可电离基团的颗粒可在颗粒表面上含有可电离基团并形成芯-壳型结构,或者可在基本整个颗粒中含有可电离基团并且这些可电离基团基本或完全均匀分布。可以以不同方法将上文所述的可电离基团引入颗粒的表面上或者整个颗粒中。然而,优选通过共聚至少一种前述的基本单体和至少一种含可电离基团(优选为酸基)的单体以形成含可电离基团的颗粒。通过这种通常也被称为一步法的方法,可得到不仅含有低聚可电离基团也含有聚合可电离基团的颗粒。在均匀相中如在溶液中或在本体中(inSubstanz)的共聚合,特别适合于在整体颗粒中形成含前述可电离基团的含低聚可电离基团的颗粒。在通过乳液聚合即通过使用单体或单体混合物的乳液(如在水中)进行共聚的情况下,具体可以制得含有聚合可电离基团的颗粒,其中所述可电离基团优选位于微凝胶的表面。但是,从含合适的可电离基团、优选含有酸基或能转变酸基的基团的基本单体也可以组装成寡聚物颗粒或聚合物颗粒。例如,可以想到的是,为了具体产生质子传导性质,首先通过交联含有能转变为酸基的基团的基本单体得到寡聚物颗粒或聚合物颗粒,紧接着通过化学修饰在颗粒表面形成所需的可电离基团,所述化学修饰例如通过脱保护反应、水解反应、加成反应或取代反应。先以下述方式交联至少一种前述的基本单体以形成寡聚物、预聚物或聚合物颗粒,然后向这种颗粒的表面上接枝至少一种含可电离基团、优选酸基的单体,以形成芯-壳型结构。根据此相应的两步法,可以制备出含低聚或聚合可电离基团的颗粒,其中所述可电离基团基本只位于表面上和接近表面的区域内。这种在均相体系(如在溶液或在本体中)的方法特别适合于形成含有低聚可电离基团的颗粒,而乳液聚合方法特别适合于制备含有聚合可电离基团的颗粒。在本文中优选的是,接枝含可电离基团的单体以实现可电离基团在颗粒表面上的高度覆盖。优选地,含可电离基团的颗粒表面几乎定量地被可电离基团、优选酸基官能化,这基团的单体反应。根据一个优选的实施方案,含可电离基团的单体是含有酸基的单体,如(曱基)丙烯酸,马来酸,乙烯基磺酸、乙烯基膦酸和/或苯乙烯磺酸,以及它们的衍生物和混合物。根据一个特别优选的实施方案,所述可电离基团选自下列官能团中的一种或多种-COOH、-S03H、-OS03H、-P(0)(OH)2、-O-P(OH)2和-0-P(0)(OH)2,和/或它们的盐或衍生物,特别是它们的偏酯。所述盐表示酸官能团的共轭石成,即-coo-、-S(V、-OSCV、-(0)2(0印-或小(0)33-、-0"(0)22—和-op(o)2(OHy或-op(o)^的金属盐形式,优选碱金属盐形式或铵盐形式。根据一个优选的实施方案,含可电离基团的颗粒是由至少一种聚苯乙烯和乙烯基磺酸制备的有机聚合物和/或寡聚物。通过聚合或共聚形成含可电离基团的颗粒可以由标准的方法实现,例如热、光化学、自由基方法,需要时加入过氧化物或偶氮类型的自由基引发物。相关领域技术人员已知合适的过氧化物或偶氮类型的自由基引发物,并可以视情况选择。原则上,对含可电离基团的颗粒在粒径方面没有限制,只要该粒径在纳米范围即可。含可电离基团的颗粒的平均粒径(mittlerTeilchendurchmesser)4尤选为5nm500nm,净争另'M尤选为20nm~400nm,最对争另'M尤选30nm~300nm。当含可电离基团的颗粒为聚合物性质时,它们会与周围的聚合物基质形成固相界。然而,它们与周围的聚合物基质不形成固相界也是可能的。8这种也被称为微凝胶的聚合物的粒径优选在约40nm~约200nm的范围内。优选通过乳液聚合方法制备这些含可电离基团的聚合物颗粒。在本发明范围内,乳液聚合具体指一种已知的方法,其中水用作反应介质,在乳化剂和自由基形成物质的存在下聚合所用的单体以形成水性聚合物月交吝'L(Polymerlatices)(参见R6mppLexikonderChemie,Band2,10Auflage1997;P.A.Lovell,M.S.El誦Aasser,EmulsionPolymerizationandEmulsionPolymers,JohnWiley&Sons,ISBN:0471967467;H.Gerrens,Fortschr.Hochpolym.Forsch.1,234(1959))。与悬浮聚合或分散聚合相比,乳液聚合通常获得更细的颗粒,这样在基质中实现了更小的颗粒距离。平均直径小的较细颗粒小于临界缺陷尺寸,因此它们只相应于分散度轻微地损害含有它们的基质的机械性能。选择使用单体以调节聚合物颗粒的玻璃化转变温度和玻璃化转变区间。所述微凝胶或基本呈球形的聚合物颗粒的玻璃化转变温度(Tg)和玻璃化转变区间的宽度(ATg)优选使用下文所述的差示扫描热量法(DSC)进行测量。为此,进行两组冷却/加热循环以测定Tg和ATg。在第二个加热循环时确定Tg和ATg。在该测量中,将约10~12mg的所选微凝胶置于Perkin-Elmer的DSC样品台(标准铝盘)中。第一个DSC循环这样进行首先用液氮将样品冷却至-100。C,接着以20K/分钟的速率加热至+150。C。在样品温度达到+150°(^时立即冷却样品开始第二个08(3循环。用液氮实现快速冷却。在第二个加热循环中,同第一个循环一样再次将样品加热至+150。C。第二次循环中的加热速率也为20K/分钟。根据第二次加热过程的DSC曲线图确定Tg和ATg。为此,在DSC曲线上构造了三条直线。第一条线为沿着DSC曲线低于Tg的曲线部分,第二条直线为沿着穿过Tg的带折点的曲线段,第三条直线为沿着DSC曲线高于Tg的曲线部分。以这种方式得到了带两个交点的三条直线。两个交点分别代表特征温度。玻璃化转变温度Tg为这两个温度的平均值,玻璃化转变区间的宽度ATg是两个温度的差值。橡胶样聚合物颗粒的玻璃化转变温度通常低于23°C。热塑性聚合物的玻璃化转变温度通常高于23。C。本发明所用聚合物的玻璃化转变温度区间的宽度优选大于5°C,更优选大于10°C。橡胶样聚合物颗粒优选基于共轭二烯的颗粒,所述共辄二烯如丁二烯、异戊二烯、2-氯丁二烯和2,3-二氯丁二烯,以及乙烯、丙烯酸和曱基丙烯酸的酯、乙酸乙烯酯、苯乙烯或其衍生物,丙烯腈,丙烯酰胺类,曱基丙烯酰胺类、四氟乙烯、l,l-二氟乙烯、六氟丙烯,含双键的羟基化合物(如羟乙基曱基丙烯酸酯、羟乙基丙烯酸酯、羟丙基丙烯酸酯、羟丁基曱基丙烯酸酯)、丙烯醛,或它们的组合。优选的单体或单体组合包括丁二烯、异戊二烯、丙烯腈、苯乙烯、a-曱基苯乙烯、氯丁二烯、2,3-二氯丁二烯、丁基丙烯酸酯、2-乙基己基丙烯酸酯、羟乙基甲基丙烯酸酯、四氟乙烯、1,1-二氟乙烯和六氟丙烯。在本文中,"基于"特别指大于60重量%、优选大于70重量%和更优选大于90重量%的聚合物颗粒由所述单体组成。聚合物颗粒可以是交联的或是非交联的。交联聚合物颗粒也是指微凝胶或基本上呈球形的聚合物颗粒。特别地,所述聚合物颗粒可以是基于均聚物或统计共聚物的颗粒。术语均聚物和统计共聚物对本领域技术人员而言是已知的,例如在Vollmert,PolymerChemistry,SpringerVerlag1973中所解释的。作为橡胶样、交联的或非交联的含有可电离基团的颗粒的聚合物基础可具体使用下列聚合物BR:聚丁二烯,ABR:丁二烯/丙烯酸CM烷基酯共聚物,IR:聚异戊二烯,SBR:统计上含苯乙烯1~60、优选5~50重量%的苯乙烯-丁二烯共聚物,FKM:氟树脂,ACM:丙烯酸酯橡胶,NBR:含丙烯腈5~60、优选10~60重量°/。的聚丁二烯-丙烯腈共聚物,CR:聚氯丁二烯,EAM:乙烯/丙烯酸酯共聚物,EVM:乙烯/乙酸乙烯酯共聚物。有利的是,本发明的非橡胶样、特别是热塑性聚合物颗粒的玻璃化转变温度Tg高于23。C。热塑性聚合物颗粒的玻璃化转变区间的宽度优选大于5°C(其中Tg或玻璃化转变区间按上述方法测定)。非橡胶样、特别是热塑10性聚合物颗粒优选是基于下列物质的颗粒曱基丙歸酸酯类特别是曱基丙烯酸曱酯,苯乙烯或苯乙烯衍生物,如a-曱基苯乙烯、对曱基苯乙烯,丙烯腈,曱基丙烯腈,乙烯基咔唑,或它们的组合。在本文中,"基于"指大于60重量%、优选大于70重量%和更优选大于90重量%的聚合物颗粒由所述单体组成。更优选的热塑性聚合物颗粒是基于曱基丙烯酸酯类,特别是曱基丙烯酸曱酯、苯乙烯、(X-甲基苯乙烯和丙烯腈的颗粒。所述聚合物颗粒优选具有接近球形的几何形状。本发明所使用的聚合物颗粒的平均直径优选为5nm~500nm,特别优选为20nm400nm,最优选为30nm~300nm。通过超速离心经乳液聚合得到的聚合物颗粒的水性胶乳来测量颗粒平均直径。该方法得到了颗粒直径的平均值,而在该颗粒直径中可能存在团聚(Agglomerate)(H.G.Miiller(1996)ColloidPolymerScience267;1113-1116,以及W.Scholtan,H.Lange(1972)Kolloid-Zu.Z.ZPolymere250:782)。超速离心法的优点是,表征了整个颗粒的尺寸分布,且可以通过分布曲线计算出不同的平均值,如数均和重均平均值。本发明中所使用的平均直径是重均平均数。在下文中将使用直径数据如d1(),dso和d8o等。这些数据平均值分别表示10、50和80重量Q/。的颗粒的直径小于相应的数值(nm)。通过动态光散射测量直径得到了可比的平均颗粒直径的第一近似值。对胶乳也进行了该测量。通常使用在633nm(红)和532nm(绿)下工作的激光。与超速离心法相比,动态光散射没有给出整体的粒径分布,而是给出了平均值,其中较大颗粒的比重较大(iiberproportionalgewichtet)。优选地,本发明所使用的聚合物颗粒的重均颗粒直径为5nm500nm,优选为20nm~400跳更优选为30nm~300nm。本发明含有可电离基团的颗粒可以通过乳液聚合的方法制备,在这种情况下,通过使用原料的变量(如乳化剂的浓度、引发剂的浓度、有机相与水相的液比、亲水单体与疏水单体的比例、交联单体的量、聚合物温度等)在较宽的直径范围内调节颗粒尺寸。聚合后,可以通过真空蒸馏或者超热蒸汽处理胶乳,以分离易挥发组分,特别是未反应的单体。可以通过下列方式进一步处理通过此方法制得的聚合物颗粒例如,通过蒸发、通过电解质混凝(Elektrolyt-Koagulation),通过与另一种胶乳聚合物共混凝、通过冷冻混凝(参见US2187146)或者通过喷雾干燥。在一个优选的实施方案中,含可电离基团且通过乳液聚合制备的颗粒至少是部分交联的。乳液聚合制备的含可电离基团的颗粒的交联优选通过在聚合期间加入多官能团的单体而实现,例如通过加入具有至少两个、优选2~4个可共聚C=C双键的化合物,如二异丙基苯、二乙烯基苯、二乙烯醚、二乙烯砜、邻苯二曱酸二烯丙基酯、氰脲酸三烯丙基酯、异氰脲酸三烯丙基酯、1,2-聚丁二烯、N,N,-m-亚苯基马来酰亚胺、2,4-甲代亚苯基二(马来酰亚胺),偏苯三酸三烯丙基酯;多元、优选二元至四元Cwo醇的丙蹄酸酯和甲基丙烯酸酯(所述醇如乙二醇、1,2-丙二醇、丁二醇、己二醇,含2~20、优选2-8个氧乙烯单元的聚乙二醇,新戊二醇,双酚A,甘油、三羟曱基丙烷、季戊四醇,山梨糖醇),以及脂肪族二元醇和多元醇与马来酸、富马酸和/或亚甲基丁二酸的不饱和多酯。含可电离基团的聚合物颗粒的交联可在乳液聚合时直接实现,例如通过与起交联作用的多官能团化合物共聚或者通过如下文所述的交联方法实现。优选在乳液聚合期间的直接交联。优选的多官能共聚单体是具有至少两个、优选24个可共聚CK:双键的化合物,如二异丙基苯、二乙蹄基苯、二乙烯醚、二乙烯砜、邻苯二甲酸二烯丙基酯、氰脲酸三烯丙基酯、异氰脲酸三烯丙基酯、1,2-聚丁二歸、N,N,-m-亚苯基马来酰亚胺、2,4-曱代亚苯基二(马来酰亚胺)和/或偏苯三酸三烯丙基酯。其他可以考虑的化合物是多元、优选二元至四元C2-K)醇的丙烯酸酯和曱基丙烯酸酯,所述醇如乙二醇、1,2-丙二醇、丁二醇、己二醇,含220、优选2-8个乙烯单元的聚乙二醇,新戊二醇,双酚A,甘油,三羟曱基丙烷,季戊四醇,山梨糖醇,以及脂肪族二元醇和多元醇与马来酸、富马酸和/或亚曱基丁二酸的不饱和多酯。乳液聚合期间的交联也可通过延长聚合时间至更高的转化率来实现,或者在单体进料方法(Monomerzulaufverfahren)中,通过高内部转化(internenUms針zen)的聚合来实现。另一种可能方案是,在进行乳液聚合时不存在调节剂。用在乳液聚合期间得到的胶乳。合适起交联作用的化学试剂的实例是有机过氧化物,如过氧化二异丙苯、叔丁基异丙苯基过氧化物、二(叔丁基过氧异丙基)苯、二-叔丁基过氧化物,2,5-二曱基己烷-2,5-二氢过氧化物、2,5-二曱基己炔-3,2,5-二氢过氧化物、二苯曱酰基过氧化物、二-(2,4-二氯苯甲酰基)过氧化物、过苯曱酸叔丁基酯,以及有机偶氮化合物,如偶氮二异丁腈和偶氮二环己烷腈,以及二疏基化合物和多疏基化合物,如二疏基乙烷、1,6-二疏基己烷、1,3,5-三疏基三。秦,和疏基封端的聚硫橡胶,如双-氯乙基缩曱醛与多硫化钠的疏基封端的反应产物。进行后交联的最佳温度自然与交联剂的反应性相关,且可以在室温至约180°C的温度下和必要时在升高的压力下进行(相关内容可参见Houben-Weyl,MethodenderOrganischenChemie,第四版,巻14/2,第848页)。特别优选的交联剂是过氧化物。含有C=C双键的橡胶至微凝胶的交联可以在分散体或乳状液中用肼同时地、部分或完全地氢化C=C双4定而实现(如在US5302696或US5442009中所记载的),或者必要时使用其他氢化试剂,如有机金属氢化物复合物。必要时,可在后交联之前、期间或之后通过团聚进行颗粒生长。有利地,本发明所使用的、含有交联的可电离基团的聚合物颗粒具有在23°C下不溶于曱苯的部分(凝胶含量)为至少约70重量%,更优选为至少约80重量%,甚至更优选为至少约90重量%。这种不溶于曱苯的部分在23°C下的曱苯中测定。为此,将250mg的聚合物颗粒用23°C下的25mL曱苯溶胀24小时,并摇动。在以20000rpm的速率离心后,分离并干燥所述不溶部分。干燥残余物与初始重量的商即为凝胶含量,以重量百分比表示。有利地,本发明所使用的、含有交联的可电离基团的聚合物颗粒在23°C下曱苯中的溶胀指数小于约80,更优选小于60,甚至更优选小于40。这样,所述聚合物颗粒的溶胀指数(Qi)可特别优选介于1-15~1-10之间。所述溶胀指数是由在曱苯中溶胀24小时的含溶剂的聚合物颗粒的重量(在20000rpm下离心后)与干燥聚合物颗粒的重量计算得到的Qi=聚合物颗粒的湿重/聚合物颗粒的干重。为了测定溶胀指数,将250mg的聚合物颗粒在25mL的曱苯中摇动溶胀24小时。离心凝胶并称重,然后在70。C干燥至恒重,再次称重。13本发明所使用的、含有可电离基团的聚合物颗粒含有离子或能形成离子型基团的可电离基团。它们以这种方式能够给出质子和/或接受质子。根据本发明的一个优选实施方案,所述可电离基团是酸基。根据本发明一个特别优选的实施方案,所述可电离基团选自下列官能团中的一种或多种-COOH,-S03H,-OS03H,-P(0)(OH)2,-0-?(0印2和画0孑(0)(0印2,和/或它们的盐和/或衍生物,特别是它们的偏酯。所述盐表示酸官能团的共辄碱,即-COCT、画S(V、-oscv、-P(0)2(OH)-或-P(0)33-、-0-P(0)22^。-OP(0)2(OH)—或-OP(0)f的金属盐形式,优选碱金属盐形式或铵盐形式。才艮据本发明,本发明范围内特别优选的可电离基团选自-S03H、-PO(OH)2、-0-P(0)(OH)2、和/或它们的盐和/或衍生物,特别是它们的偏酯。依据制备方法,所述可电离基团可位于表面上和/或不在表面上。可以通过在聚合期间掺入官能化的单体和/或通过聚合后的改性向聚合物颗粒中?1入所述可电离基团。作为实例,官能化的单体选自丙烯酸,曱基丙烯酸,乙烯基苯曱酸,亚曱基丁二酸,马来酸,富马酸,巴豆酸,乙烯基磺酸,苯乙烯磺酸,含有膦酸或磷酸基团和可聚合C=C双键的单体,如乙烯基膦酸、2-膦酰基曱基丙烯酸和2-膦酰基曱基丙烯酸酰胺,含有可聚合C=C双键的羟基官能单体的膦酸酯和磷酸酯,或它们的盐或衍生物。含有可聚合C=C双键的羟基官能的单体的磷酸酯优选具有下列曱基丙烯酸酯化合物的式(I)或(II)结构OH(I),—OH(H).14o=ploOUPIOIRIOoo一一oo其中R是二价有机基团,特别如d—K)烯基。优选地R为C24烯基(即C2-4烷二基(Alkandiylgruppe)),如1,2-亚乙基或正亚丙基(n-Propylengruppe)。也可使用这些化合物的盐,特别如碱金属盐,优选为钠盐或铵盐。也可使用相应的丙烯酸酯。此外,也可使用这些化合物与其他饱和或不饱和羧酸的偏酯。根据本发明,术语偏酯包括下列情况一种情况是所述可电离基团的一部分酸羟基被部分酯化,另一种情况是聚合物颗粒中的一部分羟基被酯化,而另一部分未被酯化。通过聚合掺入的并含有可电离基团的官能性单体相对于单体总重优选为0.1~100重量%、更优选0.2-99.5重量°/。。这表明也可使用这些含可电离基团的单体的均聚物。例如,这些单体占至少10重量%、至少20重量%或至少30重量%。所述可电离基团-OS03H和-OP(0)(OH)2也可以例如通过下列方式引入聚合物颗粒中通过羟基改性的聚合物颗粒的反应(例如(曱基)丙烯酸羟基烷基酯通过聚合而掺入的),或者通过带有硫酸或磷酸的含环氧基团(如含曱基丙烯酸缩水甘油酯)的聚合物颗粒与硫酸或磷酸加成,通过含双键的聚合物颗粒与硫酸或磷酸的加成,通过在含双键的聚合物颗粒的存在下分解过硫酸盐或过磷酸盐,以及通过聚合后的酯交换反应。此外,通过磺化或磷酸盐化芳香族乙烯基聚合物也可引入所述-S03H和-P(0)(OH)2基团。此外,可电离基团也可通过羟基改性的聚合物颗粒与相应的官能化的环氧化物反应而制备。除了所述可电离基团之外,可以向聚合物颗粒的表面上特别引入用来控制性质的其他官能团,例如通过已经交联的聚合物颗粒与对C=C双键呈反应性的化学物质的化学反应。这些反应性化学物质特别是这样的化合物,其通过极性基团如醛、羟基、羧基、腈等,以及含硫的基团,如巯基、二硫代氨基曱酸酯、多硫化物、黄原酸酯和/或二硫代磷酸酯、和/或不饱和的二羧酸基团等与聚合物颗粒化学相连。改性的目的具体是为了改善与基质聚合物或者与形成基质的聚合物物质的相容性,其中可以向基质聚合物或者形成基质的聚合物物质中结合掺入质子传导的聚合物颗粒,为了例如在制备时获得良好的相容性以及良好的耦合。特别优选的改性方法是用官能性单体接枝聚合物颗粒以及与低分子量的试剂反应。通过这种方法,所述可电离的、给与质子的或者接受质子的单体还可根据需要被掺入聚合物颗粒中。适合的是,官能性单体与聚合物颗粒的接枝起始于水性微凝胶分散体,所述水性微凝胶分散体在自由基乳液聚合的情况下与极性单体反应,所述极性单体如乙烯基磺酸、苯乙烯磺酸、丙烯酸、曱基丙烯酸、亚曱基丁二酸、(曱基)丙烯酸羟乙基酯(在本文中,术语"(曱基)丙烯酸酯"包括曱基丙烯酸酯和丙烯酸酯)、(曱基)丙烯酸羟丙基酯、(曱基)丙烯酸羟丁基酯、丙烯腈、丙烯酰胺、曱基丙烯酰胺、丙烯醛,含有膦酸基或磷酸基并具有可聚合C=C双键的单体,如乙烯基膦酸、2-膦酰基曱基丙烯酸和2-膦酰基曱基丙烯酸酰胺,羟基官能的含有可聚合CK:双键的单体的膦酸酯或磷酸酯,它们的盐或衍生物,特别是它们的偏酯。通过这种方式,会得到芯壳形貌的聚合物颗粒。所需要的是,在改性步骤中使用的单体尽可能定量地接枝到未改性的聚合物颗粒或微凝胶上。有利的是,在完全交联微凝胶之前加入官能性单体。例如通过臭氧分解对含双键的聚合物颗粒进行改性也是一个备选方案。在一个优选的实施方案中,用羟基改性所述聚合物颗粒、特别是微凝胶,特别是在其表面上进行改性。聚合物颗粒、特别是微凝胶的羟基含量根据DIN53240测量,通过与乙酸酐反应、用KOH滴定游离乙酸得到羟值,其单位为mgKOH/g聚合物。聚合物颗粒、特别是微凝胶的羟值优选为0.1~100,更优选为0.5~50mgKOH/g聚合物。改性剂的用量依据其效力和具体情况的需求,用量为所用聚合物颗粒特别是微凝胶总量的0.05~30重量%。特别优选为聚合物颗粒特别是微凝胶总量的0.510重量%改性反应可在0~180。C、优选20~95。C下进行,必要时在1~30bar的压力下。改性可以发生在本体中的橡胶微凝胶上,或者以其分散体的形式。在这种情况下,惰性有机溶剂或甚至水可用作反应介质。特别优选的是,在交联橡胶的水性分散体中进行改性。在聚合物基质中,如在膜、特别是用于燃料电池的聚合物电解质膜的形式中,本发明所使用的、含可电离基团的颗粒以基质聚合物含可电离基团的颗粒的比为1:9999:1,优选10:9090:10,特比优选20:80~80:20存在。本发明所使用的含可电离基团的颗粒的量取决于所需的膜的性质,如膜的质子传导性能。根据一个优选的实施方案,本发明涉及用于燃料电池的聚合物电解质膜,其包括聚合物基质,基质中包埋有含可电离基团的颗粒,颗粒的平均直径为5nm~500nm(才艮据上文所述的超速离心方法测定),该颗粒是通过乳液聚合制备的,并且含有选自下列基团的可电离基团-S03H,-OS03H,-P(0)(OH)2,-0-P(OH)2和陽0-P(0)(OH)2,和/或它们的盐和/或衍生物。优选的基团为-S03H、-OS03H、-P(0)(OH)2、-0-P(0)(OH)2,和/或它们的盐和/或衍生物,特别是酯如偏酯。所述可电离基团在含可电离基团的聚合物颗粒中的比例优选为聚合物颗粒总量的0.195重量%,更优选为1~90重量%。聚合物颗粒的合适盐包括金属盐和铵盐,特别是碱金属盐、碱土金属盐等。特别地,聚合物颗粒的合适衍生物包括所述可电离基团的酯和偏酯。当含可电离基团的颗粒为寡聚物性质时,优选它们与周围的基质不形成固体相界。这种也可被称为星形寡聚物的寡聚物的粒径优选为约2nm~约10nm。这种含可电离基团的寡聚物颗粒优选通过在溶液中或者在本体聚合或共聚而制备。无论含可电离基团的颗粒是聚合物性质还是寡聚物性质,所述可电离基团、特别是酸基,都可存在于表面上(即以芯-壳型结构的形式)或存在于整个颗粒中。含可电离基团的颗粒优选具有基本成球形的(微凝胶)或基本呈星状,但是不必须与周围的聚合物基质形成固体相界。这样,含可电离基团的颗粒也可以形成不同于基本呈球形或基本呈星状的形状。根据一个优选实施方案,含可电离基团的颗粒是固体颗粒,其粒径优选在纳米范围。对含可电离基团的颗粒的制备方法没有任何特别的限制。例如可以通过下列方式制备含可电离基团的颗粒通过在溶液或在本体中聚合或共聚,通过乳液聚合或者通过悬浮聚合。然而,优选通过乳液聚合制备含可电离基团的颗粒,特别是当需要得到含有可电离基团的聚合物颗粒时。所述聚合物基质包括至少一种碱性聚合物。必要时,可将常用的助剂包埋于聚合物基质中。此外,也可将至少一种非碱性聚合物包埋在聚合物基质中,例如用以影响所需的热性能和机械性能。用于本发明中含有聚合物基质的聚合物电解质膜的合适掺杂剂对于本领域技术人员而言是已知的。实例有磷酸、磷酸衍生物、膦酸,膦酸衍生物、硫酸、硫酸衍生物、磺酸或磺酸衍生物。此外,优选的掺杂剂是至少二元的无机酸与有机化合物的反应产物,其中所述反应产物含有未反应的酸基。掺杂度优选为未掺杂聚合物基质重量的60~95%,特别优选为6590%。燃料电池的膜所用的常见添加剂可以用作助剂。相关领域的技术人员能够选择合适的助剂。碱性聚合物优选选自聚苯并咪唑、聚吡啶、聚嘧啶、聚咪唑类、聚苯并噻唑类、聚苯并噁唑类、聚鹏二唑类、聚喹喔啉类、聚噻二唑类、聚(四氮杂芘类),或其中两种或更多种的组合,特别优选聚苯并咪唑。然而,此外,也可向聚合物基质中掺入其他聚合物以调节机械性能或热性能。本发明的聚合物电解质膜提供了在存在水时的出色质子传导性能,但是即使在无水条件下,其也具有工业相关的电导性。根据一个优选的实施方案,本发明的聚合物电解质膜在25°C下的传导率为至少2.5S/m,其中特别优选的是在25°C下的传导率至少为3.1S/m。此外,特别根据本发明以及在本文中所记载的优选实施方案,本发明特别提供了一种制备用于燃料电池的聚合物电解质膜的方法,其包括下列步骤(a)制备膜浇注溶液(Membrangiefik3sung),所述膜浇注溶液至少包含溶剂、形成基质的碱性聚合物和含可电离基团的颗粒,如上文所述,(b)将所述膜浇注溶液制成膜的形式,和Cc)除去溶剂。根据本发明的步骤(a),将含可电离基团的颗粒分散于形成基质的碱性聚合物溶液中。含可电离基团的颗粒在碱性聚合物溶液中最佳分散或均化根据WO2005033186Al和WO2005030843Al是特别优选的且是可能的,并且这确保了在步骤(c)后根据本发明的含可电离基团的颗粒在聚合物基质中彼此不接触。在进一步的步骤(d)中,将至少一种掺杂剂掺入步骤(c)后所得的膜中。基本上对溶剂没有限制,只要所述形成基质的碱性聚合物和/或含可电离基团的颗粒能够溶解或以合适方式分散以形成所需膜。但是,所述溶剂优选自N-曱基吡咯烷酮(NMP),二曱基曱酰胺(DMF),二曱基亚砜(DMSO),18二曱基乙酰胺(DMAc),和它们的混合物。用常用手段除去溶剂,其中优选通过加热膜浇注溶液和/或通过应用真空除去溶剂。此外,本发明提供了上述定义的聚合物电解质膜或根据上述方法所得到聚合物电解质膜在燃料电池、优选温度范围高至约200°C的高温燃料电池中的用途。本发明的聚合物电解质膜在燃料电池(如温度范围高至约200°C的高温燃料电池)中在长时间上具有出色的质子传导性能。下列实施例更详细的解释了本发明,而不是限制本发明所要求保护的主题的范围。实施例实施例1微凝胶或基本呈球形的含可电离基团的聚合物颗粒的制备实施例下面记载了微凝胶的制备,该微凝胶可用作含可电离基团的颗粒用于制备本发明的用于燃料电池的聚合物电解质膜。通过乳液聚合制备微凝胶。用于制备微凝胶的单体组合以及主要制剂成分总结于表1)和2)中。所有的制剂成分都以100重量份的单体混合物计。在表l)中总结了MersolatH95(LanxessDeutschlandGmbH)用作乳化剂的实验。MersolatH95是长链(C16-C18)烷基磺酸盐混合物的钠盐。在表2)中总结了使用不成比例(disproportionierter)的树脂酸(Dresinate⑧731/70%,Abieta公司)和脂肪酸(Edenor⑧HTICN,OleoChemicals公司,12%的水溶液)的混合物作为乳化剂的实验。在这些实验中,还加入0.6重量份的氢氧化钾(表2))。将树脂酸和脂肪酸的混合物用150。/。比例的氢氧化钾的量进行形式上地中和。下列单体用于制备表l)和2)中列出的微凝胶苯乙烯(98%),KMFLaborChemieHandelsGmbH丁二蜂(99%,非稳定的),LanxessDeutschlandGmbH三羟曱基丙烷三曱基丙烯酸酯(卯%),Aldrich;产品号24684-0(缩写:TMPTMA)羟乙基曱基丙烯酸酯(96%),Acros,产品号156330010(缩写HEMA)19乙烯基磺酸钠30%的水溶液,Fluka;产品号95061(缩写NaVS)苯乙烯磺酸钠(900/。),Fluka;产品号94904(缩写NaSS)乙烯基膦酸(95%),Fluka;产品号95014(缩写H2VP)2-(曱基丙烯酰基氧)乙基磷酸酯,Aldrich,产品号463337(缩写H2MOOEP)表1)基于乳化剂MersolatH95的微凝胶制剂<table>tableseeoriginaldocumentpage20</column></row><table>1)通过2当量的NaOH原位中和H2VT得到Na2VT。该重量数据基于乙烯基膦酸的钠盐(Na2VP)2)2-(甲基丙烯酰基氧)己基磷酸酯的重量数据基于游离酸(H2MOOEP);在亏1发聚合前,通过加入2当量的KOH中和H2MOOEP,这样i反应混合物(Reaktionansatz)中存在相应的二钾盐(K2MOOEP)。3)数值数据基于反应混合物中的MersolatH95的总量4)数值数据基于反应混合物中的水的总量表2)基于由树脂^/脂肪酸构成的乳化剂系统的微凝胶制剂<table>tableseeoriginaldocumentpage20</column></row><table>*100%物质的数值数据Dresinate:不成比例的树脂酸(Dresinate⑧731/70%,Abieta乂>司)EdenorHTiCTN:不成比例的脂肪酸,OleoChemicals公司(12%的水溶液)1294-1和OBR1438-1(表l)),在带搅拌系统的20L钢制高压釜中制备了产品OBR1361-B、OBR1435-4、OBR1327B和OBR1330I(表1)and表2))。对于玻璃反应器中的乳液聚合反应,均加入3.93kg的水并用氮气流清洗。向水中加入并溶解Mersolat总量的一部分。向水中加入并溶解5.3gMersolatH95用于制备OBR1290-2;13.7gMersolatH95用于制备OBR1291-1;24.2gMersolatH95用于制备OBR1293-1、OBR1297-1、OBR1294-1、OBR1361-B和OBR1438-1;和40.0gMersolatH95用于制备OBR1290-4。然后,向反应器中加入1000g的表l)中列出的单体混合物和0.08g的4-曱氧基苯酚(ArcosOrganics,产品号126001000,99%)。将反应混合物加热到3040。C后,再加入新制的4%预混合水溶液。该预混合溶液包含0.169g乙二胺四乙酸(Fluka,产品号03620),0.135gFe(II)S04.7H20(RiedeldeHaen,产品号12354)(计算时不含结晶水)0.347gRongalitC,曱醛化次辟L酸氢钠二水合物(Merck-Schuchardt,产品号8.06455)(计算时不含结晶水),以及0.524gNa3P04.12H20(Acros,产品号206520010)(计算时不含结晶水)。#为了激活聚合反应,制备含0.56g对蓋烷过氧化氢(Trigonox⑧NT50,Akzo-Degussa)在50g水和剩余量的MersolatH95(2.1g)的激活剂中的溶液。加入预混合溶液5分钟后,向反应器中加入一半的激活剂水溶液。由此聚合反应开始。在反应2.5小时后,将反应温度增加到4050。C。保持一小时后,加入另一半的激活剂水溶液。一旦达到>90%(通常为95%~100%)的聚合转化率,通过加入2.35g二乙基羟基胺(DEHA,Aldrich,产品号03620)的水溶液停止聚合。在带搅拌系统的20L反应釜中以类似的方法制备OBR1361-B、OBR1327B和OBR1330I。在各情况下,均使用了3.5kg的单体混合物和总量为14kg的水。然后以与玻璃反应器中类似的实验方法进行实验。合反应后,通过蒸汽汽提法从胶乳中除去未反应的单体和易会发的组分。按US6399706的实施例2中所记载的方法,过滤表l)和2)中的胶乳,然后与稳定剂混合,混凝并干燥。粒直径,3在;体条件下的在曱苯中的溶解度(凝胶;量,溶胀指数/QI)和用DSC方法表征凝胶(玻璃化转变温度/Tg和Tg区间的宽度)。表l)和2)中所记载的微凝胶的特征数据列于表3)中。表3)微凝胶(表l)和2)中)的表征数据<table>tableseeoriginaldocumentpage22</column></row><table>表3)中各符号的含义d10、d5o和dso:通过超速离心方法测定停止反应的、以蒸汽汽提的胶乳的茅贞冲立直4圣(W.Scholtan,H.Lange,"BestimmungderTeichengr6Ben-verteilungvonLaticesmitderUltrazentrifuge",Kolloid-ZeitschriftundZeitschriftfiirPolymere(1972)Band250,Heft.8)。胶乳的特征粒径分布由直径参数dK)、d5o和d8o描述。这些直径参数各表示10重量。/。(dK))、50重量。/。(d50)和80重量。/。(d8o)的颗粒的直径小于所给数值。胶乳中的以及从胶乳分离的固体产品中的微凝胶的粒径,根据本发明的组成而使用且基本上是一致的。ddls:通过动态光散射(DLS)测定的胶乳的颗粒直径。使用ZetasizerNanoInstrument(型号NanoZS)(MalvernInstrumentsLtd.,Worcestershire,England)进行测量。通过动态光散射得到平均颗粒直径。Tg:玻璃化转变温度△Tg:Tg区间的宽度使用DSC-2设备(Perkin-Elmer)测量Tg和ATg。在第一个测量循环中,样品用液氮快速冷却到-130。C,然后以20K/分钟的加热速度加热至150°C。在第二个测量循环中,再次冷却至-130。C,然后以20K/分钟的加热速度加热。在第二个测量循环中测量Tg和ATg。通过不可溶部分以及不可溶部分的溶胀度表征微凝胶。在曱苯中确定不可溶部分和溶胀度。为此,于23。C下在25mL曱苯中摇动并溶胀250mg的微凝胶24小时。以20,000rpm的速度离心后,分离不可溶部分并干燥。在70°C下干燥至恒重的残余物重量与初始重量的商为凝胶含量,以重量%表示。QI:溶胀指数定义为微凝胶的湿重除以微凝胶的干重。溶胀指数根据在23°C的曱苯中溶胀24小时(以20,000rpm离心后)含;容剂的微凝胶的重量(MG"和干微凝胶的重量(MG一计算得到。QI=MG湿/MG干凝胶含量按不溶于曱苯的微凝胶重量(MG千)占微凝胶初始重量(250mg)的百分比来计算MG千凝胶含量[%]=100x_250实施例2用于燃料电池的聚合物膜的微凝胶分散体的制备将具有不同酸基的微凝胶分散于16重量。/。的聚苯并咪唑(PBI,SartoriusAG公司的产品)和84重量%二曱基乙酰胺(DMAc,99%,Aldrich公司)(表4),PBI溶液(16%))的溶液中。分散体的组成见表4):23<table>tableseeoriginaldocumentpage24</column></row><table>表6)OBR1284-1、OBR1297-1和OBR1290-4的性质<table>tableseeoriginaldocumentpage25</column></row><table>注释Tg=玻璃化转变温度QI=溶胀指数通过下列方式制备表4中本发明的微凝胶分散体向200g的16重量%的PBI溶液中加入75g的微凝胶(相应于12.5重量%,根据表4)),同时用螺旋桨式搅拌器搅拌。若需要螺旋搅拌过程(Propellerriihrprozess)的粘度,还加入325g的根据表4)的二曱基乙酰胺中的一部分。然后,再加入325g的二曱基乙酰胺的其余部分。混合物在室温下保持24小时,然后继续用高压均化器(型号APV1000或APV2000,APVDeutschlandGmbH(invensys))处理。将根据表4)的混合物在室温下加入均化器中,并在9001000bar的压力下通过均化器六次。混合物通过均化器需要最多5bar的压力。处理温度为40。C70。C。实施例3含微凝"交1297-1的膜浇注溶液的制备将根据表4)的微凝胶1297-1、PBI和二曱基乙酰胺的分散体50g搅拌加入310g的19.1重量%的PBI在DMAc中的溶液中。通过加入55g的二曱基乙酰胺(DMAc)将PBI溶液的PBI固体含量降低至15重量%。使用PTFE半月形搅拌轴(PTFEhalbmondriihrwelle)在室温下充分混合溶液0.5~1小时。然后,在室温和30mbar下脱气1小时。表7)列出了用于膜制备的备选膜浇注;容液的组成。<table>tableseeoriginaldocumentpage26</column></row><table>实施例4具有本发明含可电离基团的聚合物颗粒的聚合物膜的制备用中试拉伸机将根据实施例3和表7)制备的膜浇注溶液涂覆于聚酯膜上,层厚为300-340iam的,并于65°C下干燥。将膜从背衬膜上剥离,然后在250°C下后干燥(nachgetrocknet)4小时。用同样的方法制备不含任何微凝胶作为可电离基团的聚合物颗粒前体的聚合物膜,为对比例。实施例5抗张应力的测量通过测量抗张应力评估聚合物膜的机械稳定性。10cm长、2cm宽的膜样品被夹在Z2.5测量仪(ZwickGmbH&Co.)中,并且在室温及5mm/分钟的速率下经受抗张应力测试。根据实施例4制备的未掺杂的聚合物膜(10%OBR1294-1*)的弹性模量为约4700N/mm"及更高。与不具有含可电离基团的聚合物颗粒的纯PBI聚合物膜相比,其在张应力为125N/mn^下断裂,伸长率为4~5%。结果总结与表9)中。表9)聚合物膜抗张应力的测量<table>tableseeoriginaldocumentpage27</column></row><table>*基于聚苯并咪唑含量(%)的微凝胶含量(重量%)(表8))实施例6用磷酸掺杂为了评估掺杂剂的吸收能力,将11.8cmx13.5cm的膜样品在130°C下置于85重量%的磷酸中30分钟,在洗去吸附的磷酸后,根据下式测定重量的方法来确定增加的质量(参见表10).(掺杂后质量-掺杂前质量)/掺杂后质量Xl00=掺杂度[%]实施例7质子传导率的测量为了评估质子传导率,将掺杂的和未掺杂的聚合物膜切成4.5cmx2cm的片,至少在三个点测定其平均厚度,然后将小片安装在测量槽中。测量槽由四个电极组成,在消除环境湿度的情况下通过阻抗谱在室温下确定电阻。与不具有含可电离基团的聚合物颗粒的纯PBI膜相比,本发明的聚合物膜在掺杂后的传导率为22.5S/m(室温)。在未掺杂状态下,具有不同含量的含可电离基团的聚合物颗粒的聚合物膜仅显示出很低的质子传导率。表10)磷酸掺杂膜的传导率测量<table>tableseeoriginaldocumentpage28</column></row><table>*基于PBI含量(%)的微凝胶含量(重量%)(根据表8)实施例8动态力学性能的测量使用DMA242C(NetschGer壯ebauCo.公司)对未掺杂的膜进行动态力学分析(DMA)。该测量在具有下列参数的张力模式下进行温度范围-50~480。C,加热速率3K/分钟,频率1Hz,比例系数1.1,最大动力(DynamischeKraft)7.1N,额外预静载(ZusatzlichestatischeVorkraft)0N,振幅40pm。基于tanS曲线的最大值确定玻璃化转变温度。表ll)和图l显示了测量结果。微凝胶OBR-1297-l用作在PBI聚合物中产生含可电离基团的聚合物颗粒的前体。测得不具有含可电离基团的聚合物颗粒的纯PBI的玻璃化转变温度为420°C。在该温度下,聚合物内部的自由体积达到了一定值,造成大部分聚合物链都具有移动性(Beweglichkeit),并且将聚合物的材料属性从硬质玻璃状改变为橡胶状。PBI基质中比例为10~30重量%的含可电离基团的聚合物颗粒的存在,会因聚合物颗粒的增塑作用将玻璃化转变温度降低至340或295。C。相反,份额高于50重量。/。的聚合物颗粒不会造成PBI基质聚合物的玻璃化转变温度的进一步降低,尽管在50重量%时观察到含可电离基团的聚合物颗粒在89。C有明显的玻璃化转变。对这种现象的一个可能解释是当比例大于50重量%时,含可电离基团的聚合物颗粒的渗滤极限被超越,并因此形成了互相接触的聚合物颗粒的连续相;而当含可电离基团的聚合物颗粒的比例低于50重量%(特别是低于40重量%)时,这些颗粒以彼此独立的形态包埋于PBI基质中。表11)本发明聚合物膜的DMA测量<table>tableseeoriginaldocumentpage29</column></row><table>*根据表8)的基于聚苯咪唑含量(%)的微凝胶含量(重量%)实施例9燃料电池的制备将根据实施例4制备的膜切成104cn^大小的方片,并与市售的ELAT电极(ETEK公司)结合,电极均上载有2.0mg/cm2Pt且面积为50cm2,并均用0.68g磷酸浸润。在160。C和50bar下将这种膜-电极三明治形式压入平行板间4小时,以形成膜-电极单元。将这样得到的膜-电极单元安装在FuelCellTechnologies,Inc.公司的标准装置上,并且用15bar的接触压力密封。.实施例10燃料电池性能参数的测定将根据实施例9的燃料电池连接到标准商用的燃料电池测试台FCATSAdvancedScreener(HydrogenicsInc.,A司)上,并在160。C和3bar(绝对值)的工作状态下测试。表12)总结了用干燥气体实现的性能。表I"性能参数P(0.6V)[W/cm2]/(U0[V])在160°C,3bar下H2/空气气体流mL/分钟(STP)H2向空气/氮气的渗透纯PBI0.28W/cm2(0.79V)914/29003000/3000ppm腦OBR1294-10.24W/cm2(0.98V)783/24860/0ppm20%OBR1294-10.31W/cm2(1.02V)0.30W/cm2(1.03V)783/2486914/29000/0ppm30%OBR1294-10.34W/cm2(1.01V)914/29000/0ppm50%OBR1294-10.29W/cm2(1.00V)783/248610/3000ppm10%OBR1290-10.36W/cm2(1.05V)1044/33140/0ppm注释P(0.6V):在0.6伏电压下的功率U0:未引取电流(Stromabnahme)的开3各电压实施例11燃料电池长期稳定性的测定根据实施例9的电池,其配备含有基于OBR1290-4的聚合物颗粒的聚30合物电解质膜(基于PBI基质为10%),将该电池接到标准市售燃料电池测试台FCATSAdvancedScreener(HydrogenicsInc.公司)上,并在160。C和绝对气压3bar的条件下测试。图2描绘了在0.5A/cm2的工作条件下电压与时间的关系,并总结了使用干燥气体获得的性能参数。使用氢气气体流速为261mL/分钟(STP)和空气气体流速为829mL/分钟(STP)的干燥气体。在1100小时的工作时间段上,基于微凝胶OBR1290-4的膜-电极单元表现出48|iV/小时的电压下降。基于纯PBI的膜-电极单元(其中所述聚合物电解质膜不具有含可电离基团的聚合物颗粒)从刚开始工作就表现为无电流条件下的0.8V的开路电压,因此不适于长期运行。权利要求1.用于燃料电池的聚合物电解质膜,包括由至少一种碱性聚合物和一种或多种掺杂剂构成的聚合物基质,其中含可电离基团且平均粒径在纳米范围的颗粒包埋在聚合物基质中,并且所述含可电离基团的颗粒以相对于聚合物基质重量小于50%的浓度均匀地分布于聚合物基质中。2.根据权利要求1所述的聚合物电解质膜,其中所述含可电离基团的颗粒以相对于聚合物基质重量小于40%的浓度均匀地分布于聚合物基质中。3.根据权利要求l或2所述的聚合物电解质膜,其中所述含可电离基团的颗粒主要由一种或多种有机聚合物或寡聚物构成。4.根据权利要求13中任一项所述的聚合物电解质膜,其中所述含可电离基团的颗粒主要由橡胶型聚合物或寡聚物构成,或者主要由非橡胶型聚合物或寡聚物构成,优选由热塑性聚合物或寡聚物构成。5.根据权利要求1~4中任一项所述的聚合物电解质膜,其中所述含可电离基团的颗粒在表面上或者在整个颗粒中具有可电离基团,优选为共〈介连接的酸基。6.根据权利要求5所述的聚合物电解质膜,其中所述酸基是羧酸基、磺酸基和/或磷酸基。7.根据权利要求1~6中任一项所述的聚合物电解质膜,其中所述含可聚物。8.根据权利要求17中任一项所述的聚合物电解质膜,其中所述含可电离基团的颗粒的平均粒径为5nm500nm。9.根据权利要求1~8中任一项所述的聚合物电解质膜,其中所述含可电离基团的颗粒基本呈球形或基本呈星形。10.根据权利要求1~9中任一项所述的聚合物电解质膜,其中所述含可电离基团的颗粒是固体颗粒。11.根据权利要求1~10中任一项所述的聚合物电解质膜,其中所述含可电离基团的颗粒是通过乳液聚合而制备的。12.根据前述权利要求中任一项所述的聚合物电解质膜,其中所述一种或多种碱性聚合物是或选自聚苯并咪唑、聚吡啶、聚嘧啶、聚咪唑类、聚苯并噻唑类、聚苯并嵊唑类、聚隨二唑类、聚喹喔啉类、聚噻二唑类、聚(四氮杂芘类),或者其中两种或更多种的组合。13.根据权利要求1~12中任一项所述的聚合物电解质膜,其中所述掺杂剂选自磷酸、磷酸衍生物、膦酸、膦酸衍生物、硫酸、硫酸衍生物、磺酸、磺酸衍生物,或者其中两种或更多种的组合。14.根据权利要求1~12中任一项所述的聚合物电解质膜,其中所述揭、杂剂是至少二元的无机酸与有机化合物的反应产物,且其中所述反应产物含有未反应的酸基。15.根据权利要求114中任一项所述的聚合物电解质膜,该膜基本上是无水的。16.根据权利要求1~15中任一项所述的聚合物电解质膜,该膜在25。C温度的传导率为至少2.5S/m。17.权利要求1~16中任一项的用于燃料电池的聚合物电解质膜的制备方法,包括下列步骤(a)制备膜浇注溶液,所述膜浇注溶液至少包含溶剂、至少一种形成基质的碱性聚合物和含可电离基团的颗粒,(b)将所述膜浇注溶液浇注成膜的形式,及,(c)除去溶剂。18.根据权利要求17所述的方法,其中在进一步的步骤(d),将至少一种掺杂剂掺杂入步骤(c)之后的所述膜中。19.根据权利要求18所述的方法,其中步骤(d)中用于掺杂膜的掺杂剂选自磷酸、磷酸衍生物、膦酸、膦酸衍生物、硫酸、-危酸衍生物、磺酸、磺酸衍生物,或者其中两种或更多种的组合。20.根据权利要求19所述的方法,其中所述溶剂选自N-甲基吡咯烷酮(NMP)、二曱基甲酰胺(DMF)、二曱基亚砜(DMSO)、二曱基乙酰胺(DMAc)及其混合物。21.根据权利要求19或20所述的方法,其中通过加热浇注后的膜浇注溶液和/或通过应用真空而除去溶剂。22.权利要求116中任一项所限定的聚合物电解质膜或者根据权利要求1721中任一项的方法得到的聚合物电解质膜在燃料电池中的用途。全文摘要本发明涉及用于燃料电池的聚合物电解质膜及其制备和用途,特别是在高温燃料电池中的用途,所述聚合物电解质膜包括由至少一种碱性聚合物和一种或多种掺杂剂构成的聚合物基质,其中所述含可电离基团且平均粒径在纳米范围的颗粒包埋在聚合物基质中,并且含可电离基团的颗粒以小于50%聚合物基质重量的浓度均匀地分布于聚合物基质中。文档编号H01M8/10GK101675552SQ200880006115公开日2010年3月17日申请日期2008年3月6日优先权日2007年3月8日发明者乌尔里克·梅尔,奥利弗·格朗沃尔德,安妮特·赖歇,托斯滕·齐泽,托马斯·弗吕,沃纳·奥布雷科特,迪特尔·梅尔兹纳申请人:埃尔科马克斯薄膜有限责任公司;朗盛德国有限责任公司;莱茵化学莱茵瑙有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1