Mosfet的制造方法

文档序号:7246078阅读:234来源:国知局
Mosfet的制造方法
【专利摘要】公开了一种制造MOSFET的方法,包括:在半导体衬底中形成浅沟槽,该浅沟槽围绕有源区;经由浅沟槽对有源区的一个侧壁进行第一次离子注入,以在所述一个侧壁中形成第一重掺杂区;经由浅沟槽对有源区的相对的另一个侧壁进行第二次离子注入,以在所述一个侧壁中形成第二重掺杂区;采用绝缘材料填充浅沟槽,以形成用于限定MOSFET的有源区的浅沟槽隔离;在半导体衬底上形成栅叠层和绝缘层,该绝缘层作为围绕栅叠层的侧墙和覆盖栅叠层的帽盖;以浅沟槽隔离、第一重掺杂区、第二重掺杂区和绝缘层作为硬掩模在半导体衬底中形成开口;以开口的底面和侧壁为生长籽层,外延生长半导体层;以及对半导体层进行离子注入以形成源区和漏区。
【专利说明】MOSFET的制造方法
【技术领域】
[0001]本发明涉及半导体器件的制造方法,更具体地,涉及应力增强的MOSFET的制造方法。
【背景技术】
[0002]集成电路技术的一个重要发展方向是金属氧化物半导体场效应晶体管(MOSFET)的尺寸按比例缩小,以提高集成度和降低制造成本。然而,在MOSFET的尺寸减小时,半导体材料的性能(例如迁移率)以及MOSFET自身的器件性能(例如阈值电压)均可能变劣。
[0003]通过向MOSFET的沟道区施加合适的应力,可以提高载流子的迁移率,从而减小导通电阻并提高器件的开关速度。当形成的器件是η型MOSFET时,应当沿着沟道区的纵向方向对沟道区施加拉应力,并且沿着沟道区的横向方向对沟道区施加压应力,以提高作为载流子的电子的迁移率。相反,当晶体管是P型MOSFET时,应当沿着沟道区的纵向方向对沟道区压应力,并且沿着沟道区的横向方向对沟道区施加拉应力,以提高作为载流子的空穴的迁移率。
[0004]采用与半导体衬底的材料不同的半导体材料形成源区和漏区,可以产生期望的应力。对于η型M0SFET,在Si衬底上形成的S1: C源区和漏区可以作为应力源,沿着沟道区的纵向方向对沟道区施加拉应力。对于P型M0SFET,在Si衬底上形成的SiGe源区和漏区可以作为应力源,沿着沟道区的纵向方向对沟道区施加压应力。
[0005]图1-4示出根据现有技术的方法制造应力增强的MSOFET的各个阶段的半导体结构的示意图,其中在图la、2a、3a、4a中示出了半导体结构沿沟道区的纵向方向的截面图,在图3b、4b中示出了半导体结构沿沟道区的横向方向的截面图,在图lb、2b、3c、4c中示出了半导体结构的俯视图。在图中,线AA表示沿沟道区的纵向方向的截取位置,线BB表示沿沟道区的横向方向的截取位置。
[0006]该方法开始于图1a和Ib所示的半导体结构,其中,在半导体衬底101中形成浅沟槽隔离102以限定MOSFET的有源区,在半导体衬底101上形成由侧墙105包围的栅叠层,栅叠层包括栅极电介质103和栅极导体104。
[0007]以浅沟槽隔离102、栅极导体104和侧墙105作为硬掩模,蚀刻半导体衬底101,达到期望的深度,从而在半导体衬底101对应于源区和漏区的位置形成开口,如图2a和2b所
/Jn ο
[0008]在半导体衬底101的位于开口内的暴露表面上,外延生长半导体层106,以形成源区和漏区。半导体衬底101的位于栅极电介质103下方以及源区和漏区之间的一部分将作为沟道区。
[0009]半导体层106从半导体衬底101的表面开始生长,并且是选择性的。也即,半导体层106在半导体衬底101的不同晶面(crystalline surface)上的生长速率不同。在半导体衬底101由Si组成、以及半导体层106由Ge的原子百分比约为10-15%的SiGe组成的示例中,半导体层106在半导体衬底101的{I I 1}晶面上生长最慢。结果,所形成的半导体层106不仅包括与半导体衬底101的表面平行的(100)主表面,而且在与浅沟槽隔离102和侧墙105相邻的位置还包括{I I 1}刻面(facet),这称为半导体层106生长的边缘效应(edge effect),如图 3a、3b 和 3c 所不。
[0010]然而,半导体层106的小刻面是不期望的,因为这导致其自由表面的增加,使得半导体层106中的应力得以释放,从而减小对沟道区施加的应力。
[0011]进一步地,在半导体层106的表面进行硅化以形成金属硅化物层107,如图4a、4b和4c所不。该娃化消耗半导体层106的一部分半导体材料。由于半导体层106的小刻面的存在,硅化可以沿着小刻面进行,最终可能到达半导体衬底101。
[0012]然而,半导体衬底101中的硅化是不期望的,因为这可能在结区形成金属硅化物,导致结泄漏的增加。
[0013]因此,期望在应力增强的MOSFET抑制用于形成源区和漏区的半导体层的边缘效应。

【发明内容】

[0014]本发明的目的是提供一种提高沟道区应力和/或减小结泄漏的MOSFET的制造方法。
[0015]根据本发明,提供一种制造MOSFET的方法,包括:在半导体衬底中形成浅沟槽,该浅沟槽围绕有源区;经由浅沟槽对有源区的一个侧壁进行第一次离子注入,以在所述一个侧壁中形成第一重掺杂区;经由浅沟槽对有源区的相对的另一个侧壁进行第二次离子注入,以在所述一个侧壁中形成第二重掺杂区;采用绝缘材料填充浅沟槽,以形成用于限定MOSFET的有源区的浅沟槽隔离;在半导体衬底上形成栅叠层和绝缘层,该绝缘层作为围绕栅叠层的侧墙和覆盖栅叠层的帽盖;以浅沟槽隔离、第一重掺杂区、第二重掺杂区和绝缘层作为硬掩模在半导体衬底中形成开口 ;以开口的底面和侧壁为生长籽层,外延生长半导体层;以及对半导体层进行离子注入以形成源区和漏区。
[0016]该方法利用由半导体层形成的源区和漏区对半导体衬底中的沟道区施加应力。由于在外延生长时以开口的底面和侧壁为生长籽层,因此半导体层可以完全填充半导体衬底中的开口。半导体层的{I I 1}刻面仅仅位于其继续生长部分中,从而抑制了边缘效应的影响。
【专利附图】

【附图说明】
[0017]图1-4示出根据现有技术的方法制造应力增强的MSOFET的各个阶段的半导体结构的示意图,其中在图la、2a、3a、4a中示出了半导体结构沿沟道区的纵向方向的截面图,在图3b、4b中示出了半导体结构沿沟道区的横向方向的截面图,在图lb、2b、3c、4c中示出了半导体结构的俯视图。
[0018]图5-12示出根据本发明的方法的实施例制造应力增强的MSOFET的各个阶段的半导体结构的示意图,其中在图5-6、7a、8a、9-12中示出了半导体结构沿沟道区的纵向方向的截面图,在图7b、8b中示出了半导体结构的俯视图。
【具体实施方式】[0019]以下将参照附图更详细地描述本发明。在各个附图中,相同的元件采用类似的附图标记来表示。为了清楚起见,附图中的各个部分没有按比例绘制。
[0020]为了简明起见,可以在一幅图中描述经过数个步骤后获得的半导体结构。
[0021]应当理解,在描述器件的结构时,当将一层、一个区域称为位于另一层、另一个区域“上面”或“上方”时,可以指直接位于另一层、另一个区域上面,或者在其与另一层、另一个区域之间还包含其它的层或区域。并且,如果将器件翻转,该一层、一个区域将位于另一层、另一个区域“下面”或“下方”。
[0022]如果为了描述直接位于另一层、另一个区域上面的情形,本文将采用“直接在......上面”或“在......上面并与之邻接”的表述方式。
[0023]在本申请中,术语“半导体结构”指在制造半导体器件的各个步骤中形成的整个半导体结构的统称,包括已经形成的所有层或区域;术语“沟道区的纵向方向”指从源区到漏区和方向,或相反的方向;术语“沟道区的横向方向”在与半导体衬底的主表面平行的平面内与沟道区的纵向方向垂直的方向。例如,对于在U O 0}硅晶片上形成的M0SFET,沟道区的纵向方向通常沿着硅晶片的〈110〉方向,沟道区的横向方向通常沿着硅晶片的〈011〉方向。
[0024]在下文中描述了本发明的许多特定的细节,例如器件的结构、材料、尺寸、处理工艺和技术,以便更清楚地理解本发明。但正如本领域的技术人员能够理解的那样,可以不按照这些特定的细节来实现本发明。
[0025]除非在下文中特别指出,MOSFET的各个部分可以由本领域的技术人员公知的材料构成。半导体材料例如包括II1-V族半导体,如GaAs、InP、GaN、SiC,以及IV族半导体,如S1、Ge。栅极导体可以由能够导电的各种材料形成,例如金属层、掺杂多晶硅层、或包括金属层和掺杂多晶硅层的叠层栅极导体或者是其他导电材料,例如为TaC、TiN, TaTbN, TaErN,TaYbN, TaSiN, HfSiN, MoSiN, RuTax、NiTax, MoNx、TiSiN, TiCN, TaAlC, TiAlN, TaN、PtSix、Ni3S1、Pt、Ru、Ir、Mo、HfRu> RuOx和所述各种导电材料的组合。栅极电介质可以由SiO2或介电常数大于SiO2的材料构成,例如包括氧化物、氮化物、氧氮化物、硅酸盐、铝酸盐、钛酸盐,其中,氧化物例如包括Si02、HfO2, ZrO2, A1203、TiO2, La2O3,氮化物例如包括Si3N4,硅酸盐例如包括HfSiOx,铝酸盐例如包括LaAlO3,钛酸盐例如包括SrTiO3,氧氮化物例如包括SiON0并且,栅极电介质不仅可以由本领域的技术人员公知的材料形成,也可以采用将来开发的用于栅极电介质的材料。
[0026]按照本发明的实施例,执行图5至12中所示的以下步骤以制造应力增强的MS0FET,在图中示出了不同阶段的半导体结构的截面图。如果必要,在图中还示出了俯视图,在俯视图中采用线AA表示沿沟道区的纵向方向的截取位置。
[0027]该方法开始于图5所示的半导体结构,在半导体衬底201上依次形成衬垫氧化物层202和衬垫氮化物层203。半导体衬底201例如由Si组成。衬垫氧化物层202例如由氧化硅组成,厚度约为2-5nm。衬垫氮化物层203例如由氮化硅组成,厚度约为10_50nm。正如已知的那样,衬垫氧化物层202可以减轻半导体衬底201和衬垫氮化物层203之间的应力。衬底氮化物层205在随后的蚀刻步骤中用作硬掩模。
[0028]用于形成上述各层的工艺是已知的。例如,通过热氧化形成衬垫氧化物层202。例如,通过化学气相沉积形成衬垫氮化物层203。[0029]然后,通过旋涂在衬垫氮化物层203上形成光致抗蚀剂层(未示出),并通过其中包括曝光和显影的光刻工艺将光致抗蚀剂层形成浅沟槽隔离的图案。利用光致抗蚀剂层作为掩模,通过干法蚀刻,如离子铣蚀刻、等离子蚀刻、反应离子蚀刻、激光烧蚀,或者通过其中使用蚀刻剂溶液的湿法蚀刻,从上至下依次去除衬垫氮化物层203和衬垫氧化物层202的暴露部分。该蚀刻在半导体衬底201的表面停止,并且在衬垫氮化物层203和衬垫氧化物层202形成浅沟槽隔离的图案。通过在溶剂中溶解或灰化去除光致抗蚀剂层。
[0030]利用衬垫氮化物层203和衬垫氧化物层202 —起作为硬掩模,通过已知的干法蚀刻或湿法蚀刻,蚀刻半导体衬底201达期望的深度,从而在半导体衬底201中形成浅沟槽,如图6所示。正如本领域的技术人员可以理解的那样,该浅沟槽围绕MOSFET的有源区。[0031 ] 然后,通过旋涂在衬垫氮化物层203上形成光致抗蚀剂层PRl,并通过光刻工艺将光致抗蚀剂层PRl形成图案,从而在将要形成的沟道区的纵向方向上经由浅沟槽暴露有源区的一个侧壁。以光致抗蚀剂层PRl作为掩模,经由浅沟槽对有源区的暴露的一个侧壁进行第一次离子注入,以形成重掺杂区204-1,如图7a和7b所示。为了在有源区的暴露的一个侧壁(图中的左侧的侧壁)上形成重掺杂区204-1,第一次离子注入相对于垂直方向倾斜预定的角度。在一个示例中,第一次离子注入的掺杂剂例如是BF2或B,注入能量小于IkeV,注入剂量大于5X1014cm_2,使得重掺杂区204-1的峰值掺杂水平大于7X 1019cm_3。然后,通过在溶剂中溶解或灰化去除光致抗蚀剂层PRl。
[0032]然后,通过旋涂在衬垫氮化物层203上形成光致抗蚀剂层PR2,并通过光刻工艺将光致抗蚀剂层PR2形成图案,从而在将要形成的沟道区的纵向方向上经由浅沟槽暴露有源区的另一个侧壁。以光致抗蚀剂层PR2作为掩模,经由浅沟槽对有源区的暴露的另一个侧壁进行第二次离子注入,以形成重掺杂区204-2,如图8a和Sb所示。为了在有源区的暴露的另一个侧壁(图中的右侧的侧壁)上形成重掺杂区204-2,第二次离子注入相对于垂直方向倾斜预定的角度。第二次离子注入的工艺条件与第一次离子注入相同。然后,通过在溶剂中溶解或灰化去除光致抗蚀剂层PR2。
[0033]然后,通过已知的沉积工艺,在半导体结构的表面上形成绝缘材料层(未示出)。该绝缘材料层填充浅沟槽。通过化学机械抛光(CMP)去除绝缘材料层位于浅沟槽外部的部分,并且进一步去除衬垫氮化物层203和衬垫氧化物层202。绝缘材料层留在浅沟槽内的部分形成浅沟槽隔离205,如图9所示。正如本领域的技术人员可以理解的那样,浅沟槽隔离205限定MOSFET的有源区。
[0034]然后,通过已知的沉积工艺,在半导体结构的表面上依次形成电介质层以及多晶硅层,对其进行图案化,从而形成包括栅极电介质206和栅极导体207的栅极叠层。接着,通过上述已知的工艺,在半导体结构的整个表面上沉积例如10-50纳米的氮化物层208,然后通过各向异性蚀刻形成包围栅叠层的侧墙和帽盖,如图10所示。
[0035]然后,以浅沟槽隔离205、重掺杂区204-1和204_2、氮化物层208作为硬掩模,蚀刻半导体衬底201,达到期望的浓度,从而在半导体衬底201对应于源区和漏区的位置形成开口,如图11所示。该蚀刻是各向异性或各向性的,然而,由于蚀刻的选择性,重掺杂区204-1和204-2基本上未受到蚀刻。例如,在该蚀刻中采用的蚀刻剂可以是四甲基氢氧化铵(Tetramethylammonium hydroxide,缩写为 TMAH)或氢氧化钾(KOH)等溶液。
[0036]然后,在半导体衬底201的开口内,外延生长半导体层209。需要注意的是,这个开口并不一定如图11所示,例如该开口位于栅极叠层以及侧墙和帽盖208的两侧的侧壁可能是湿法腐蚀形成的“Σ”型侧壁,侧壁晶面指数为{I I I}。半导体层209从半导体衬底201的开口的底面和侧壁开始生长,并且是选择性的。也即,半导体层209在半导体衬底201的不同晶面上的生长速率不同。在半导体衬底201由Si组成、以及半导体层209由SiGe组成的P型MOSFET的示例中,半导体层209在半导体衬底201的{I I 1}晶面上生长最慢。然而,与现有技术不同,半导体衬底201中的开口的底面和侧壁均由半导体材料组成。重掺杂区204-1和204-2作为开口的侧壁的一部分,虽然在蚀刻步骤中相对于半导体衬底201表现出选择性,但在外延生长半导体层209时晶体学特性与半导体衬底201相似,因而也作为生长籽层。结果,半导体层209可以完全填充半导体衬底201的开口。
[0037]在完全填充该开口之后,半导体层209失去开口侧壁的生长籽层,并继续自由外延生长。结果,半导体层209的继续生长部分不仅包括与半导体衬底201的表面平行的(100)主表面,而且在与氮化物层208和侧墙208相邻的位置还包括{I I 1}刻面,如图12所示。
[0038]半导体层209的{I I 1}刻面仅仅位于其继续生长部分中。半导体层209的位于半导体衬底201的开口内的部分具有受约束的底面和侧壁。因此,半导体层209的刻面并未不利地影响对沟道区施加的应力。
[0039]尽管未示出,在图5-12所示的步骤之后,按照常规的工艺对半导体层209进行离子注入,然后例如在约1000-1080°C的温度下执行尖峰退火(spike anneal),以激活通过先前的注入步骤而注入的掺杂剂并消除注入导致的损伤,从而形成源区和漏区。半导体衬底的位于栅极电介质206下方以及源区和漏区之间的一部分作为沟道区。
[0040]优选地,在半导体层209的表面进行硅化以形成金属硅化物层,以减小源区和漏区的接触电阻。
[0041]该硅化的工艺是已知的。例如,首先沉积厚度约为5_12nm的Ni层,然后在300-500°C的温度下热处理1-10秒钟,使得半导体层209的表面部分形成NiSi,最后利用湿法蚀刻去除未反应的Ni。
[0042]该硅化消耗半导体层209的一部分半导体材料。由于半导体层209的小刻面的存在,硅化可以沿着小刻面进行。由于半导体层209完全填充半导体衬底201的开口,硅化并未到达半导体衬底201。
[0043]在图12所示的步骤之后,在所得到的半导体结构上形成层间绝缘层、位于层间绝缘层中的通孔、位于层间绝缘层上表面的布线或电极,从而完成MOSFET的其他部分。
[0044]尽管在上述实施例中描述了应力增强的P型MOSFET及其中使用的应力源的材料,但本发明同样适应于应力增强的η型M0SFET。在η型MOSFET中,半导体衬底201例如由Si组成,半导体层209例如由S1: C组成,用于形成源区和漏区,并且作为沿着沟道区的纵向方向对沟道区施加拉应力的应力源。除了应力源的材料不同之外,可以采用与上述方法类似的方法制造应力增强的η型M0SFET。
[0045]以上描述只是为了示例说明和描述本发明,而非意图穷举和限制本发明。因此,本发明不局限于所描述的实施例。对于本领域的技术人员明显可知的变型或更改,均在本发明的保护范围之内。
【权利要求】
1.一种制造MOSFET的方法,包括: 在半导体衬底中形成浅沟槽,该浅沟槽围绕有源区; 经由浅沟槽对有源区的一个侧壁进行第一次离子注入,以在所述一个侧壁中形成第一重掺杂区; 经由浅沟槽对有源区的相对的另一个侧壁进行第二次离子注入,以在所述一个侧壁中形成第二重掺杂区; 采用绝缘材料填充浅沟槽,以形成用于限定MOSFET的有源区的浅沟槽隔离; 在半导体衬底上形成栅叠层和绝缘层,该绝缘层作为围绕栅叠层的侧墙和覆盖栅叠层的帽盖; 以浅沟槽隔离、第一重掺杂区、第二重掺杂区和绝缘层作为硬掩模在半导体衬底中形成开口 ; 以开口的底面和侧壁为生长籽层,外延生长半导体层;以及 对半导体层进行离子注入以形成源区和漏区。
2.根据权利要求1所述的方法,其中形成浅沟槽的步骤包括: 在半导体衬底上形成包括浅沟槽隔离的图案的第一硬掩模;以及 蚀刻半导体衬底以形成浅沟槽。
3.根据权利要求2所述的方法,其中所述第一硬掩模包括位于半导体衬底上的衬垫氧化物层和位于衬垫氧化物层上的衬垫氮化物层。
4.根据权利要求1所`述的方法,其中第一次离子注入包括: 形成第一光致抗蚀剂掩模,该第一光致抗蚀剂掩模遮挡有源区的所述另一个侧壁,并暴露有源区的所述一个侧壁; 经由浅沟槽隔离对有源区的暴露的所述一个侧壁进行第一次离子注入;以及 去除第一光致抗蚀剂掩模。
5.根据权利要求1所述的方法,其中第二次离子注入包括: 形成第二光致抗蚀剂掩模,该第二光致抗蚀剂掩模遮挡有源区的所述一个侧壁,并暴露有源区的所述另一个侧壁; 经由浅沟槽隔离对有源区的暴露的所述另一个侧壁进行第二次离子注入;以及 去除第二光致抗蚀剂掩模。
6.根据权利要求1所述的方法,其中第一次离子注入和第二次离子注入的掺杂剂是选自BF2和B中的至少一种。
7.根据权利要求1所述的方法,其中第一次离子注入和第二次离子注入相对于垂直方向倾斜预定的角度。
8.根据权利要求1所述的方法,其中所述MOSFET为P型M0SFET。
9.根据权利要求8所述的方法,其中所述半导体衬底由Si组成,所述半导体层由SiGe组成。
10.根据权利要求1所述的方法,其中所述MOSFET为η型M0SFET。
11.根据权利要求10所述的方法,其中所述半导体衬底由Si组成,所述半导体层由S1:C组成。
12.根据权利要求1所述的方法,其中在形成源区和漏区之后中,还包括:执行硅化以在 源区和漏区的表面形成金属硅化物。
【文档编号】H01L21/336GK103779222SQ201210407135
【公开日】2014年5月7日 申请日期:2012年10月23日 优先权日:2012年10月23日
【发明者】尹海洲, 朱慧珑 申请人:中国科学院微电子研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1