氮化物系场效应晶体管及其制造方法

文档序号:7055250阅读:149来源:国知局
氮化物系场效应晶体管及其制造方法
【专利摘要】本发明公开一种氮化物系场效应晶体管及其制造方法。所述氮化物系场效应晶体管包括:源极;第一导电型的第一开关半导体层,形成于所述源极的下部;第二导电型的第二开关半导体层,形成于所述第一开关半导体层下部;所述第一导电型的第三开关半导体层,以包裹所述第二开关半导体层的下部以及所述第一开关半导体层和第二开关半导体层的侧面的形态形成;栅芯,在所述第一开关半导体层和第二开关半导体层的侧部形成为侧面具有用于形成沟道的垂直面或倾斜面;栅极绝缘膜,形成于所述栅极下表面;漏极,根据经由所述沟道的垂直方向的电荷流动而与所述源极电耦合。
【专利说明】氮化物系场效应晶体管及其制造方法

【技术领域】
[0001]本发明涉及一种高耐压性的具有大电流密度的氮化物系晶体管元件,尤其涉及一种基于横向外延过生长法(epitaxial lateral overgrowth:EL0)并具有常关(normallyoff)特性的氮化物系垂直型场效应晶体管(heterojunct1n field-effect transistor:HFET)元件。

【背景技术】
[0002]在功率放大电路、电源电路、马达驱动电路等中应用硅半导体的功率设备得到应用。然而由于硅半导体的局限性,硅设备的高耐压化、低电阻化以及高速化达到限度,并使适应市场需求变得困难。因此,具有高耐压、高温操作、大电流密度、高速切换以及低导通电阻之类的特性的II1-V系设备的开发正在得到研究。
[0003]然而,所提出的II1-V系设备是由沿着基板表面排列源极、栅极和漏极的水平型结构所构成,因此不适于需要大电流的功率设备。而且,存在不容易实现功率设备所必需的常关操作的问题。并且,存在当高电压操作时电子被俘获于半导体与保护膜之间而导致漏极电流减小的所谓电流崩塌(current collapse)现象出现的问题。而且,水平型结构的II1-V系设备、尤其是GaN设备其耐压也是不足而使用为600V以下的高速响应用途。
[0004]作为具有高耐压性以及大电流密度的场效应晶体管,CAVET(Current ApertureVertical Electron Transistor:电流孔径垂直电子晶体管)作为一种生长于GaN基板的垂直型(vertical type)场效应晶体管,还可以通过在栅极部分应用2DEG(二维电子气)和CBL (Current Blocking Layer:电流阻断层)而提高性能。然而,所述CAVET在常开设备这一点上在实用性方面存在局限性。
[0005]另外,在制作氮化镓系晶体管时,如果使用GaN基板则存在高成本引起的缺点,而如果使用蓝宝石基板,则穿透位错(Threading Dislocat1n:TD)的发生量较多而存在击穿电压(Breakdown Voltage:BV)较低的缺点。


【发明内容】

[0006]本发明的目的在于提供一种具有高耐压、大电流密度、常关特性的垂直型的氮化物系场效应晶体管。
[0007]而且,本发明的目的在于提供一种能够用低廉的成本制作的常关特性的氮化物系场效应晶体管。
[0008]根据本发明的一个方面的氮化物系场效应晶体管,包括:源极;第一导电型的第一开关半导体层,形成于所述源极的下部;第二导电型的第二开关半导体层,形成于所述第一开关半导体层下部;所述第一导电型的第三开关半导体层,以包裹所述第二开关半导体层的下部以及所述第一开关半导体层和第二开关半导体层的侧面的形态形成;栅芯,在所述第一开关半导体层和第二开关半导体层的侧部形成为侧面具有用于形成沟道的垂直面或倾斜面;栅极绝缘膜,形成于所述栅芯下表面;漏极,根据经由所述沟道的垂直方向的电荷流动而与所述源极电耦合。
[0009]其中,在所述栅极上没有施加电压的状态下,由于所述第二开关半导体层而可以在包裹所述第一开关半导体层和第二开关半导体层的侧面的所述第三开关半导体层区域中形成耗尽层。
[0010]在此,在所述第二开关半导体层与第三开关半导体层之间还可以包括掺杂有碳或铁的氮化镓的附加开关半导体层。
[0011]其中,所述第二开关半导体层的一部分边界可具有到达所述第三开关半导体层的边界的形态。
[0012]在此,所述第一开关半导体层可具有能够使所述第二开关半导体层横向外延过生长的种子层的形态。
[0013]其中,所述第三开关半导体层的下方可设置本征氮化镓半导体层和所述漏极,且所述漏极可直接或者通过媒介层而间接地贴附于导热性基板。
[0014]根据本发明的另一侧面的氮化物系场效应晶体管的制造方法,可包括如下步骤:在蓝宝石基板上形成第一导电型的氮化镓半导体层;蚀刻所述第一导电型的氮化镓半导体层而形成开关半导体层;将所述第一导电型的氮化镓半导体层作为种子层而执行横向外延过生长,从而形成第二导电型的氮化镓半导体层;蚀刻将要形成栅极的区域的所述第二导电型的氮化镓半导体层和第一导电型的氮化镓半导体层;在蚀刻的表面上形成本征氮化镓半导体层;在所述本征氮化镓半导体层上形成高浓度氮化镓半导体层;扩大蚀刻空间,该蚀刻空间是没有被在蚀刻的表面上形成本征氮化镓半导体层的步骤中形成的本征氮化镓半导体所填充而剩余的空间;在所述高浓度氮化镓半导体层上形成漏极;在所述漏极上贴附导热性基板;除去所述蓝宝石基板;在除去所述蓝宝石基板的表面上形成绝缘膜;在所述绝缘膜上形成栅极;蚀刻将要形成源极的区域的所述绝缘膜;形成源极。
[0015]其中,在除去所述蓝宝石基板的步骤中利用剥离工艺,并在除去所述蓝宝石基板的步骤以后,且在除去所述蓝宝石基板的表面上形成绝缘膜的步骤之前,还可以包括用于除去剥离工艺中的损伤的表面的蚀刻步骤。
[0016]在此,在除去所述蓝宝石基板的步骤以后,在除去所述蓝宝石基板的表面上形成绝缘膜的步骤之前,还可以包括形成护环的步骤或者执行退火的步骤。
[0017]其中,在扩大剩余的所述蚀刻空间的步骤中,可执行使蚀刻液向没有被所述本征氮化镓半导体进行填充而剩余的空间渗透的方式的蚀刻。
[0018]在此,在所述漏极上贴附导热性基板的步骤可包括如下步骤:在所述漏极上形成媒介层;在所述媒介层上贴附导热性基板。
[0019]如果实施根据上述构成的本发明的氮化物系场效应晶体管,则存在具有高耐压、大电流密度、常关特性的优点。
[0020]而且,本发明具有可实现能够用低廉的成本制作的常关特性的垂直型氮化物系场效应晶体管的优点。

【专利附图】

【附图说明】
[0021]图1为表示根据本发明的一个实施例的氮化物系场效应晶体管的结构的剖面图。
[0022]图2为用于说明图1的氮化物系场效应晶体管的常关特性的剖面图。
[0023]图3为表不多少可以提闻阈值电压Vth的另一实施例的氣化物系场效应晶体管的剖面图。
[0024]图4为表示可减小泄漏电流(leakage current)的另一实施例的氮化物系场效应晶体管的剖面图。
[0025]图5至图19b为表示制造图1的氮化物系场效应晶体管的过程的工艺图。
[0026]符号说明
[0027]20:漏极层30:高浓度η型氮化镓半导体层
[0028]35:本征氮化镓半导体层 40:第一开关半导体层
[0029]50:第二开关半导体层 60:第三开关半导体层
[0030]72:源极74:栅极绝缘膜
[0031]75:栅芯76:栅极

【具体实施方式】
[0032]以下,参照【专利附图】
附图
【附图说明】本发明的实施例。下面介绍的实施例是为了能够将本发明的思想充分地传递给本发明所属【技术领域】的普通技术人员而作为示例提供的。因此,本发明并不局限于以下说明的实施例而也可以被具体化为其他形态。另外在附图中,构成要素的宽度、长度、厚度等也可能为了方便而被夸张地表现。并且,对于记载为一个构成要素位于其他构成要素“上部”或者“上”的情形,不仅包括各个部分位于其他部分的“紧邻的上部”或“紧邻的其上”的情形,而且还包括各个构成要素与其他构成要素之间还有另外的构成要素的情形。在整个说明书中相同的附图标记表示相同的构成要素。
[0033]在对以下实施例的说明中,氮化镓系半导体这一表述并不特别局限于GaN,也可以是AlGaN或InGaN之类的三组分系氮化物系半导体、AlInGaN之类的四组分系氮化物系半导体。
[0034]在对以下实施例的说明中,具体化为第一导电性为η型而第二导电性为P型而进行说明,然而相反的情形当然也可以。
[0035]图1表示根据本发明的一个实施例的氮化物系场效应晶体管的结构。在附图及以下说明中公开的数值只是提供一例,并不局限于此。
[0036]图示的氮化物系场效应晶体管可包括:漏极层20 ;高浓度η型氮化镓半导体层30,位于所述漏极层20上;本征氮化镓半导体层35,位于所述高浓度η型氮化镓半导体层上;第一至第三开关半导体层40、50、60,以填充形成于所述本征氮化镓半导体层上部的沟槽的形状配置;在两个所述第三开关半导体层60之间以V字形状配置的栅芯(Gatecore) 75及其下面的栅极绝缘膜74 ;栅极76,位于所述栅芯上;源极72,配置于两个所述栅极76之间并配置于所述第一开关半导体层40上,其中,所述漏极层(或漏极)根据经由氮化物系场效应晶体管中所形成的沟道的垂直方向的电荷流动而与所述源极电耦合。
[0037]为了有利于热释放,所述漏极层20在垂直型场效应晶体管结构中形成于下方,然而在旨在减小元件厚度的其他情况下,也能够以连接于所述高浓度η型氮化镓半导体层或者与之相接的另外的导电层的形态设置于侧面。
[0038]为了有利于热释放,所述漏极层20可以由包含T1、Al、Au中的一种以上的材料等金属材料形成,然而在热释放并不重要的用途下也可以由导电性半导体或有机物形成。
[0039]所述高浓度η型氮化镓半导体层30可作为缓冲层或阻断层而发挥功能,并可通过蒸镀掺杂为高浓度η型的氮化镓的方式形成,且大约具有0.1um?0.5um的厚度,并优选具有约为0.3um的厚度。
[0040]所述本征氮化镓半导体层35可以由横向外延过生长(ELO:epitaxial lateralovergrowth)的本征氮化镓形成,整体大约具有7.0um?20.0um的厚度,并优选具有约为11.0um的厚度。对于所述本征氮化镓半导体层35而言,所述第二开关半导体层50与第三开关半导体层60的边界面的上部区域大部分被除去而只剩一部分,而所述边界面的下部区域大部分被残留,因此如果看直到所述边界面为止的厚度,则大约具有5.0um?12.0um的厚度,并优选具有约为8.0um的厚度。
[0041]所述第一至第三开关半导体层40、50、60具有本征(u型)或n_型的第三开关半导体层60、P型的第二开关半导体层50、以及η+型的第一开关半导体层40朝上方层叠的形状。在此,所述第一开关半导体层40与第二开关半导体层50具有彼此相同的侧面边界,而所述第三开关半导体层60形成为包裹所述第一开关半导体层40和第二开关半导体层50的形状,其形成为宽度随着趋于下方而先变宽再变窄的类似于坛子的形状。这是为了在栅极上没有施加电压时引发所述第二开关半导体层50的载流子向包裹该第二开关半导体层50的所述第三开关半导体层60扩散,从而在所述第三开关半导体层60中形成耗尽层。
[0042]本实施例的场效应晶体管为可利用剥离工艺而以与图示相反的顺序进行N面生长层叠而制造,在此情况下,所述第一开关半导体层40可被利用为通过ELO工艺形成所述第二开关半导体层50时的种子层。在通过这样的工艺形成的情况下,位于一个源极下方的所述第一开关半导体层40以物理方式分离为两个以上,且分离的空间呈现由所述第二开关半导体层50填充的形状。
[0043]所述栅芯75是以具有倾斜面的楔子形状(即,V字形状)形成于所述第一开关半导体层40和第二开关半导体层50的侧部,以使当所述栅极76上施加导通电压时在所述第一至第三开关半导体层40、50、60的作用下能够形成基于η-ρ-η结的沟道,然而在其他实施方式中也能够以垂直形状形成。楔子形状(即,V字形状)的栅芯75具有易于调节关断耗尽层(turn off Deplet1n layer)和导通沟道(turn-on channel)的形成的优点,而垂直形状的栅芯具有易于制造的优点。
[0044]所述源极72与栅极76形成于相互交替的位置,且可以由金属或导电膜等导电性材料形成。根据实施方式,可以形成保护层80以覆盖其上部,该保护层80用于保护所述源极72和栅极76,并支持与向外部引出的线之间的连接的维持和绝缘。例如,可形成AlN或SiN材料的保护层80。
[0045]所述漏极层20的下部可形成:导热性基板16,用于热释放和机械性支撑;媒介层18,对所述漏极层20与导热性基板16的层叠结构起中介作用。
[0046]所述媒介层18可以由工艺亲和性及热/电传导性高的贵金属系列的材料形成。例如可以由纳米银(nano Ag)或者AuSn、NiSn、Au、Ag、Al等材料形成。图中虽然是以设置有媒介层的情形为例进行了图示,然而本发明并不局限于此,所述漏极层20可以不借助于媒介层18而直接地贴附于导热性基板16。
[0047]所述导热性基板16可以由铜基板等热传导性和机械特性优良的材料形成。
[0048]图2是用于说明如果不向氮化物系场效应晶体管的栅极76施加任何电位便维持关断(off)状态的常关特性的图。
[0049]如果不向栅极76施加电位,则第二开关半导体层50的电荷载流子向包裹第二开关半导体层50的第三开关半导体层60扩散,从而在第二开关半导体层50与第三开关半导体层60的边界区域形成预定厚度的载流子耗尽层DR。所述耗尽层DR将会阻断沿着所述栅芯的边界朝下方流动的电流,由此具备源极72-漏极层20之间的电流被阻断的关断(off)状态。
[0050]图2中以“176”、“174”、“172”标记的构成要素与图1中以“76”、“74”、“72”标记的构成要素类似。
[0051]图3表不多少可以提闻阈值电压Vth的另一实施例的氣化物系场效应晶体管。
[0052]图示的场效应晶体管与图1所示的相比大部分构成要素类似,然而在第一开关半导体层140、第二开关半导体层150、第三开关半导体层160的结构和栅芯175的结构上存在差异。
[0053]由图可知,与图1的情形相比,所述第二开关半导体层150的厚度变得更厚,其结果所述第二开关半导体层150的一部分边界(图中为下方边角部分的边界)到达所述第三开关半导体层的边界。图示的栅芯也与图1的情形相比形成得更为向下深陷,以使变厚的第二开关半导体层150上能够施加上足够的正向pn结电位。
[0054]正如所探讨的那样,借助于比图1的情形变得更厚的所述第二开关半导体层150,图2的场效应晶体管将会具有更强的常关特性和/或更高的阈值电压Vth。
[0055]另外,如果栅极与源极之间施加上正向pn结电位,则在深陷而形成的栅芯的作用下电荷载流子通过第二开关半导体层150与第三开关半导体层160的侧壁边界面而相互移动,从而将会确保电荷流动的通道。
[0056]图3中以“275”、“276”、“274”、“272”、“240”标记的构成要素与图1中以“75”、“ 76 ”、“ 74 ”、“ 72 ”、“ 40 ”标记的构成要素类似。
[0057]图4表示可减少泄漏电流(leakage current)的另一实施例的氮化物系场效应晶体管。
[0058]图示的场效应晶体管与图1所示的相比大部分构成要素类似,然而在第二开关半导体层250与第三开关半导体层260之间还具有附加开关半导体层256的方面存在差异。所述附加开关半导体层256可以由GaN:C(掺碳氮化镓)、GaN:Fe (掺铁氮化镓)等材料形成,其可以有效地抑制在关断(off)状态下由反电动势引起的源极与漏极之间的电流泄漏。
[0059]图示的栅芯也可以与图1的情形相比形成得更为向下深陷,以使在附加开关半导体层256存在的状态下能够施加足够的正向pn结电位。
[0060]图5至图19b表示制造图1的氮化物系场效应晶体管的过程。
[0061]首先,如图5所示,在蓝宝石基板I上形成η+型氮化镓半导体层40-1。形成的所述η+型氮化镓半导体层40-1可形成为小于0.7um的厚度。
[0062]然后,如图6所示,蚀刻层叠的所述η+型氮化镓半导体层40-1,从而形成将要位于栅极下部的η+型氮化镓半导体层40-3以及将要位于源极下部的η+型氮化镓半导体层40-2。此时,作为蚀刻方法可利用干式蚀刻和/或湿式蚀刻。例如,可作为一次工序执行干式蚀刻,然后再执行利用磷酸、硫酸、硝酸、盐酸等的蚀刻。
[0063]例如,将要位于所述栅极下部的η+型氮化镓半导体层40-3的宽度可形成为9um,将要位于所述源极下部的η+型氮化镓半导体层40-2的宽度以及相邻半导体层之间的跨度可形成为3um。
[0064]然后,如图7所示,把将要位于所述栅极下部的η+型氮化镓半导体层40-3以及将要位于源极下部的η+型氮化镓半导体层40-2作为种子层而通过横向外延过生长(Epitaxial Lateral Overgrowth)形成p型氮化镓半导体层50-1。例如,所述P型氮化镓半导体层50-1可将Mg作为杂质物,且杂质浓度(Mg浓度)可以是1.Sx1lVcm3MSx119/cm3左右。如图所示,将要位于所述栅极下部的η+型氮化镓半导体层40-3以及将要位于源极下部的η+型氮化镓半导体层40-2呈现格栅形状,这是为了作为用于横向外延过生长(ELO)的种子层而扩大分布程度。
[0065]然后,如图8所示,在P型氮化镓半导体层50-1上部涂布用于栅极区域分离(gateisolat1n)的光致抗蚀剂59,并执行光刻。
[0066]然后,如图9a所示,执行对通过所述光刻而形成的作为蚀刻空间的缝隙(例如可具有约为3um的宽度)的蚀刻。所述蚀刻可以是图示的箭头AR方向的干式蚀刻,据此,蚀刻到将要位于所述栅极下部的η+型氮化镓半导体层40-3的中心区域,且其下方的蓝宝石基板I的一部分也成为被蚀刻的状态。图%为从上方俯视图9a的层叠结构的平面图。从图9b中可知形成沿着将要位于栅极下部的η+型氮化镓半导体层的中心部以直线型蚀刻的区域。
[0067]然后,如图10所示,除去所述光致抗蚀剂59,并层叠本征氮化镓半导体层35-1,并在其上又层叠η+型氮化镓半导体层30。在所述本征氮化镓半导体层35-1的层叠工序中,通过所述图9a的蚀刻工序形成的缝隙被层叠的本征氮化镓半导体所填充,一直填充到将要位于所述栅极下部的η+型氮化镓半导体层40-3上形成的缝隙,然而形成于材料特性不同的蓝宝石基板I上的缝隙却不被填充而得以维持。
[0068]然后,如图11所示,可执行使蚀刻液通过毛细管现象而流向所述图10的结构中维持的缝隙的方式的蚀刻工序ΕΗ,即,执行使蚀刻液渗透到未被本征氮化镓半导体填充而剩余的空间的方式的蚀刻。在所述蚀刻工序中可利用磷酸(H2PO4)、氢氧化钾(KOH)等较强的无机酸或无机碱。根据所述蚀刻工序,曾在图10的结构中存在于蓝宝石基板I的缝隙扩大,从而使所述本征氮化镓半导体层35-1以及将要位于所述栅极下部的η+型氮化镓半导体层40-3的一部分被除去。
[0069]然后,如图12所示,在η+型氮化镓半导体层30的上部层叠漏极层20,并又在其上层叠媒介层18,并在所述媒介层18上贴附导热性基板16。
[0070]所述媒介层18可以由工艺亲和性以及热/电传导性高的贵金属系列的材料形成,例如可以由纳米银(nano Ag)或者AuSn、NiSn、Au、Ag、Al等材料形成,且所述导热性基板16可以是铜基板等热传导性和机械特性优良并适于工序处理的材料的基板。
[0071]然后,如图13所示,以剥离方式除去蓝宝石基板,且为了除去剥离工序中损伤的表面,可如图14所示地执行干式蚀刻。例如,所述干式蚀刻可以以0.15?0.3um的范围执行。
[0072]然后,如图15所示,涂布用于形成保护环(guard ring)的光致抗蚀剂49,并形成保护环(未图示)。由于保护环形成过程为本领域中公知的技术,故省略详细说明。
[0073]然后,如图16所示,除去所述光致抗蚀剂49,并执行退火(annealing)。例如可在600摄氏度下执行20分钟的退火。
[0074]然后,在所述图16的层叠体上部表面形成Si02绝缘膜74,并如图17所示地涂布光致抗蚀剂79并通过光刻除去将要形成栅极的区域的绝缘膜74,并形成栅极层76、76-1。作为所述栅极层76、76-1例如可以蒸镀而形成Ni/Au,然而并不局限于此,可以采用金属、多晶硅等多种多样的导电性材料并通过蒸镀等多种多样的工艺而形成。根据图示的工艺,本实施例的场效应晶体管可具有:作为V字形状的Si02绝缘膜的栅极绝缘膜74、填充所述栅极绝缘膜74的V字形状的上部区域的形状的栅芯75、以及在所述栅芯75上部以与之相同的材料形成的栅极76。所述栅芯75的形状使本实施例的场效应晶体管具备拥有形成沟道的倾斜面的栅极。
[0075]然后,除去剩余的所述栅极层76-1和光致抗蚀剂79,并如图18a所示地涂布光致抗蚀剂79-1并通过光刻除去将要形成源极的区域的绝缘膜74,并形成源极层72、72-1。作为所述源极层72、72-1例如可蒸镀而形成Ni/Au,然而并不局限于此,可采用金属、多晶硅等多种多样的导电性材料并通过蒸镀等多种多样的工艺而形成。
[0076]经过前述的图17和图18a的工序之后,从上面俯视除去了留下来的源极层72-1以及光致抗蚀剂79-1的状态的层叠体的平面图如图18b。如图所示,单位晶体管元件形成有三个栅极76和源极72。虽然图18b的平面图在栅极和源极的个数上与图1的情形有差异,然而这只不过是几乎可以认为相同的微不足道的变更事项。
[0077]然后,如图19a所示,涂布光致抗蚀剂79-2并通过光刻形成接触孔CH,并对所述接触孔CH实施蚀刻及蒸镀等工艺而形成接触垫。图19b表示形成有用于源极和栅极的外部引出用接触垫92、96以及接触孔填充结构91、95的状态的平面。由于接触孔CH和接触垫92,96的形成为本领域中公知的技术,故省略详细说明。
[0078]另外,图示的工艺中没有包括形成图1所示的作为本征GaN(UGaN)的第三开关半导体层60的过程,这是因为图1所示的第三开关半导体层60并非独立形成的层叠区域,而是一个从所述本征氮化镓半导体层35的整个区域中虚拟地区分的区域,以便于单独说明与所述第二开关半导体层50及第一开关半导体层40 —同执行作为η-ρ-η开关半导体层的功能的区域。
[0079]然而在其他实施方式中,也可以用所述的η-GaN等形成独立的第三开关半导体层。
[0080]需注意所述的实施例只是用于说明而并非用于限定。而且相信会理解只要是本发明的【技术领域】中的普通技术人员就能够在本发明的技术思想的范围内得出多种多样的实施例。
【权利要求】
1.一种氮化物系场效应晶体管,包括: 源极; 第一导电型的第一开关半导体层,形成于所述源极的下部; 第二导电型的第二开关半导体层,形成于所述第一开关半导体层下部; 所述第一导电型的第三开关半导体层,以包裹所述第二开关半导体层的下部以及所述第一开关半导体层和第二开关半导体层的侧面的形态形成; 栅芯,在所述第一开关半导体层和第二开关半导体层的侧部形成为侧面具有用于形成沟道的垂直面或倾斜面; 栅极绝缘膜,形成于所述栅芯下表面; 漏极,根据经由沟道的垂直方向的电荷流动而与所述源极电耦合。
2.如权利要求1所述的氮化物系场效应晶体管,其中,在所述栅极上没有施加电压的状态下,由于所述第二开关半导体层而在包裹所述第一开关半导体层和第二开关半导体层的侧面的所述第三开关半导体层区域中形成耗尽层。
3.如权利要求1所述的氮化物系场效应晶体管,其中,在所述第二开关半导体层与第三开关半导体层之间还包括掺杂有碳或铁的氮化镓的附加开关半导体层。
4.如权利要求1所述的氮化物系场效应晶体管,其中,所述第二开关半导体层的一部分边界具有到达所述第三开关半导体层的边界的形态。
5.如权利要求1所述的氮化物系场效应晶体管,其中,所述第一开关半导体层具有能够使所述第二开关半导体层横向外延过生长的种子层的形态。
6.如权利要求1所述的氮化物系场效应晶体管,其中,所述第三开关半导体层的下方设置有本征氮化镓半导体层和所述漏极,且所述漏极直接或者通过媒介层而间接地贴附于导热性基板。
7.一种氮化物系场效应晶体管的制造方法,包括如下步骤: 在蓝宝石基板上形成第一导电型的氮化镓半导体层; 蚀刻所述第一导电型的氮化镓半导体层而形成开关半导体层; 将所述第一导电型的氮化镓半导体层作为种子层而执行横向外延过生长,从而形成第二导电型的氮化镓半导体层; 蚀刻将要形成栅极的区域的所述第二导电型的氮化镓半导体层和第一导电型的氮化镓半导体层; 在蚀刻的表面上形成本征氮化镓半导体层; 在所述本征氮化镓半导体层上形成高浓度氮化镓半导体层; 扩大蚀刻空间,该蚀刻空间是没有被在蚀刻的表面上形成本征氮化镓半导体层的步骤中形成的本征氮化镓半导体所填充而剩余的空间; 在所述高浓度氮化镓半导体层上形成漏极; 在所述漏极上贴附导热性基板; 除去所述蓝宝石基板; 在除去所述蓝宝石基板的表面上形成绝缘膜; 在所述绝缘膜上形成栅极; 蚀刻将要形成源极的区域的所述绝缘膜; 形成源极。
8.如权利要求7所述的氮化物系场效应晶体管的制造方法,其中,在除去所述蓝宝石基板的步骤中利用剥离工艺, 在除去所述蓝宝石基板的步骤以后,且在除去所述蓝宝石基板的表面上形成绝缘膜的步骤之前,还包括用于除去剥离工艺中的损伤的表面的蚀刻步骤。
9.如权利要求7所述的氮化物系场效应晶体管的制造方法,其中,在除去所述蓝宝石基板的步骤以后,且在除去所述蓝宝石基板的表面上形成绝缘膜的步骤之前,还包括形成护环的步骤或者执行退火的步骤。
10.如权利要求7所述的氮化物系场效应晶体管的制造方法,其中,在扩大剩余的所述蚀刻空间的步骤中,执行使蚀刻液向没有被所述本征氮化镓半导体填充而剩余的空间渗透的方式的蚀刻。
11.如权利要求7所述的氮化物系场效应晶体管的制造方法,其中,在所述漏极上贴附导热性基板的步骤包括如下步骤: 在所述漏极上形成媒介层; 在所述媒介层上贴附导热性基板。
【文档编号】H01L29/06GK104347699SQ201410384611
【公开日】2015年2月11日 申请日期:2014年8月5日 优先权日:2013年8月5日
【发明者】竹谷元伸 申请人:首尔半导体株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1