半导体器件的制作方法

文档序号:14795198发布日期:2018-06-28 04:44阅读:127来源:国知局
半导体器件的制作方法

本实用新型涉及例如具有连接有导电性导线的电极焊盘的半导体器件。



背景技术:

半导体器件随着其小型化及低成本化的发展,半导体芯片的电极焊盘附近的构造也被期望实现小型化。另一方面,从半导体器件的多功能化出发,电极焊盘的数量有增加的趋势。

近年来,多使用将半导体芯片内的下层布线和电极焊盘经由连接柱(via)电连接的构造。

此外,在例如日本特开2002-16069号公报(专利文献1)及日本特开平11-126790号公报(专利文献2)中,公开了将半导体芯片的电极焊盘和下层布线经由连接柱电连接的构造。

现有技术文献

专利文献

专利文献1:日本特开2002-16069号公报

专利文献2:日本特开平11-126790号公报

如上述半导体器件那样,在将电极焊盘和下层布线经由连接柱电连接的构造中,为了降低连接柱部分的电阻,需要增大连接柱直径。另外,因溅射的被覆性的影响而在连接柱上的电极焊盘的表面上形成有凹部(层差、洼部)。当在形成有该凹部的电极焊盘的区域进行导线接合时,无法确保导线接合的连接强度,因此,作为该对策,考虑将连接柱使用引出布线而引出到规定电极焊盘的绝缘膜的开口部的外侧的位置来进行配置。

但是,该构造中,电极焊盘附近的面积增加,无法实现半导体芯片的小型化,其结果为,无法实现半导体器件的小型化。



技术实现要素:

本实用新型是鉴于上述问题而提出的,其目的在于提供一种能够实现半导体芯片的缩小化而实现半导体器件的小型化。

其它课题和新的特征将根据本说明书的记述及附图变得明了。

一实施方式的半导体器件具有:半导体芯片,其具有电极焊盘;以及导电性导线,其包括与上述电极焊盘电连接的导线连接部。而且,上述半导体芯片具有:下层布线,其形成于上述电极焊盘的下层;第一绝缘膜,其覆盖上述下层布线;导体连接部,其配置于上述下层布线上方,并且被埋入形成于上述第一绝缘膜的第一开口部,且与上述下层布线电连接;第二绝缘膜,其覆盖上述电极焊盘的一部分,且形成有规定上述电极焊盘的露出部的第二开口部。另外,上述电极焊盘和上述导体连接部形成为一体。另外,上述第二开口部具有沿着相邻的两个边中的一边的第一虚拟线与沿着另一边的第二虚拟线交叉的交点、位于与上述交点相距上述导线连接部的俯视时的半径的距离处的上述第一虚拟线上的第一点、以及位于与上述交点相距上述半径的距离处的上述第二虚拟线上的第二点。上述第二开口部还具有由连结上述交点与上述第一点的第一线段、连结上述交点与上述第二点的第二线段、以及连结上述第一点与上述第二点且朝向上述交点成为凸状的圆弧构成的第一区域。另外,上述导线连接部与上述电极焊盘的上述第二开口部中的与上述第一区域不同的第二区域连接,形成于上述导体连接部上的上述电极焊盘的表面的凹部的至少一部分俯视时与上述第一区域重叠。

另外,一实施方式的另一半导体器件具有:半导体芯片,其具有电极焊盘;以及导电性导线,其包括与上述电极焊盘电连接的导线连接部。而且,上述半导体芯片具有:下层布线,其形成于上述电极焊盘的下层;第一绝缘膜,其覆盖上述下层布线;导体连接部,其配置于上述下层布线上方,并且被埋入形成于上述第一绝缘膜的第一开口部,且与上述下层布线电连接;以及第二绝缘膜,其覆盖上述电极焊盘的一部分,且形成有规定上述电极焊盘的露出部的第二开口部。另外,上述电极焊盘和上述导体连接部形成为一体。另外,上述第二开口部具有形成角部的第一边及第二边、位于与上述角部相距上述导线连接部的俯视时的半径的距离处的上述第一边上的第一点、位于与上述角部相距上述半径的距离的上述第二边上的第二点。还具有由连结上述角部与上述第一点的第一线段、连结上述角部与上述第二点的第二线段、以及连结上述第一点与上述第二点且朝向上述角部成为凸状的圆弧构成的第一区域。进而,上述导线连接部与上述电极焊盘的上述第二开口部中的与上述第一区域不同的第二区域连接,形成于上述导体连接部上的上述电极焊盘的表面的凹部的至少一部分俯视时与上述第一区域重叠。

实用新型效果

根据上述一实施方式,能够实现半导体芯片的缩小化而实现半导体器件的小型化。

附图说明

图1是示出实施方式1的半导体器件的构造的一例的俯视图。

图2是示出沿着图1所示的A-A线切断的构造的剖视图。

图3是示出图1的半导体器件的要部的基本构造的一例的局部放大剖视图。

图4是示出图3所示的焊盘的基本构造的一例的俯视图。

图5是示出实施方式1中的焊盘构造的一例的局部放大剖视图。

图6是示出图5所示的焊盘构造的一例的俯视图。

图7是示出图5所示的焊盘构造的一例的俯视图。

图8是示出实施方式1的焊盘的开口部的构造的一例的俯视图。

图9是示出图8所示的焊盘构造的一例的立体图。

图10是示出图5的电极焊盘的制造方法的一部分的局部剖视图。

图11是示出图5的电极焊盘的制造方法的一部分的局部剖视图。

图12是示出图5的电极焊盘的制造方法的一部分的局部剖视图。

图13是示出图5的电极焊盘的制造方法的一部分的局部剖视图。

图14是示出图5的电极焊盘的制造方法的一部分的局部剖视图。

图15是示出图5的电极焊盘的制造方法的一部分的局部剖视图。

图16是示出图5的电极焊盘的制造方法的一部分的局部剖视图。

图17是示出图5的电极焊盘的制造方法的一部分的局部剖视图。

图18是示出图5的电极焊盘的制造方法的一部分的局部剖视图。

图19是示出图5的电极焊盘的制造方法的一部分的局部剖视图。

图20是示出图5的电极焊盘的制造方法的一部分的局部剖视图。

图21是示出图5的电极焊盘的制造方法的一部分的局部剖视图。

图22是示出图5的电极焊盘的制造方法的一部分的局部剖视图。

图23是示出图5的电极焊盘的制造方法的一部分的局部剖视图。

图24是示出实施方式2中的焊盘构造的一例的局部放大剖视图。

图25是示出图24所示的焊盘构造的一例的俯视图。

图26是示出变形例的焊盘构造的局部放大俯视图。

图27是示出比较例的焊盘构造的局部放大俯视图。

附图标记说明

1 QFP(半导体器件)

2a 内引线

2b 外引线

2c 下垫板(裸芯片焊盘)

3 封固体

4 半导体芯片

4a 主面

4b 背面

4c 接合焊盘(电极焊盘)

4ca 露出部

4cb 再布线

4cc 密合层

4cd、4ce 阻挡层

4d 凹部

4e 下层布线

4f 绝缘膜(第一绝缘膜)

4fa 耐湿绝缘膜

4fb 下层绝缘膜

4g 开口部(第一开口部)

4h 连接柱(导体连接部)

4i 绝缘膜(第二绝缘膜)

4j 开口部(第二开口部)

4x 连接柱配置区域(第一区域)

4y 导线球配置区域(第二区域)

5 导线(导电性导线)

5a 导线球(导线连接部)

7 裸芯片接合材料

8 晶体管

9 Si衬底

10 第一布线

11 第二布线

12 第三布线

13 接触部

14 第一连接柱

15 第二连接柱

16 第四布线

具体实施方式

在以下的实施方式中,除了特别需要时之外,原则上不重复相同或同样部分的说明。

而且,在以下的实施方式中,为了方便,在必要时分割成多个部分或实施方式进行说明,但除了特别明示的情况,这些并不是相互之间无关,而是具有一方为另一方的一部分或全部的变形例、详细、补充说明等关系。

另外,在以下的实施方式中,在言及要素的数量等(包括个数、数值、量、范围等)的情况下,除了特别明示的情况及理论上明确限定为规定的数量的情况等,并未限于该特定的数量,也可以是特定数量以上或以下。

另外,在以下的实施方式中,其构成要素(也包括要素步骤等) 除了特别明示的情况及认为理论上明确为必须的情况等,未必是必须的。

另外,在以下的实施方式中,关于构成要素等,在言及“由A 构成”、“利用A构成”、“具有A”、“包括A”时,除特别明示仅存在该要素的宗旨的情况等以外,自然不排除其他要素。同样地,以下的实施方式中,当提及构成要素等的形状、位置关系等时,除特别明示的情况以及认为原理上明显并非如此的情况等以外,实质上包括近似或类似于该形状等的形状、位置关系等。上述数值和范围也是同样的。

以下,基于附图详细说明本实用新型的实施方式。此外,在用于说明实施方式的全部附图中,对具有相同功能的部件标注相同的附图标记,并省略其重复说明。另外,为了易于理解附图,即使是俯视图,有时也标注影线。

(实施方式1)

<半导体器件的构造>

图1是示出实施方式1的半导体器件的构造的一例的俯视图,图2是示出沿着图1所示的A-A线切断的构造的剖视图。

图1所示的本实施方式1的半导体器件是对半导体芯片的电极焊盘进行导线接合而组装出的半导体封装,在本实施方式1中,作为上述半导体器件的一例,采用QFP(Quad Flat Package:方型扁平式封装)1进行说明。

当说明图1及图2所示的QFP1的结构时,其具有形成有半导体集成电路的半导体芯片4、以放射状配置于半导体芯片4的周围的多个内引线2a、以及与内引线2a一体形成的多个外引线2b。另外,其具有在半导体芯片4的主面4a露出的作为电极焊盘的接合焊盘 4c、与该接合焊盘4c对应的内引线2a、以及将它们电连接的多个导线(导电性导线)5。

进而,QFP1具有:经由银膏等裸芯片接合材料7固定有半导体芯片4的芯片搭载部即下垫板(裸芯片焊盘)2c、由封固用树脂等形成且通过树脂注塑将半导体芯片4、下垫板2c、多个导线5以及多个内引线2a封固的封固体3。因为是QFP1,所以与多个内引线 2a各自一体形成的多个外引线2b从封固体3的4边分别朝向外部突出,各外引线2b被弯曲成形为鸥翼状。

在此,内引线2a、外引线2b及下垫板2c例如由铁-镍合金、或铜合金等薄板状的部件形成,进而,封固体3例如由热固性的环氧系树脂等树脂材料构成,且通过树脂注塑形成。

另外,半导体芯片4例如由硅等形成,在其主面4a上形成有半导体集成电路,并且通过裸芯片接合材料7固定于下垫板2c上。即,半导体芯片4的背面4b和下垫板2c的上表面经由裸芯片接合材料7 接合。

<电极焊盘的构造>

图3是示出图1的半导体器件的要部的基本构造的一例的局部放大剖视图,图4是示出图3所示的焊盘的基本构造的一例的俯视图。

使用图3及图4说明本实施方式1的QFP1的电极焊盘的基本构造。如图3所示,半导体芯片4具有在其主面4a露出的多个电极焊盘即接合焊盘4c,通过导线接合的热压接,在各接合焊盘4c上连接导线5。即,在接合焊盘4c上电连接有将导线5的前端形成为球状的导线球(导线连接部)5a。

另外,在半导体芯片4上,在接合焊盘4c的下层形成有下层布线4e,进而,下层布线4e由配置于接合焊盘4c的下层的绝缘膜(第一绝缘膜)4f覆盖。

另外,在下层布线4e上形成有填埋于在绝缘膜4f形成的开口部 (第一开口部)4g、且与下层布线4e电连接的连接柱(导体连接部) 4h。此外,接合焊盘4c和连接柱4h一体形成。即,接合焊盘4c和连接柱4h通过同一材料一体形成。

另外,接合焊盘4c的一部分被绝缘膜(第二绝缘膜)4i覆盖。而且,在该绝缘膜4i上形成有规定接合焊盘4c的露出部4ca的开口部(第二开口部)4j。即,接合焊盘4c的露出部4ca通过在覆盖接合焊盘4c的一部分的绝缘膜4i形成的开口部4j的俯视时的形状来规定。在本实施方式1的情况下,如图4所示,绝缘膜4i的开口部 4j俯视时成为大致四边形,该开口部4j的形状仍相当于接合焊盘4c 的露出部4ca的形状。因此,接合焊盘4c的露出部4ca和绝缘膜4i 的开口部4j在俯视时的形状相同,在本实施方式1中,该形状为大致四边形。

另外,如图3所示,在连接柱4h上的接合焊盘4c的表面形成有凹部4d(层差、洼部)。该凹部4d是在通过溅射等在接合焊盘4c 和连接柱4h一体形成了导体时,在连接柱用的开口部4g填埋了导体时因其上部的接合焊盘4c的表面凹下的现象(溅射的被覆性的影响)而形成的。

接着,对图4所示的本实施方式1的接合焊盘4c的露出部4ca 的导线球配置区域(第二区域)4y、和位于其外侧的连接柱配置区域(第一区域、图4所示的影线区域)4x进行说明。

如图3及图4所示,在接合焊盘4c上形成有基于绝缘膜4i的大致四边形的开口部4j而成的露出部4ca。而且,大致四边形的露出部4ca被分成能够配置导线球5a的导线球配置区域4y和其外侧的连接柱配置区域4x。连接柱配置区域4x位于大致四边形的露出部4ca 的四角。

在此,当对连接柱配置区域4x的规定方法进行说明时,首先,开口部4j具有沿着相邻的两个边即第一边4k及第二边4m中的一边即第一边4k的第一虚拟线4s与沿着另一边即第二边4m的第二虚拟线4t交叉的交点4p。进而,具有位于与该交点4p相距导线球5a在俯视时的半径r的距离的第一虚拟线4s上的第一点4q、和位于与交点4p相距半径r的距离的第二虚拟线4t上的第二点4r。

而且,连接柱配置区域4x由连结交点4p和第一点4q的第一线段4u、连结交点4p和第二点4r的第二线段4v、连结第一点4q和第二点4r且朝向交点4p成为凸状的圆弧4w构成。即,形成于大致四边形的露出部4ca的四角的连接柱配置区域4x是由距离r的第一线段4u、相同距离r的第二线段4v、圆弧4w形成的区域。

另一方面,导线球配置区域4y为接合焊盘4c的大致四边形的露出部4ca中的四个(四个角的)连接柱配置区域4x以外的区域,是位于四个连接柱配置区域4x各自的内侧的区域。而且,将导线5连接于与连接柱配置区域4x不同的导线球配置区域4y。即,将导线球5a与导线球配置区域4y连接。此时,导线球5a不会侵入至连接柱配置区域4x。

而且,在本实施方式1的半导体器件中,形成于连接柱4h上且形成于接合焊盘4c的表面的凹部4d的至少一部分形成于连接柱配置区域4x。即,俯视时,形成大致四边形的凹部4d的至少一部分与连接柱配置区域4x重叠。

在图4所示的焊盘构造中,俯视时,形成大致四边形的凹部4d 和连接柱4h各自的一部分跨过连接柱配置区域4x和露出部4ca(连接柱配置区域4x)的外侧的形成有图3所示的绝缘膜4i的绝缘膜区域4z而形成。即,凹部4d和连接柱4h各自的一部分与连接柱配置区域4x和其外侧的绝缘膜区域4z这两方的区域重叠。

接着,在图4所示的焊盘构造中,接合焊盘4c的露出部4ca俯视时为四边形,对于在露出部4ca存在四个角部4n的情况,对连接柱配置区域4x的规定方法进行说明。

在该情况下,开口部4j具有形成角部4n的第一边4k及第二边 4m、位于与角部4n相距导线球5a在俯视时的半径r的距离的第一边4k上的第一点4q、以及位于与角部4n相距上述半径r的距离的第二边4m上的第二点4r。

进而,开口部4j具有由连结角部4n和第一点4q的第一线段4u、连结角部4n和第二点4r的第二线段4v、连结第一点4q和第二点4r 且朝向角部4n成为凸状的圆弧4w构成的连接柱配置区域4x。即,开口部4j具有由距角部4n为长度r的第一线段4u、与角部4n相距长度r的第二线段4v、和圆弧4w构成的四个连接柱配置区域4x。

换言之,连接柱配置区域4x为由从开口部4j的角部4n延伸出导线球5a的半径r的长度量的两个边(第一边4k和第二边4m)、和朝向开口部4j的角部4n为凸状的导线球5a的半径r的圆弧4w包围的区域。

俯视时,在该连接柱配置区域4x内配置了连接柱4h的平面形状的全部或一部分,且在与连接柱配置区域4x不同的导线球配置区域4y内配置了导线球5a,由此,能够不使导线球5a与连接柱4h的上部的凹部4d接触,省略引出布线而将导线球5a与连接柱4h电连接。

由此,能够将焊盘构造小型化,实现半导体芯片4的小型化及半导体器件(QFP1)的小型化。

另外,利用形成于连接柱4h的正上方的凹部4d,能够使接合焊盘4c的金属向水平方向变形来缓和导线接合时的芯片水平方向上的冲击。

其结果为,不仅能够将半导体芯片4小型化,而且还能够提高导线5相对于接合焊盘4c的连接可靠性。

接着,对使用了图3的基本构造的本实施方式1的焊盘构造的具体例进行说明。图5是示出实施方式1的焊盘构造的一例的局部放大剖视图,图6是示出图5所示的焊盘构造的一例的俯视图,图7 是示出图5所示的焊盘构造的一例的俯视图,图8是示出实施方式1 的焊盘的开口部的构造的一例的俯视图,图9是示出图8所示的焊盘构造的一例的立体图。

在此,对使用再布线4cb作为接合焊盘4c的情况的构造进行说明。

在说明图5所示的焊盘构造时,在Si衬底9上形成有晶体管8,利用接触部13将晶体管8与第一布线10连接。另外,利用第一连接柱14将第一布线10与第二布线11连接。进而,利用第二连接柱 15将第二布线11与第三布线12连接。另外,利用焊盘连接柱(连接柱4h)将第三布线12与再布线4cb连接。

此外,焊盘连接柱(连接柱4h)贯穿耐湿绝缘膜4fa和下层绝缘膜4fb。焊盘连接柱(连接柱4h)与再布线4cb一体地形成,在连接柱4h的上部形成有凹部4d(层差、洼部)。

在此,再布线4cb通过电解镀敷法或无电解镀敷法形成,例如由以铜为主成分的材料构成,是厚度5~6μm左右的厚度较厚的布线。该情况下,再布线4cb的一部分即露出部4ca成为接合焊盘4c。另外,由于再布线4cb的厚度厚,所以连接柱4h的大小也较大,在俯视时的形状为四边形的情况下,呈一边为30μm左右的四边形。

另外,再布线4cb是最上层的布线,形成于下层绝缘膜4fb之上。而且,再布线4cb的一部分由作为上层绝缘膜的绝缘膜(第二绝缘膜)4i覆盖。再布线4cb的露出部4ca在绝缘膜4i的开口部4j露出,在该露出部4ca上形成有供在导线5的前端形成的导线球(导线连接部)5a连接的接合焊盘4c。在接合焊盘4c的表面形成有使再布线 4cb的上表面的一部分开口并使其与导线5的密合性良好的密合层 4cc。换言之,密合层4cc形成于由再布线4cb构成的接合焊盘4c和导线球5a之间,例如为金层、钯层或镍层等。

另外,可以在再布线4cb和密合层4cc之间形成阻挡层4cd,也可以在再布线4cb的下部形成阻挡层4ce。阻挡层4cd例如为镍层等,阻挡层4ce例如为钛层等。即,再布线4cb的布线层的层数及构造没有特别限定,再布线4cb例如也可以由三种金属形成。或者,也可以在再布线4cb的表面直接连接导线5。

此外,导线5由例如以铜为主成分的材料构成。

接着,对使用了再布线4cb的情况下的各结构部的大小(一例) 进行说明。

例如,在进行使用了半径为20μm的导线5的导线接合的情况下,导线球(导线连接部)5a在俯视时的半径r为40μm。

而且,焊盘连接柱(连接柱4h)的配置区域(连接柱配置区域 4x)为由从绝缘膜4i的开口部4j的角部4n到与第一边4k上的导线球5a的半径r相同的40μm的第一点4q为止的第一线段4u、从第二边4m上的角部4n到相同距离的第二点4r为止的第二线段4v、以及连结第一点4q和第二点4r且朝向角部4n的凸状的圆弧4w包围的区域。

在此,对与俯视时形成四边形的焊盘连接柱(连接柱4h)情况下的焊盘连接柱的连接柱配置区域4x的重复长度Y(参照图8)的计算方法进行说明。

如图8及图9所示,相对于导线球5a的半径r,圆弧4w的半径也为r。在该情况下,如图8所示,若将侵入至连接柱配置区域4x 的连接柱4h的一部分设为一边的长度为Y(重复长度)的正方形,则即,能够将导线球5a的半径r的约0.29倍的焊盘连接柱(连接柱4h)配置(重复)于内侧 (连接柱配置区域4x)。在本实施方式1中,若将导线球5a的半径 r设为40μm,则能够将焊盘连接柱(连接柱4h)配置于11.6μm内侧。即,如图6所示,能够使焊盘连接柱(连接柱4h)相对于连接柱配置区域4x重复ー边(P)为11.6μm的正方形的大小。

此外,焊盘连接柱(连接柱4h)优选俯视时配置于连接柱配置区域(第一区域)4x。即,优选将俯视时为四边形的全部焊盘连接柱(连接柱4h)纳入至连接柱配置区域(第一区域)4x。

另外,在为本实施方式1那样的再布线4cb的情况下,出于加工精度,需要将再布线4cb的端部和绝缘膜4i的开口部4j的距离T设为25μm。即,需要将再布线4cb的端部和绝缘膜4i的开口部4j的边缘分离25μm。在此,开口部4j的一边的长度K为导线球5a的直径的约1.5倍。因此,在导线球5a的半径r为40μm的情况下,开口部4j的一边的长度K为120μm,进而,再布线4cb的端部与绝缘膜 4i的开口部4j的距离T为25μm,因此,再布线4cb在俯视时的一边的大小S为170μm。

另外,在图6所示的焊盘构造中,在言及连接柱4h(焊盘连接柱)在俯视时的大小(俯视时的四边形的一边的长度)时,由连接柱4h(焊盘连接柱)的开口部的一个上端至另一个上端的长度表示。例如,图6所示的连接柱4h的大小(ー边的长度)B为30μm。

以上,在使用了图5及图6所示的再布线4cb的焊盘构造中,能够不附加引出布线地配置ー边为30μm的四边形的连接柱4h(焊盘连接柱)。

此外,导线球5a因导线接合时的位置精度的影响而在连接位置中产生偏差。图7示出导线球5a的连接位置在朝向连接柱4h的方向上存在偏差的情况。如图7所示,即使在导线球5a的连接位置在朝向连接柱4h的方向上存在偏差的情况下,由于绝缘膜4i的开口部 4j的侧壁抑制导线球5a向连接柱方向的侵入,所以导线球5A也不会架于连接柱配置区域4x上。即,能够防止导线球5a配置于凹部 4d上。

<电极焊盘的制造方法>

图10~图23分别是示出使用了图5的再布线的电极焊盘的制造方法的一部分的局部剖视图。

对本实施方式1的电极焊盘的制造方法进行说明。

图10所示的构造示出在形成了第一布线10、第二布线11及第三布线12后,在第三布线12上形成耐湿绝缘膜4fa的状态。第三布线12的正上方适用氧化膜、TEOS、SiOC、有机绝缘膜等。最上表面适用耐湿性高的氮化硅,成为耐湿绝缘膜4fa。

接着,图11所示的构造示出在耐湿绝缘膜4fa上形成有焊盘连接柱(连接柱4h)用的开口部4g的状态。在此,通过使用了光致抗蚀剂的光刻法形成图案,之后,通过各向异性干式蚀刻法在第三布线12上形成焊盘连接柱用的开口部4g。

接着,图12所示的构造示出在耐湿绝缘膜4fa上涂敷了下层绝缘膜4fb的状态。即,在从耐湿绝缘膜4fa上至开口部4g为止的部位涂敷下层绝缘膜4fb。由此,在耐湿绝缘膜4fa上形成下层绝缘膜 4fb,并且在开口部4g填埋下层绝缘膜4fb。此时,下层绝缘膜4fb 适用感光性聚酰亚胺。

接着,图13所示的构造示出通过光刻法在下层绝缘膜4fb形成图案的状态。在此,为了形成焊盘连接柱(连接柱4h)用的开口部 4g,除去下层绝缘膜4fb的所希望的部位。此时,对下层绝缘膜4fb 进行显影、曝光,形成焊盘连接柱(连接柱4h)用的开口部4g。

接着,图14所示的构造示出在下层绝缘膜4fb上,在晶圆整个面上形成了再布线4cb的阻挡层4ce和镀敷用的籽晶层4cf的状态。籽晶层4cf是用于施加镀敷用的电流的金属层。此外,阻挡层4ce及籽晶层4cf适合通过溅射法或CVD(Chemical Vapor Deposition:化学气相沉积)法形成。

在此,再布线4cb的阻挡层4ce适用例如钛、氮化钛、钽、氮化钽、铬及它们的叠层膜。另一方面,镀敷用的籽晶层4cf适用例如铜、钯、金、银、铂、铱、钌、铑、钛、铝、锰、镍及它们的合金、叠层膜。

接着,图15所示的构造示出在籽晶层4cf上涂敷光致抗蚀剂4cg,通过光刻法形成再布线层的图案的状态。在此,通过光刻法选择性地除去形成再布线4cb的部位的光致抗蚀剂4cg,以使籽晶层4cf露出的方式开口。

接着,图16所示的构造示出在光致抗蚀剂4cg的开口部形成了再布线4cb的状态。再布线4cb的金属适用铜、钯、金、银、铂、铱、钌、铑、钛、铝、锰、镍及它们的合金、叠层膜,而在图5所示的焊盘构造中,以使用了铜的情况作为一例进行说明。此外,再布线4cb的形成适用电场镀敷法、或无电解镀敷法。

此外,此时,焊盘连接柱(连接柱4h)的上部未被完全掩埋镀敷膜而残存了凹部(层差、洼部)4d。

接着,图17所示的构造示出在再布线4cb及再布线4cb的光致抗蚀剂4cg上涂敷光致抗蚀剂4ch,通过光刻法对接合焊盘层(密合层)用的开口形成图案的状态。像这样,通过残留再布线4cb的光致抗蚀剂4cg,即使接合焊盘层的光致抗蚀剂4ch的膜厚很薄,也能够均匀地涂敷光致抗蚀剂4ch,能够削减成本。

接着,图18所示的构造示出在光致抗蚀剂4ch的开口部形成有阻挡层4cd及密合层4cc的状态。此外,密合层4cc适用例如钯、金、银、铂、铱、钌、铑、钛及它们的合金或叠层膜。在图5所示的焊盘构造中,以使用了金的情况2作为一例进行说明。

另一方面,阻挡层4cd适用例如镍、钛、钽、铬及它们的合金或叠层膜。在图5所示的焊盘构造中,以使用了镍的情况作为一例进行说明。此外,也可以不形成阻挡层4cd。另外,阻挡层4cd、密合层4cc的形成适用电场镀敷或无电解镀敷。

接着,图19所示的构造示出除去再布线4cb及接合焊盘层的光致抗蚀剂4cg、4ch的状态。光致抗蚀剂4cg、4ch的除去适用有机酸、有机溶剂等。像这样,残留再布线4cb的光致抗蚀剂4cg并在其上形成光致抗蚀剂4ch后,形成阻挡层4cd、密合层4cc,之后,除去光致抗蚀剂4cg、4ch,由此,能够一次除去光致抗蚀剂4cg、4ch,能够削减成本。

接着,图20所示的构造示出除去了再布线4cb的籽晶层4cf的状态。籽晶层4cf的除去适用硫酸、过氧化氢水以及水的混合液,使用上述混合液,通过湿式蚀刻除去籽晶层4cf。由此,籽晶层4cf被去除,再布线4cb的阻挡层4ce露出。

接着,图21所示的构造示出除去了再布线4cb的阻挡层4ce的状态。再布线4cb的阻挡层4ce的除去适用氨、过氧化氢水以及水的混合液,使用上述混合液,通过湿式蚀刻除去阻挡层4ce。由此,阻挡层4ce被去除,下层绝缘膜4fb露出,其结果为,成为形成有再布线4cb的状态。

接着,图22所示的构造示出在再布线4cb、下层绝缘膜4fb及耐湿绝缘膜4fa上涂敷了作为上层绝缘膜的绝缘膜4i的状态。此时,绝缘膜4i适用感光性聚酰亚胺。

接着,图23所示的构造示出通过光刻法对绝缘膜4i形成图案的状态。即,将接合焊盘4c上的绝缘膜4i除去。在此,在对绝缘膜 4i进行曝光、显影而除去后,施加热处理使其聚合。接合焊盘4c的开口设定于密合层4cc上。

以上,完成由再布线4cb构成的接合焊盘4c的形成。

<半导体器件的组装>

对图1及图2所示的QFP1的组装进行说明。

首先,进行裸芯片接合工序。在此,经由裸芯片接合材料7在未图示的引线架的下垫板2c上搭载半导体芯片4。此时,将半导体芯片4的接合焊盘4c露出的主面4a朝向上方,将半导体芯片4搭载于下垫板2c上。

接着,进行导线接合工序。用导线5将半导体芯片4的接合焊盘4c和上述引线架的内引线2a连接。此时,在半导体芯片侧,在接合焊盘4c的导线球配置区域4y连接在导线5的前端形成的导线球5a。

接着,进行树脂密封工序。在此,使用注塑用的树脂覆盖下垫板2c、半导体芯片4、内引线2a及多个导线5,且以外引线2b露出的方式形成封固体3。

接着,进行切断、成形。在此,从上述引线架的框部切断外引线2b进行切离,并且将外引线2b弯曲成形为鸥翼状。由此,完成 QFP1的组装。

<效果>

在本申请发明人进行了比较探讨的图27所示的比较例的局部放大俯视图的焊盘构造中,在成为接合焊盘4c的再布线4cb中,在焊盘连接柱(连接柱4h)上具有凹部4d,因此,当将焊盘连接柱(连接柱4h)配置于与图5所示的导线球5a接触(重叠的)位置时,在凹部4d上,导线球5a和密合层4cc的连接不充分,引起导线5的连接不良。因此,为了不引起导线5的连接不良,考虑使用引出布线将连接柱4h引出到绝缘膜4i的开口部4j的外侧来进行配置,但在该情况下,焊盘构造增大,其结果是芯片面积扩大。

因此,在本实施方式1的QFP1中,在设置作为上层绝缘膜的绝缘膜4i的基础上,以使焊盘连接柱(连接柱4h)的至少一部分与绝缘膜4i的开口部4j中的将角部4n、与角部4n相距与导线球5a的半径r相同距离的第一点4q、与角部4n相距与上述半径r相同距离的第二点4r连结而成的连接柱配置区域4x重叠的方式,配置了焊盘连接柱(连接柱4h)。

即,在由再布线4cb构成的接合焊盘4c的露出部4ca,以使焊盘连接柱(连接柱4h)的至少一部分与由连结角部4n和第一点4q 的第一线段4u、连结角部4n和第二点4r的第二线段4v、连结第一点4q和第二点4r且朝向角部4n成为凸状的圆弧4w构成的连接柱配置区域4x重叠的方式,配置有焊盘连接柱(连接柱4h)。即,由于以在俯视时将焊盘连接柱(连接柱4h)的至少一部分与接合焊盘 4c的开口部4j的一部分区域即连接柱配置区域4x重叠的方式进行配置,所以能够不使用用于将连接柱4h引出到开口部4j的外侧配置的上述引出布线而实现芯片尺寸的缩小化。其结果为,能够实现 QFP1的小型化。

另外,由于实现芯片尺寸的缩小化,所以能够实现QFP1的成本的降低化。

此外,焊盘连接柱(连接柱4h)优选俯视时配置于连接柱配置区域(第一区域)4x。也就是说,优选将俯视时为四边形的全部焊盘连接柱(连接柱4h)纳入至连接柱配置区域(第一区域)4x。

由此,能够实现芯片尺寸的进一步缩小化,且QFP1的大小也能够进一步实现小型化。

另外,即使在导线球5a的位置在焊盘连接柱(连接柱4h)的方向错开的情况下,也会被绝缘膜4i的侧壁阻挡而使导线球5a无法侵入至上述焊盘连接柱上。其结果为,由于俯视时导线球5a和焊盘连接柱(连接柱4h)不会重叠,所以能够抑制导线接合中的连接不良。

由此,能够提高QFP1中的导线5的连接可靠性。

此外,通过使形成于连接柱正上方的凹部4d的俯视时的至少一部分与连接柱配置区域4x重叠,能够避免俯视时凹部4d和导线球 5a重叠。

另外,由于在连接柱正上方的接合焊盘4c的表面上形成有凹部 4d,所以能够通过该凹部4d吸收导线接合时的芯片水平方向上的冲击。即,通过凹部4d,接合焊盘4c的金属部分能够在水平方向上变形,从而能够抑制导线5的断线,能够提高导线5的连接可靠性。

此外,在导线5由以铜为主成分的材料构成的情况下,因为铜为较硬质的材料,所以在将铜的导线球5a压接于接合焊盘4c时,引起被称为飞溅的现象,飞溅是指接合焊盘4c的金属部分被沿水平方向推开而飞散,上述飞溅引起与相邻的接合焊盘4c的电短路。

但是,在本实施方式1的焊盘构造中,如上所述,因为在连接柱正上方的接合焊盘4c的表面形成有凹部4d,所以接合焊盘4c的金属部分在水平方向上变形,能够抑制上述飞溅的产生,能够实现电短路产生的降低化。

(实施方式2)

图24是示出实施方式2的焊盘构造的一例的局部放大剖视图,图25是示出图24所示的焊盘构造的一例的俯视图。

本实施方式2中,对焊盘构造的接合焊盘4c由以铝为主成分的材料构成的Al焊盘4ci的情况进行说明。此外,本实施方式2中,示出了形成于半导体芯片4的下层布线为使用了双镶嵌工法的4层的铜布线的情况,但下层布线的种别及层数没有特别限定。

Al焊盘4ci通过溅射等形成,与实施方式1的再布线4cb相比,厚度薄。由于Al焊盘4ci的厚度薄,所以在连接柱4h的俯视时的形状为四边形的情况下,一边的长度相较于再布线4cb的30μm减小 2~3μm左右。

如图24所示,通过焊盘连接柱(连接柱4h)将第四布线16和 Al焊盘4ci连接。焊盘连接柱(连接柱4h)贯穿下层绝缘膜4fb。而且,焊盘连接柱(连接柱4h)通过以铝为主成分的金属与Al焊盘 4ci一体形成,因此,在连接柱上部存在凹部4d。即,由于通过一次的溅射将Al焊盘4ci和焊盘连接柱(连接柱4h)一体形成,所以在连接柱上部形成有凹部4d。

另外,接合焊盘4c(Al焊盘4ci)的一部分被作为上层绝缘膜的绝缘膜4i覆盖,进而,在接合焊盘4c的开口部4j的露出部4ca的导线球配置区域4y连接有导线球5a。

另外,在Al焊盘4ci的下表面形成有阻挡层4ce。进而,在Al 焊盘4ci的上表面也可以有阻挡金属,但在作为上层绝缘膜的绝缘膜 4i的开口部4j被除去,使露出部4ca露出。

此外,在Al焊盘4ci的上表面也可以形成密合金属、或密合金属与阻挡金属的叠层膜。密合金属例如为钯、金。阻挡金属例如是钛、氮化钛、铬、钽、氮化钽。

另外,在本实施方式2的焊盘构造中,在作为上层绝缘膜的绝缘膜4i的上部形成有密合绝缘膜4cj。密合绝缘膜4cj用于提高与半导体器件的封装材料的树脂(封固用的树脂)的密合性,密合绝缘膜4cj的开口位于绝缘膜4i的开口部4j的外侧。作为密合绝缘膜4cj,适用聚酰亚胺。

在本实施方式2的焊盘构造中,也与实施方式1的焊盘构造相同,如图25所示,以使焊盘连接柱(连接柱4h)的至少一部分与绝缘膜4i的开口部4j中的将角部4n、与角部4n相距与导线球5a的半径r相同距离的第一点4q、与角部4n相距与上述半径r相同距离的第二点4r连结而成的连接柱配置区域4x重叠的方式,配置焊盘连接柱(连接柱4h)。

即,在由Al焊盘4ci构成的接合焊盘4c的露出部4ca,以使焊盘连接柱(连接柱4h)的至少一部分与由连结角部4n与第一点4q 的第一线段4u、连结角部4n与第二点4r的第二线段4v、连结第一点4q与第二点4r且朝向角部4n成为凸状的圆弧4w构成的连接柱配置区域4x重叠的方式,配置焊盘连接柱(连接柱4h)。

另外,与实施方式1相同,形成于连接柱正上方的凹部4d的俯视时的至少一部分与连接柱配置区域4x重叠,由此,能够避免俯视时凹部4d和导线球5a重叠。

接着,说明图25所示的本实施方式2的焊盘构造的各部分的大小的一例。Al焊盘4ci的端部和绝缘膜4i的开口部4j的距离T需要确保2.5μm左右。另外,开口部4j的一边的长度K为55μm,进而 Al焊盘4ci的端部和绝缘膜4i的开口部4j的距离T为2.5μm,因此, Al焊盘4ci在俯视时的一边的大小S为60μm。

另外,连接柱4h的大小(ー边的长度)B为3μm左右。

如上,在使用了本实施方式2的Al焊盘4ci的焊盘构造中,也能够不附加引出布线地配置ー边为3μm的四边形的连接柱4h(焊盘连接柱)。

此外,与实施方式1同样地,若将侵入至连接柱配置区域4x的连接柱4h的一部分设为一边的长度为Y(重复长度)的正方形,则能够将导线球5a的半径r 的约0.29倍的焊盘连接柱(连接柱4h)配置(重复)于内侧(连接柱配置区域4x)。本实施方式2中,若将导线球5a的半径r设为20μm,则能够将焊盘连接柱(连接柱4h)配置于5.8μm内侧。即,能够使焊盘连接柱(连接柱4h)相对于连接柱配置区域4x重复ー边(P) 为5.8μm的正方形的大小。

另外,即使在密合绝缘膜4cj位于比作为上层绝缘膜的绝缘膜 4i更靠内侧的情况下,由于密合绝缘膜4cj的侧壁阻止导线球5a的侵入,所以在导线球5a的位置在焊盘连接柱(连接柱4h)的方向上偏离时,也能够被密合绝缘膜4cj的侧壁阻挡,从而导线球5a不会侵入到上述焊盘连接柱上。其结果为,俯视时导线球5a和焊盘连接柱(连接柱4h)不重叠,因此,能够抑制导线接合中的连接不良。

根据本实施方式2的半导体器件,通过在Al焊盘4ci的露出部 4ca的连接柱配置区域4x,以使焊盘连接柱(连接柱4h)的至少一部分重叠的方式配置焊盘连接柱(连接柱4h),能够不使用引出线而配置焊盘连接柱(连接柱4h)。

由此,能够实现芯片尺寸的缩小化,且能够实现半导体器件 (QFP1)的小型化。

另外,由于实现芯片尺寸的缩小化,所以能够实现半导体器件 (QFP1)的成本降低。

通过本实施方式2的半导体器件得到的其它效果与实施方式1 相同,所以省略其重复说明。

(实施方式3)

表1是示出实施方式3的焊盘构造的各数值的一例的数据图。在本实施方式3中,示出实施方式1的焊盘构造中的各部分的尺寸 (代表值、范围)及实施方式2的焊盘构造中的各部分的尺寸(代表值、范围)。即,表1中示出关于连接柱4h在俯视时的一边的尺寸、凹部4d在俯视时的一边的尺寸、凹部4d的深度、导线球5a的半径r、绝缘膜4i在俯视时的一边的开口尺寸各自的实施方式1及2 的焊盘构造的代表值和范围。

[表1]

[μm]

根据表1可知,例如在凹部4d的深度为0.5μm以上的情况下,导线球5a和电极焊盘易于产生连接不良。因此,在凹部4d的深度为0.5μm以上的情况下,可以说实施方式1的焊盘构造或实施方式2 的焊盘构造是有效的。

<变形例>

图26是示出变形例的焊盘构造的局部放大俯视图。

本变形例说明的是连接柱4h在俯视时的形状及配置于一个连接柱配置区域4x的连接柱4h的个数等的变形例。即,在实施方式1 及实施方式2中,对在接合焊盘4c的四个角部中的一个角部4n配置一个连接柱4h、且该一个连接柱4h的一部分或全部与连接柱配置区域4x重叠的情况进行了说明,但是,例如,如图26所示,也可以在多个(例如四个)角部4n分别配置多个连接柱(导体连接部) 4h。或者,也可以在四个角部4n中的任意两个或三个角部4n配置连接柱4h。或者仅在一个角部4n配置多个连接柱4h。即,配置连接柱4h的角部4n的数量、及配置于一个角部4n的连接柱4h的数量分别可以为一个也可以为多个。

另外,连接柱4h及凹部4d在俯视时的形状不限于四边形,也可以是三角形或五边形以上的多边形等。

以上,基于实施方式具体说明了由本发明人创立的实用新型,但本实用新型不限于迄今为止记载的实施方式,在不脱离其宗旨的范围内可以进行各种变更。

上述实施方式1及2中,对半导体器件为QFP1的情况进行了说明,但上述半导体器件只要是在半导体芯片的电极焊盘连接导电性导线而组装的半导体器件即可,不限于QFP1,也可以是其它半导体器件。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1