采用寡核苷酸介导的基因修复提高靶向基因修饰的效率的方法和组合物与流程

文档序号:12280867阅读:1062来源:国知局
采用寡核苷酸介导的基因修复提高靶向基因修饰的效率的方法和组合物与流程

本申请要求2014年3月14日提交的美国临时申请号61/953,333;2014年9月17日提交的美国临时申请号62/051,579;2014年11月5日提交的美国临时申请号62/075,811;2014年11月5日提交的美国临时申请号62/075,816;以及2015年3月13日提交的美国临时申请号62/133,129的权益,其各自特此以引用的方式整体并入,包括所有表格、图和权利要求。

发明领域

本公开至少部分地涉及靶向遗传突变和修饰,包括用于进行所述突变和修饰的方法和组合物。

背景

以下论述仅提供来帮助读者理解本公开,且并非承认描述或构成本公开的现有技术。

美国专利号6,271,360公开了用于通过引入编码预定遗传变化的寡脱氧核苷酸来在活细胞的靶基因中引入所述预定变化的方法和组合物。所述寡脱氧核苷酸是在哺乳动物、禽类、植物和细菌细胞中有效的。

美国专利号8,771,945公开了载体和载体系统,所述载体和载体系统中的一些编码CRISPR复合物的一种或多种组分;以及用于设计和使用所述载体的方法。

美国专利号8,470,973“涉及用于通过多肽选择性地识别DNA序列中的碱基对的方法,涉及特异性地识别DNA序列中的一个或多个碱基对的修饰的多肽,并且涉及进行修饰以使得它能够被多肽特异性地识别的DNA以及所述多肽和DNA在特异性DNA靶向中的用途,以及调节细胞中的靶基因的表达的方法。”

概述

本文提供的包括用于实现细胞中的DNA中的靶向遗传变化的方法和组合物。某些方面和实施方案涉及提高对基因组或其他核苷酸序列中的特定位置的修饰的靶向效率。如本文所述,引导对基因组的特异性变化的核酸可与不同方法组合以增强存在于被靶向以用于修饰的细胞中的天然修复系统的组分的可用性。

在第一方面,提供用于将基因修复寡核碱基(GRON)介导的突变引入至植物细胞中的靶脱氧核糖核酸(DNA)序列中的方法。在某些实施方案中,所述方法尤其可以包括在将GRON递送至植物细胞中之前和/或同时在增加一种或多种细胞DNA修复过程的条件下培养所述植物细胞;和/或将GRON递送至大于15个碱基长的植物细胞中,所述GRON任选地包含用于引入至靶DNA中的一个或多个;或两个或更多个突变位点。

如本文使用的“基因修复寡核苷酸”或“GRON”意指能够在某些条件下指导DNA序列中的单个(或在一些实施方案中多个)核苷酸缺失、插入或取代的寡核碱基(例如,混合双链寡核苷酸、含非核苷酸的分子、单链寡脱氧核苷酸、双链寡脱氧核苷酸以及其他基因修复分子)。基因组的这种寡核苷酸介导的基因修复编辑可包括基于非同源性的修复系统(例如,非同源末端连接)和基于同源性的修复系统(例如,同源导向修复)。所述GRON通常被设计成与基因组靶标对齐对准,除了所设计的错配。这些错配可通过利用细胞的内源性DNA修复系统中的一种或多种来识别和校正。在一些实施方案中,当与生物体靶序列比较时,GRON或寡核苷酸可被设计为包含多个差异。这些差异可能并非都影响从所述靶序列翻译的蛋白质序列并且在一种或多种情况下被称为沉默变化。GRON结构、化学和功能的多种变化在本文其他地方描述。在各种实施方案中,如本文所用的GRON可具有一种或多种修饰。例如,如本文所用的GRON可具有将DNA修复机器吸引至靶向(错配)位点和/或防止所述GRON的部分或全部(除了所需的靶向缺失、插入、取代等)重组至靶DNA序列的基因组DNA中和/或提高所述GRON的稳定性的一种或多种修饰。

在各种实施方案中,GRON可具有RNA和DNA核苷酸和/或其他类型的核碱基。在一些实施方案中,所述DNA或RNA核苷酸中的一个或多个包含修饰。

一方面,提供一种引起植物细胞中的遗传变化的方法,其中所述方法涉及使所述细胞暴露于DNA切割体和GRON,例如如本文所考虑进行修饰的GRON。在一些实施方案中,所述GRON可如用Cy3基团、3PS基团、2’O-甲基或如本文所考虑的其他修饰进行修饰。另一方面,提供一种包括DNA切割体和GRON的植物细胞,例如其中所述GRON如用Cy3基团、3PS基团、2’O-甲基或其他修饰进行修饰。在一些实施方案中,所述DNA切割体是选自CRISPR、TALEN、锌指、大范围核酸酶以及DNA切割抗生素的一种或多种。在一些实施方案中,所述DNA切割体是CRISPR。在一些实施方案中,所述DNA切割体是TALEN。在一些实施方案中,所述GRON是15与60个核碱基之间的长度;或30与40个核碱基之间的长度;或35与45个核碱基之间的长度;或20与70个核碱基之间的长度;或20与200个核碱基之间的长度;或30与180个核碱基之间的长度;或50与160个核碱基之间的长度;或70与150个核碱基之间的长度;或70与210个核碱基之间的长度;或80与120个核碱基之间的长度;或90与110个核碱基之间的长度;或95与105个核碱基之间的长度;或80与300个核碱基之间的长度;或90与250个核碱基之间的长度;或100与150个核碱基之间的长度;或100与200个核碱基之间的长度;或100与210个核碱基之间的长度;或100与300个核碱基之间的长度;或150与200个核碱基之间的长度;或200与300个核碱基之间的长度;或250与350个核碱基之间的长度;或50与110个核碱基之间的长度;或50与200个核碱基之间的长度;或150与210个核碱基之间的长度;或20与1000个核碱基之间的长度;或100与1000个核碱基之间的长度;或200与1000个核碱基之间的长度;或300与1000个核碱基之间的长度;或400与1000个核碱基之间的长度;或500与1000个核碱基之间的长度;或600与1000个核碱基之间的长度;或700与1000个核碱基之间的长度;或800与1000个核碱基之间的长度;或900与1000个核碱基之间的长度;或300与800个核碱基之间的长度;或400与600个核碱基之间的长度;或500与700个核碱基之间的长度;或600与800个核碱基之间的长度;或长于30个核碱基长;或长于35个核碱基长;或长于40个核碱基长;或长于50个核碱基长;或长于60个核碱基长;或长于65个核碱基长;或长于70个核碱基长;或长于75个核碱基长;或长于80个核碱基长;或长于85个核碱基长;或长于90个核碱基长;或长于95个核碱基长;或长于100个核碱基长;或长于110个核碱基长;或长于125个核碱基长;或长于150个核碱基长;或长于165个核碱基长;或长于175个核碱基长;或长于200个核碱基长;或长于250个核碱基长;或长于300个核碱基长;或长于350个核碱基长;或长于400个核碱基长;或长于450个核碱基长;或长于500个核碱基长;或长于550个核碱基长;或长于600个核碱基长;或长于700个核碱基长;或长于800个核碱基长;或长于900个核碱基长。

GRON可在靶基因的非编码(NC)区域和编码(C)区域两者处靶向。作为举例,图27和28分别描绘适于将突变引入水稻基因组以便引入对ACC酶基因的以下氨基酸取代中的一个或多个的C-GRON和NC-GRON。惯例是使用用于来自作为参考的大穗看麦娘(blackgrass)(大穗看麦娘(Alopecurus myosuroides);Am)的质体ACC酶的氨基酸编号系统。本文使用的ACC酶编号是基于用于大穗看麦娘参考序列ACC酶蛋白(SEQ ID NO:1)或在ACC酶横向同源物(V=CY3;H=3'DMT dC CPG)中的类似氨基酸残基处的编号。下表列出产生以下中的一种或多种的ACC酶突变:禾草灭(alloxydim)、丁氧环酮(butroxydim)、烯草酮、cloproxydim,噻草酮(cycloxydim)、稀禾定、吡喃草酮、肟草酮、chlorazifop、炔草酯(clodinafop)、clofop、禾草灵、噁唑禾草灵、精噁唑禾草灵、噻唑禾草灵、吡氟禾草灵、精吡氟禾草灵、吡氟氯禾灵、精吡氟氯禾灵、异噁草醚(isoxapyrifop)、喔草酯(propaquizafop)、喹禾灵、精喹禾灵、三氟禾草肟(trifop)、唑啉草酯、这些除草剂中的任一种的农学上可接受的盐和酯以及其组合抗性表型。

类似地,图29和30分别描绘适于将突变引入亚麻基因组以便将以下氨基酸取代中的一个或多个引入EPSPS基因(其中全部相对于大肠杆菌AroA蛋白的氨基酸序列变化)(原核EPSPS等效物)(如在美国专利号8,268,622中所描述的那些)的(编码)C-GRON和(非编码)NC-GRON。(V=CY3;H=3'DMT dC CPG)。以下表列出产生这些除草剂中的任一种的草甘膦农学上可接受的盐或酯以及其组合抗性表型的EPSPS突变。

如本文所用的术语“CRISPR”是指元件;即cas(CRISPR相关)基因、转录物(例如mRNA)或蛋白质以及至少一个CRISPR间隔区序列(成簇的规律间隔的短回文重复序列,还称为SPIDR—间隔区散布直接重复序列);其当在细胞中有效存在或表达时能够经由CRISPR/CAS细胞机器实现靶DNA序列的裂解,如描述于例如Cong,L.等人,Science,第339卷第6121期第819-823页(2013);Jinek等人,Science,第337卷:816-821(2013);Wang等人,RNA,第14卷,第903-913页(2008);Zhang等人,Plant Physiology,第161卷,第20-27页(2013),Zhang等人,PCT申请号PCT/US2013/074743;以及Charpentier等人,PCT申请号PCT/US2013/032589。在一些实施方案中,例如像用于真核细胞中的CRISPR,如本文考虑的CRISPR还可包括另外的元件,所述元件包括用于一种或多种功能性核定位信号的序列。如本文考虑的CRISPR可以许多方式或表现中的任一种表达于、施用至和/或存在于细胞(如植物细胞)中。例如,如本文考虑的CRISPR可包括或涉及以下中的一种或多种:质粒上的CRISPR、质粒上的CRISPR切口酶、质粒上的CRISPRa或质粒上的CRISPRi,如下:

质粒上的CRISPR:一种重组表达载体,其包含:

(i)编码DNA靶向RNA(例如,引导RNA)的核苷酸序列,其中所述DNA靶向RNA包含:

a.包含与靶DNA中的序列互补的核苷酸序列的第一区段(例如,原型间隔区、间隔区或crRNA);以及

b.与位点定向修饰多肽相互作用的第二区段(例如,反式活化的crRNA或tracrRNA);以及

(ii)编码所述位点定向修饰多肽(例如,cas基因)的核苷酸序列,其中所述位点定向多肽包含:

a.与DNA靶向RNA相互作用的RNA结合部分(例如,REC叶);以及

b.引起靶DNA内的双链断裂的活性部分(例如,NUC叶),其中所述靶DNA内的双链断裂的位点由DNA靶向RNA决定。

质粒上的CRISPR切口酶:一种重组表达载体,其包含:(i)编码DNA靶向RNA(例如,引导RNA)的核苷酸序列,其中所述DNA靶向RNA包含:

a.包含与靶DNA中的序列互补的核苷酸序列的第一区段(例如,原型间隔区、间隔区或crRNA);以及

b.与位点定向修饰多肽相互作用的第二区段(例如,反式活化的crRNA或tracrRNA);以及

(ii)编码所述位点定向修饰多肽(例如,cas基因)的核苷酸序列,其中所述位点定向多肽包含:

a.与DNA靶向RNA相互作用的RNA结合部分(例如,REC叶);以及

b.引起靶DNA内的单链断裂的活性部分(例如,NUC叶),其中所述靶DNA内的单链断裂的位点由DNA靶向RNA决定。

质粒上的CRISPRa。一种重组表达载体,其包含:

(i)编码DNA靶向RNA(例如,引导RNA)的核苷酸序列,其中所述DNA靶向RNA包含:

a.包含与靶DNA中的序列互补的核苷酸序列的第一区段(例如,原型间隔区、间隔区或crRNA);以及

b.与位点定向修饰多肽相互作用的第二区段(例如,反式活化的crRNA或tracrRNA);以及

(ii)编码所述位点定向修饰多肽(例如,cas基因)的核苷酸序列,其中所述位点定向多肽包含:

a.与DNA靶向RNA相互作用的RNA结合部分(例如,REC叶);以及

b.调节靶DNA内的转录的活性部分(例如,NUC叶;在某些实施方案中增加转录),其中所述靶DNA内的转录调节的位点由DNA靶向RNA决定。

质粒上的CRISPRi。一种重组表达载体,其包含:

(i)编码DNA靶向RNA(例如,引导RNA)的核苷酸序列,其中所述DNA靶向RNA包含:

a.包含与靶DNA中的序列互补的核苷酸序列的第一区段(例如,原型间隔区、间隔区或crRNA);以及

b.与位点定向修饰多肽相互作用的第二区段(例如,反式活化的crRNA或tracrRNA);以及

(ii)编码所述位点定向修饰多肽(例如,cas基因)的核苷酸序列,其中所述位点定向多肽包含:

a.与DNA靶向RNA相互作用的RNA结合部分(例如,REC叶);以及

b.调节靶DNA内的转录/翻译的活性部分(例如,NUC叶;在一些实施方案中减少转录/翻译),其中所述靶DNA内的转录/翻译调节的位点由DNA靶向RNA决定。

质粒上的CRISPR、质粒上的CRISPR切口酶、质粒上的CRISPRa以及质粒上的CRISPRi可在一些实施方案中可替代地使一种或多种适当的元件作为RNA(例如mRNA)或蛋白质施用、表达或存在于细胞中而非在质粒上。受保护的mRNA的递送可以是如Kariko等人,美国专利号8,278,036中所描述。

在一些实施方案中,CRISPRi和CRISPRa各自可包括失活的cas9(dCas9)。失活的cas9仍然结合靶DNA,但不具有切割活性。核酸酶缺陷型Cas9可由D10A和H840A点突变产生,所述突变使其两个催化结构域失活。

在一些实施方案中,CRISPRi经由RNA聚合酶II的位阻抑制转录起始或延伸。CRISPRi可任选地通过将强阻遏物结构域融合至dCas9蛋白的C末端来增强(CRISPRei)。在一些实施方案中,阻遏物结构域募集且采用染色质修饰因子。在一些实施方案中,所述阻遏物结构域可包括但不限于如在Kagale,S.等人,Epigenetics,第6卷第2期第141-146页(2011)中描述的结构域:

1.LDLNRPPPVEN-OsERF3阻遏物结构域(LxLxPP基序)

2.LRLFGVNM–AtBRD阻遏物结构域(R/KLFGV基序)

3.LKLFGVWL-AtHsfB1阻遏物结构域(R/KLFGV基序)

4.LDLELRLGFA–AtSUP阻遏物结构域(EAR基序)

5.ERSNSIELRNSFYGRARTSPWSYGDYDNCQQDHDYLLGFSWPPRSYTCSFCKREFRSAQALGGHMNVHRRDRARLRLQQSPSSSSTPSPPYPNPNYSYSTMANSPPPHHSPLTLFPTLSPPSSPRYRAGLIRSLSPKSKHTPENACKTKKSSLLVEAGEATRFTSKDACKILRNDEIISLELEIGLINESEQDLDLELRLGFA*-含全AtSUP基因阻遏物结构域(EAR基序)

在一些实施方案中,转录的CRISPRa活化通过使用含有融合的C末端转录活化因子的dCas9蛋白来实现。在一些实施方案中,活化可包括但不限于VP64(4X VP16)、AtERF98活化结构域或AtERF98x4多联体,如在Cheng,AW等人,Cell Research,第1-9页(2013);Perez-Pinera,P.等人,Nature Methods,第10卷第913-976页(2013);Maeder,ML.等人,Nature Methods,第10卷第977-979页(2013)以及Mali,P.,等人,Nature Biotech.,第31卷第833-838页(2013)中所描述。

在一些实施方案中,所述CRISPR包括切口酶。在某些实施方案中,使用两种或更多种CRISPR切口酶。在一些实施方案中,所述两种或更多种切口酶在靶核酸的相对链上切割。在其他实施方案中,所述两种或更多种切口酶在靶核酸的同一链上切割。

如本文所用,“阻遏蛋白”或“阻遏物”是指分别结合DNA的操作子或RNA以防止转录或翻译的蛋白质。

如本文所用,“阻遏”是指通过使阻遏蛋白结合DNA或mRNA上的特异性位点来抑制转录或翻译。在一些实施方案中,阻遏包括转录或翻译水平的至少1.5倍、在其他实施方案中至少两倍且在其他实施方案中至少五倍的显著变化。

如本文所用,关于基因转录和/或翻译的“活化蛋白”或“活化物”是指分别结合DNA的操作子或RNA以增强或增加转录或翻译的蛋白质。

如本文关于基因转录和/或翻译所用,关于基因转录和/或翻译的“活化”是指通过使活化蛋白结合DNA或mRNA上的特异性位点来增强或增加转录或翻译。在一些实施方案中,活化包括转录或翻译水平的至少1.5倍、在一些实施方案中至少两倍且在一些实施方案中至少五倍的显著变化。

在某些实施方案中,增加一种或多种细胞DNA修复过程的条件可包括以下中的一种或多种:将一个或多个位点引入至GRON中或至植物细胞DNA中,所述位点是用于碱基切除修复的靶标;将一个或多个位点引入至GRON中或至植物细胞DNA中,所述位点是用于非同源末端连接的靶标;将一个或多个位点引入至GRON中或至植物细胞DNA中,所述位点是用于微同源介导的末端连接的靶标;将一个或多个位点引入至GRON中或至植物细胞DNA中,所述位点是用于同源重组的靶标;以及将一个或多个位点引入至GRON中或至植物细胞DNA中,所述位点是用于实现修复的靶标(例如,碱基切除修复(BER);同源重组修复(HR);错配修复(MMR);非同源末端连接修复(NHEJ),其包括经典和替代NHEJ;以及核苷酸切除修复(NER))。

如下文所述,用于本文的GRON可包括来自常规RNA和DNA核苷酸的以下改变中的一种或多种:

一个或多个无碱基核苷酸;

一个或多个8’氧代dA和/或8’氧代dG核苷酸;

在其3’端处的反向碱基;

一个或多个2’O-甲基核苷酸;

一个或多个RNA核苷酸;

在其5’端的一个或多个RNA核苷酸,且在一些实施方案中2、3、4、5、6、7、8、9、10或更多个;其中所述RNA核苷酸中的一个或多个可进一步进行修饰;在其3’端的一个或多个RNA核苷酸,且在一些实施方案中2、3、4、5、6、7、8、9、10或更多个;其中所述RNA核苷酸中的一个或多个可进一步进行修饰;

在其5’端处的一个或多个2’O-甲基RNA核苷酸,且在一些实施方案中2、3、4、5、6、7、8、9、10个或更多个;

嵌入染料;

5’末端帽;

选自由以下组成的组的主链修饰:硫代磷酸酯修饰、膦酸甲酯修饰、锁核酸(LNA)修饰、O-(2-甲氧基乙基)(MOE)修饰、二PS修饰以及肽核酸(PNA)修饰;

一个或多个链内交联;

缀合至其、且在一些实施方案中在所述GRON的5’或3’端处的一种或多种荧光染料;以及

增加杂交能量的一个或多个碱基。

此列表不意图是限制性的。

如本文所用的术语“摇摆碱基”是指参考核苷酸序列的一个或多个核苷酸碱基的变化,其中所述变化不会相对于参考序列改变由所述核苷酸编码的氨基酸的序列。

如本文所用,术语“非核苷酸”或“无碱基核苷酸”是指可替代一个或多个核苷酸单元并入核酸链中的任何基团或化合物,包括糖和/或磷酸酯取代,并且允许剩余的碱基展现其酶活性。所述基团或化合物是无碱基的,因为其不含有公认的核苷酸碱基如腺苷、鸟嘌呤、胞嘧啶、尿嘧啶或胸腺嘧啶。它可具有针对2’或3’H或OH的取代,如在本领域和本文中所描述。

如本文所述,在某些实施方案中,GRON质量和转化效率可通过使用改进其纯度的核苷酸多聚体如二聚体、三聚体、四具体等合成GRON的全部或一部分来改进。

在某些实施方案中,靶脱氧核糖核酸(DNA)序列是在植物细胞内,例如靶DNA序列是在植物细胞基因组内。植物细胞可以是非转基因或转基因的,并且靶DNA序列可以是所述植物细胞的转基因或内源基因。

在某些实施方案中,增加一种或多种细胞DNA修复过程的条件包括引入一种或多种化合物,所述化合物在将GRON递送至植物细胞中之前或同时诱导单或双DNA链断裂至植物细胞中。示例性化合物在本文描述。

本文所述的方法和组合物适用于一般植物。仅作为举例,植物物种可选自由以下组成的组:芥花、向日葵、玉米、烟草、甜菜、棉花、苞米、小麦(包括但不限于小麦属,普通小麦(Triticum aestivum)、硬粒小麦(Triticum durum)、提莫非维小麦(Triticum timopheevii)、一粒小麦(Triticum monococcum)、斯佩耳特小麦(Triticum spelta)、茹科夫斯基小麦(Triticum zhukovskyi)以及乌拉尔图小麦(Triticum urartu)及其杂种)、大麦(包括但不限于大麦(Hordeum vulgare L.)、Hordeum comosum、平展大麦(Hordeum depressum)、Hordeum intercedens、狐尾大麦(Hordeum jubatum)、海大麦(Hordeum marinum)、海大麦、帕氏大麦(Hordeum parodii)、小大麦(Hordeum pusillum)、Hordeum secalinum、以及钝稃野大麦(Hordeum spontaneum))、水稻(包括但不限于水稻(Oryza sativa)亚属籼稻(indica)、水稻亚属粳稻(japonica)、水稻亚属爪哇稻(javanica)、水稻亚属糯稻(lutinosa)(糯米(glutinous rice))、水稻Aromatica组(例如,印度香米(basmati))、以及水稻(浮稻(floating rice)组))、苜蓿(alfafa)、大麦、高粱、西红柿、芒果、桃子、苹果、梨、草莓、香蕉、甜瓜、木薯、土豆、胡萝卜、莴苣、洋葱、大豆、大豆属、甘蔗、豌豆、鹰嘴豆、紫花豌豆(field bean)、蚕豆、扁豆、芜菁、芜菁甘蓝、球芽甘蓝(brussel sprouts)、羽扇豆、花椰菜、羽衣甘蓝、菜豆、杨树、松树、桉树、葡萄、柑橘、黑小麦、苜蓿、黑麦(包括但不限于野黑麦(Secale sylvestre)、Secale strictum、普通黑麦(Secale cereal)、瓦维洛夫黑麦(Secale vavilovii)、非洲黑麦(Secale africanum)、Secale ciliatoglume、Secale ancestrale以及山地黑麦(Secale montanum))、燕麦、草皮(包括但不限于草皮草,包括结缕草(Zoysia japonica)、Agrostris palustris、草地早熟禾(Poa pratensis)、早熟禾(Poa annua)、马唐(Digitaria sanguinalis)、香附子(Cyperus rotundus)、短叶水蜈蚣(Kyllinga brevifolia)、阿穆尔莎草(Cyperus amuricus)、加拿大蓬(Erigeron Canadensis)、天胡荽(Hydrocotyle sibthorpioides)、鸡眼草(Kummerowia striata)、地锦草(Euphorbia humifusa)、以及野生堇菜(Viola arvensis))和牧草、亚麻、油菜、棉花、芥菜、黄瓜、牵牛花、香脂、辣椒、茄子、万寿菊、莲花、卷心菜、菊花、康乃馨、郁金香、鸢尾、百合、产坚果植物(在它们尚未具体地提及的情况下)。这些还可全部或部分地适用于所有其他生物系统,包括但不限于细菌、酵母、真菌、藻类和哺乳动物细胞以及甚至其细胞器(例如,线粒体和叶绿体)。在一些实施方案中,所述生物体或细胞是选自由以下组成的组的物种:大肠杆菌、耻垢分枝杆菌、枯草杆菌、小球藻、苏云金芽孢杆菌、酿酒酵母、解脂耶氏酵母、Chlamydamonas rhienhardtii、毕赤酵母、棒状杆菌、黑曲霉以及粗糙脉孢菌。在一些实施方案中,所述酵母是解脂耶氏酵母。在其他实施方案中,所述酵母不是酿酒酵母。在一些实施方案中,所述植物或植物细胞是选自由以下组成的组的物种:拟南芥、马铃薯、富利亚薯(Solanum phureja)、水稻、大豆(Glycine max)、糙果苋(Amaranthus tuberculatus)、亚麻、以及玉米。所述植物物种可选自由禾本科的单子叶植物组成的组。禾本科可被分成两种主要进化枝,含有亚科竹亚科(Bambusoideae)、稻亚科(Ehrhartoideae)和早熟禾亚科(Pooideae)的进化枝(BEP进化枝)和含有亚科黍亚科(Panicoideae)、芦竹亚科(Arundinoideae)、虎尾草亚科(Chloridoideae)、假淡竹叶亚科(Centothecoideae)、Micrairoideae、三芒草亚科(Aristidoideae)以及扁芒草亚科(Danthonioideae)的进化枝(PACCMAD进化枝)。亚科竹亚科包括稻族。所述植物物种可涉及BEP进化枝的植物,具体地说亚科竹亚科和稻亚科的植物。所述BET进化枝包括亚科竹亚科、稻亚科和Triticodae群并且无其他亚科早熟禾亚科群。BET作物植物是为BET亚进化枝的成员的生长以获得粮食或饲料的植物,例如大麦、玉米等。

在某些实施方案中,所述方法还包括从植物细胞再生具有通过GRON引入的突变的植物,并且可包括从所述植物采集种子。

在相关方面,本公开涉及包含根据本文所述的方法通过GRON引入的基因组修饰的植物细胞,包含根据本文所述的方法通过GRON引入的基因组修饰的植物,或包含根据本文所述的方法通过GRON引入的基因组修饰的种子;或包含根据本文所述的方法通过GRON引入的基因组修饰的种子的后代。

本公开的其他实施方案将是从以下详述、示例性实施方案和权利要求书显而易见的。

附图简述

图1描绘通过硫代磷酸酯(PS)标记的GRON(在GRON的每一端具有3PS部分)和5’Cy3/3’idC标记的GRON介导的BFP至GFP转化。

图2描绘包含RNA/DNA的GRON(本文被称为“2’-O-甲基GRON”)。

图3是bfp基因上的BFP5 CRISPR所靶向的位置的示意图。

图4示出用各种长度的Cy3或3PS GRON引入的CRISPR对BFP转基因拟南芥模型系统中BFP至GFP转化的百分比的作用的结果。

图5示出用各种长度的3PS GRON引入的CRISPR对BFP转基因拟南芥模型系统中BFP至GFP转化的百分比的作用的结果。

图6是在实施例9中使用的GRON设计的示意图。

图7示出来自71-聚体GRON的如通过流式细胞术测定的来自拟南芥BFP转基因模型系统的GFP阳性原生质体平均百分比的测量。

图8示出来自201-聚体GRON的如通过流式细胞术测定的来自拟南芥BFP转基因模型系统的GFP阳性原生质体的测量。

图9示出用编码和非编码GRON引入的CRISPR对BFP转基因拟南芥模型系统中GFP阳性细胞的平均百分比的作用。

图10是将单链GRON或双链DNA键结至CRISPR/Cas复合物的示意图。

图11示出CRISPR和GRON在介导具有不同长度的间隔区的BFP转基因拟南芥模型系统中的BFP至GFP转化中的作用的结果。

图12示出CRISPR和GRON在介导具有在质粒(gRNA质粒)上编码或用作扩增子(gRNA扩增子)的间隔区的BFP转基因拟南芥模型系统中的BFP至GFP转化中的作用的结果。

图13示出CRISPR和GRON在介导具有未修饰的对比3PS修饰的41-聚体GRON的BFP转基因拟南芥模型系统中的BFP至GFP转化中的作用的结果。

图14示出源自在T=0时用CRISPR质粒处理的茎尖原生质体PEG的3周和6周龄亚麻(Linum usitatissimum)(亚麻(flax))微小愈伤组织的下一代测序的结果。

图15示出源自在T=0时用CRISPR质粒处理的茎尖原生质体PEG的3周和6周龄亚麻微小愈伤组织的下一代测序的结果。

图16示出拟南芥原生质体中的CRISPR-Cas核酸酶活性和基因编辑。16A:在递送后72小时用CRISPR-Cas质粒(BC-1)处理的原生质体中如通过深度测序测定的基于大小的插入缺失的分布。插入缺失代表总读数的0.79%。16B:通过在质粒(BC-1)和GRON(CG-6)递送后第72小时通过流式细胞术鉴别的GFP发荧光原生质体的百分比测量的BFP至GFP编辑。所表示的数据未针对转染效率标准化。误差线是s.e.m.(n=9)。

图17示出使用CRISPR-Cas与具有不同长度和化学修饰的GRON的组合的拟南芥原生质体中的基因编辑。17a:在质粒(BC-1)和GRON(CG-1)或(CG-2)递送后第72小时如通过流式细胞术测量的BFP至GFP基因编辑中的3PS和未修饰的GRON的比较。17b:在质粒(BC-2)和GRON(CG-5)或(CG-8)递送后72小时如通过流式细胞术测量的BFP至GFP基因编辑中的GRON长度的比较。17c:比较在质粒(BC-1)和GRON(CG-6)、(CG-9)或(CG-10)递送后第72小时如通过流式细胞术测量的用于BFP至GFP基因编辑的3PS与2’-O-MeGRON。17d:比较在质粒(BC-3)和GRON(CG-3)或(CG-4)递送后第72小时如通过流式细胞术测量的BFP至GFP基因编辑中的3PS-与Cy3GRON。误差线是s.e.m.(n=3)。(CG-1):BFP反义41nb未修饰的;(CG-2):BFP反义41nb 3PS修饰的;(CG-3):BFP有义41nb 3PS修饰的;(CG-4):BFP有义41nb Cy3修饰的;(CG-5):BFP有义60nb 3PS修饰的;(CG-6):BFP反义201nb 3PS修饰的;(CG-8):BFP有义201nb 3PS修饰的;(CG-9):在第一5’RNA碱基上的BFP反义201nb 2’-O-Me修饰;(CG-10):在前九个5’RNA碱基上的BFP反义201nb 2’-O-Me修饰。

图18示出拟南芥和亚麻原生质体中的TALEN核酸酶活性和基因编辑。18a:在递送后第72小时用TALEN质粒(BT-1)处理的拟南芥原生质体中如通过深度测序测定的基于大小的插入缺失的分布。插入缺失代表总读数的0.51%。18b:在质粒(BT-1)和GRON(CG-7)递送后第48小时如通过流式细胞术测量的BFP至GFP基因编辑。18c:在递送后第7天用靶向EPSPS基因的TALEN(LuET-1)处理的亚麻原生质体中基于bp长度的插入缺失的分布。插入缺失的总频率是0.50%。d,在质粒(LuET-1)和GRON(CG-11)递送至原生质体中之后第7天如通过深度测序测量的亚麻EPSPS基因编辑。总读数的百分比表示作为总读数的百分比的含有T97I和P101A编辑的读数的数目。误差线是s.e.m.(n=3)。(CG-7):BFP有义201nb 3PS修饰的;(CG-11):EPSPS有义144nb Cy3修饰的。

图19示出诱导双链断裂的抗生素博来霉素和腐草霉素对转基因拟南芥原生质体中的BFP至GFP编辑的作用。在PEG引入GRON(CG2)之前,将原生质体用博来霉素或腐草霉素处理90分钟。成功的编辑产生GFP荧光。使用Attune Acoustic Focusing Cytometer定量发荧光的原生质体。

图20示出在GRON递送至BFP转基因原生质体中、从而靶向从BFP至GFP的转化之后五天所转化的BFP转基因拟南芥细胞。绿色荧光指示BFP-GFP编辑。A亮视野图像;B,呈蓝光的同一视场。误差线是s.e.m.(n=4);(CG2):BFP反义41nb 3PS修饰的;(CG12)BFP反义41nb 3PS修饰的非靶向。用ImageXpress Micro系统(Molecular Devices,Sunnyvale,CA,USA)获得图像,比例尺=20μm

图21示出CRISPR-Cas和TALEN设计。21A:CRISPR-Cas质粒的示意图。甘露碱合酶(Mas)启动子驱动为针对高等植物优化的密码子的Cas9基因的转录。Cas9基因包含在所述基因的任一端处的两个SV40核定位信号(NLS)以及2X FLAG表位标签。拟南芥U6启动子驱动gRNA骨架的转录并且转录使用poly(T)信号终止。21B:TALEN质粒的示意图。Mas启动子驱动用2A核糖体跳过序列连接在一起的右和左tale臂的转录。Fok1核酸内切酶连接至每个Tale臂的3’端。左tale的5’端包含核定位信号(NLS)和V5表位标签。rbcT是豌豆RBCSE9基因终止子。

图22示出BFP和EPSPS核酸酶靶区域。a,CRISPR-Cas原型间隔区BC-1、BC-2和BC-3的BFP基因靶区域以及TALEN BT-1,左和右tale臂。PAM序列以红色示出。TALEN结合位点呈粗体且加下划线。BFP至GFP编辑CAC→TAC(H66Y)的位点呈绿色粗体。b,TALEN、LuET-1、左和右tale臂的EPSPS基因靶区域。EPSPS转化的位点ACA>ATA和CCG>GCG(T97I和P101A)是绿色。

图23示出大穗看麦娘(Alopecurus myosuroides)(大穗看麦娘(blackgrass))ACC酶基因产物的氨基酸序列(SEQ ID NO:1)。

图24示出大肠杆菌EPSPS基因产物的氨基酸序列(SEQ ID NO:2)。

图25示出示例性类似EPSPS位置。

图26示出示例性ACC酶序列。

详述

通过寡核苷酸介导的靶向遗传修饰是用于DNA的短链段的特异性改变以产生缺失、短插入和点突变的有价值的技术。这些方法涉及DNA配对/退火,接着DNA修复/重组事件。首先,核酸在由细胞蛋白质因子介导的过程中与双链DNA中的其互补链退火。这种退火产生位于中心的错配碱基对(在点突变的情况下),从而导致最可能刺激内源性蛋白质机器以起始修复过程的第二阶段的结构微扰:染色体序列和/或细胞器中(例如,线粒体和叶绿体)的位点特异性修饰。这种新引入的错配诱导DNA修复机器进行第二修复事件,从而导致靶位点的最终修改。本文公开的各种方面和实施方案中的本发明方法和组合物可通过提供创新颖方法来改进所述方法,所述方法增加DNA修复组分的可用性,从而提高对靶核酸的基因修复介导的修饰的效率和可再现性。

用于位点定向基因组修饰的有效方法对于研究且、临床基因疗法、工业微生物学和农业来说是合乎需要的。一种方法利用三链体形成寡核苷酸(TFO),所述寡核苷酸以序列特异性方式结合双链DNA作为第三链以介导定向诱变。这种TFO可通过递送键结诱变剂如补骨脂素或苯丁酸氮芥(Havre等,Proc Nat’l Acad Sci,U.S.A.90:7879-7883,1993;Havre等,J Virol 67:7323-7331,1993;Wang等,Mol Cell Biol 15:1759-1768,1995;Takasugi等,Proc Nat’l Acad Sci,U.S.A.88:5602-5606,1991;Belousov等,Nucleic Acids Res 25:3440-3444,1997)或通过以足够亲和力结合以引起易错修复(Wang等,Science 271:802-805,1996)来作用。

用于基因组修饰的另一策略涉及诱导外源性DNA片段与靶基因之间的同源重组。这种方法已经成功地用于靶向并破坏哺乳动物中的选定基因并且已经实现携带特异性基因敲除的转基因小鼠的产生(Capeechi等,Science 244:1288-1292,1989;Wagner,美国专利号4,873,191)。这种方法涉及转移选择性标记物以允许所需重组体的分离。在无选择的情况下,典型基因转移实验中转染的DNA的同源与非同源整合的比例较低,通常在1:1000或更小的范围内(Sedivy等,Gene Targeting,W.H.Freeman and Co.,New York,1992)。同源整合的这种低效率限制基因转移用于实验用途或基因疗法的效用。同源重组的频率可通过对来自UV照射和选定致癌物的靶位点的损伤(Wang等,Mol Cell Biol 8:196-202,1988)以及通过位点特异性核酸内切酶(Sedivy等,Gene Targeting,W.H.Freeman and Co.,New York,1992;Rouet等,Proc Nat’l Acad Sci,U.S.A.91:6064-6068,1994;Segal等,Proc Nat’l Acad Sci,U.S.A.92:806-810,1995)来增强。此外,由三链体定向补骨脂素光加成物诱导的DNA损伤能够刺激染色体外载体之内和之间的重组(Segal等,Proc Nat’l Acad Sci,U.S.A.92:806-810,1995;Faruqi等,Mol Cell Biol 16:6820-6828,1996;Glazer,美国专利号5,962,426)。

线性供体片段比其环状对应物重组发生更强(Folger等,Mol Cell Biol 2:1372-1387,1982)。重组在某些实施方案中还可受供体与靶部位两者之间的不间断同源性的长度影响,其中较短片段常常似乎是对于重组的无效底物(Rubnitz等,Mol Cell Biol 4:2253-2258,1984)。尽管如此,使用DNA或DNA/RNA杂合体的短片段用于基因校正仍然是各种策略的重点。(Kunzelmann等,Gene Ther 3:859-867,1996)。

如本文所用的“核酸序列”、“核苷酸序列”和“多核苷酸序列”是指寡核苷酸或多核苷酸以及其片段或部分,并且是指基因组或合成来源的DNA或RNA,其可以是单链或双链的并且表示有义链或反义链。

如本文所用,术语“寡核苷酸”和“寡聚物”是指至少约10个核碱基以及多达约1000个核碱基的聚合物。

如本文所用的术语“DNA修饰分子”和“DNA修饰试剂”是指能够识别且特异性地结合细胞基因组中的核酸序列并且能够修饰基因组内的靶核苷酸序列的分子,其中DNA修饰分子识别和特异性结合核酸序列是蛋白质独立性的。如本文结合DNA修饰分子所用的术语“蛋白质独立性的”意指DNA修饰分子不需要蛋白质和/或酶的存在和/或活性来用于识别和/或特异性地结合核酸序列。DNA修饰分子举例说明但不限于三链体形成寡核苷酸、肽核酸、聚酰胺和寡核苷酸,其意图促进基因转换。本公开的DNA修饰分子在某些实施方案中与用于同源重组的现有技术核酸序列(Wong和Capecchi,Molec.Cell.Biol.7:2294-2295,1987)的区别在于用于同源重组的现有技术核酸序列是蛋白质依赖性的。如本文结合分子所用的术语“蛋白质依赖性的”意指分子需要蛋白质和/或酶的存在和/或活性来用于分子对核酸序列的识别和/或特异性地结合。用于确定DNA修饰分子是否需要蛋白质和/或酶的存在和/或活性来识别和/或特异性地结合核酸序列的方法在本领域的技术内(参见例如,Dennis等Nucl.Acids Res.27:4734-4742,1999)。例如,DNA修饰分子可在不存在任何蛋白质和/或酶的情况下在体外与核酸序列一起孵育。DNA修饰分子与核酸序列之间的特异性结合的检测证明DNA修饰分子是蛋白质独立性的。另一方面,DNA修饰分子与核酸序列之间的特异性结合的不存在证明DNA修饰分子是蛋白质依赖性的和/或需要另外的因子。

“三链体形成寡核苷酸”(TFO)被定义为能够结合在双链DNA或RNA螺旋的大沟中以形成三螺旋的DNA或RNA的序列。虽然TFO不限于任何具体长度,但TFO的优选长度是250个核苷酸或更少、200个核苷酸或更少、或100个核苷酸或更少、或5至50个核苷酸或10至25个核苷酸或15至25个核苷酸。虽然TFO与双链DNA之间的序列特异性程度对于三螺旋的形成来说是必要的,但不需要特定特异性程度,只要三螺旋能够形成即可。同样,不需要TFO与双螺旋之间的特定亲合力或亲和力程度,只要三螺旋能够形成即可。虽然不意图限制在一个实施方案中TFO所特异性地结合的核苷酸序列的长度,但TFO所特异性结合的核苷酸序列是1至100、在一些实施方案中5至50、在其他实施方案中10至25且在其他实施方案中15至25个核苷酸。此外,“三螺旋”被定义为具有结合至双螺旋核酸内的靶序列的寡核苷酸的双螺旋核酸。“双螺旋”核酸可以是任何双链核酸,包括双链DNA、双链RNA和DNA与RNA的混合双链。双链核酸不限于任何具体长度。然而,在优选的实施方案中,它具有大于500bp、在一些实施方案中大于1kb且在一些实施方案中大于约5kb的长度。在许多应用中,双螺旋核酸是细胞、基因组核酸。三链体形成寡核苷酸可以平行或反平行方式结合靶序列。

“肽核酸”、“聚酰胺”或“PNA”是其中磷酸主链被基于N-氨基乙基甘氨酸的聚酰胺结构置换的核酸。PNA具有比遵循沃森-克里克(Watson-Crick)碱基配对规则的其天然对应物对于互补核酸的更高亲和力。PNA可形成具有以下化学计量学的DNA的高度稳定的三螺旋结构:(PNA)2.DNA。虽然肽核酸和聚酰胺不限于任何具体长度,但肽核酸和聚酰胺的优选长度是200个核苷酸或更少,在一些实施方案中100个核苷酸或更少,且在一些实施方案中5至50个核苷酸长。虽然不意图限制在一个实施方案中肽核酸和聚酰胺所特异性地结合的核苷酸序列的长度,但肽核酸和聚酰胺所特异性地结合的核苷酸序列是1至100、在一些实施方案中5至50、在其他实施方案中5至25且在其他实施方案中5至20个核苷酸。

术语“细胞(cell)”是指单个细胞。术语“细胞(cells)”是指细胞的群体。群体可以是包含一种细胞类型的纯群体。同样,群体可包含多于一种细胞类型。在本公开中,关于细胞群体可包含的细胞类型的数目不存在限制。如本文所用的细胞包括但不限于植物愈伤组织细胞、有或无细胞壁的细胞、原核细胞和真核细胞。

当提及细胞的样品时术语“同步”或“同步的”,或“同步细胞”或“同步细胞群体”是指已经处理以引起细胞群体处于细胞周期的同一阶段的多个细胞。样品中的所有细胞不必要是同步的。一小部分细胞可能不与样品中的大多数细胞同步。同步细胞的优选范围是10%-100%之间。更优选的范围是30%-100%之间。此外,细胞不必是单一细胞类型的纯群体。多于一种细胞类型可包含于样品中。在此方面,如与样品中的另一种细胞类型相比,仅一种细胞类型可同步或可处于细胞周期的不同阶段。

当提及单个细胞时术语“同步细胞”意指细胞已进行操作以使得其处于与在操作之前细胞的细胞周期阶段不同的细胞周期阶段。或者,“同步细胞”是指已进行操作以在与对照细胞(例如,不存在操作的细胞)相比时改变(即,增加或减少)在操作之前细胞所处的细胞周期阶段的持续时间。

术语“细胞周期”是指当分裂(即增殖)时细胞所经历的变化的生理学和形态学进展。细胞周期通常被认为包括被称为“间期”、“前期”、“中期”、“后期”和“末期”的阶段。此外,细胞周期的部分可被称为“M(有丝分裂)”、“S(合成)”、“G0”、“G1(间隙1期)”和“G2(间隙2期)”。此外,细胞周期包括以上所述阶段中间的进展时期。

术语“细胞周期抑制”是指细胞或细胞群体中细胞周期进展的终止。细胞周期抑制通常通过使细胞暴露于干扰细胞生理学的方面以防止细胞周期继续的药剂(化学的、蛋白质的或其他)来诱导。

“增殖”或“细胞生长”是指亲本细胞重复地分裂成两个子代细胞、从而导致群体中细胞的总体增加的能力。细胞群体可处于生物体或培养设备中。

术语“能够修饰DNA”或“DNA修饰方式”是指具有诱导或能够帮助诱导DNA的靶向区段的核苷酸序列的变化的工序以及内源性或外源性药剂或试剂。这类变化可通过基于靶向DNA区段一个或多个的缺失、添加或取代来进行。DNA序列变化不必赋予由靶向序列编码的任何基因的功能性变化。此外,DNA的变化不必对任何特定部分或百分比的细胞进行。

术语“目标核苷酸序列”是指任何核苷酸序列,所述核苷酸序列的操作可出于任何原因由本领域的普通技术人员认为是合乎需要的。这类核苷酸序列包括但不限于结构基因(例如,报道基因、选择性标志物基因、致癌基因、耐药基因、生长因子等)的编码序列以及不编码mRNA或蛋白质产物的非编码调控序列(例如,启动子序列、增强子序列、聚腺苷酸化序列、终止序列、调控RNA如miRNA等)。

“氨基酸序列”、“多肽序列”、“肽序列”和“肽”在本文中可互换使用来指代氨基酸的序列。

如本文所用的“靶序列”是指包含长度大于8个核苷酸但长度少于201个核苷酸的序列的双螺旋核酸。在一些实施方案中,靶序列在8至30个碱基之间。一般来说,靶序列由双螺旋核酸上的链之一上的核苷酸序列限定。

如本文所用,当提及双螺旋核酸序列的链之一上的核苷酸序列时,“富含嘌呤的序列”或“多嘌呤序列”被定义为核苷酸的连续序列,其中靶序列的多于50%的核苷酸包含嘌呤碱基。然而,优选的是,富含嘌呤的靶序列含有多于60%的嘌呤核苷酸,在一些实施方案中多于75%的嘌呤核苷酸,在其他实施方案中多于90%的嘌呤核苷酸且在其他实施方案中100%嘌呤核苷酸。

如本文所用,当提及双螺旋核酸序列的链之一上的核苷酸序列时,“富含嘧啶的序列”或“多嘧啶序列”被定义为核苷酸的连续序列,其中靶序列的多于50%的核苷酸包含嘧啶碱基。然而,优选的是,富含嘧啶的靶序列含有多于60%的嘧啶核苷酸,且在一些实施方案中多于75%的嘧啶核苷酸。在一些实施方案中,序列含有多于90%的嘧啶核苷酸并且在其他实施方案中100%的嘧啶核苷酸。

第一核苷酸序列的“变体”被定义为与所述第一核苷酸序列不同的核苷酸序列(例如,通过具有可使用杂交测定或使用DNA测序检测的一个或多个缺失、插入或取代)。检测第一核苷酸序列的基因组序列的改变或修饰包括在此定义内。例如,杂交测定可用于检测:(1)当包含在基因组中时能够与第一核苷酸序列杂交的限制酶片段的模式的改变(即,RFLP分析),(2)第一核苷酸序列的选定部分不能与含有第一核苷酸序列的基因组DNA的样品杂交(例如,使用等位基因特异性寡核苷酸探针),(3)不适当或出人意料的杂交,如与除第一核苷酸序列的正常染色体基因座之外的基因座杂交(例如,使用荧光原位杂交法(FISH)用于中期染色体播散等)。变体的一个实例是突变的野生型序列。

如本文所用的术语“核酸”和“未修饰的核酸”是指已知的四种脱氧核糖核酸碱基(即鸟嘌呤、腺嘌呤、胞嘧啶和胸腺嘧啶)中的任一种。术语“修饰的核酸”是指其结构相对于未修饰的核酸的结构改变的核酸。这类修饰的示例性将是碱基的置换共价修饰,如氨基和环氮的烷基化以及双键的饱和。

如本文所用,当用于提及核酸序列时术语“突变”和“修饰”以及其语法等效物可互换地用来指代缺失、插入、取代、链断裂和/或加合物的引入。“缺失”被定义为其中一个或多个核苷酸不存在的核酸序列的变化。“插入”或“添加”是已经导致添加一个或多个核苷酸的核酸序列的变化。“取代”由一个或多个核苷酸被为与所置换的一个或多个核苷酸不同的分子的分子置换引起。例如,核酸可被不同的核酸置换,如通过胸腺嘧啶被胞嘧啶、腺嘌呤、鸟嘌呤或尿苷置换来举例说明。嘧啶至嘧啶(例如,C至T或T至C核苷酸取代)或嘌呤至嘌呤(例如,G至A或A至G核苷酸取代)被称为转换,而嘧啶至嘌呤或嘌呤至嘧啶(例如G至T或G至C或A至T或A至C)被称为颠换。或者,核酸可被修饰的核酸置换,如通过胸腺嘧啶被胸腺嘧啶乙二醇置换来举例说明。突变可导致错配。术语“错配”是指两个核酸之间的非共价相互作用,每个核酸驻留在不同的多核酸序列上,所述核酸不遵循碱基配对规则。例如,对于部分互补的序列5′-AGT-3′和5′-AAT-3′来说,存在G-A错配(转换)。术语“加合物的引入”或“加合物形成”是指分子与DNA序列中的一个或多个核苷酸的共价或非共价键联以使得所述键联导致DNA复制和/或转录水平的降低(在一些实施方案中从10%至100%,在其他实施方案中从50%至100%,且在一些实施方案中从75%至100%)。

术语“DNA切割体”是指实现链断裂的部分。非限制性实例包括大范围核酸酶、TALE/TALEN、抗生素、锌指以及CRISPR或CRISPR/cas系统。

当提及双链核酸序列时术语“链断裂”包括单链断裂和/或双链断裂。单链断裂(缺口)是指双链核酸序列的两条链之一中的中断。这与双链断裂形成对比,双链断裂是指双链核酸序列的两条链中的中断,其可产生平末端或交错末端。链断裂可直接地(例如,通过电离辐射或用某些化学品处理)或间接地(例如,通过在核酸碱基处的酶切割)引入至双链核酸序列中。

术语“突变细胞”和“修饰的细胞"是指在细胞的基因组序列中含有至少一种修饰的细胞。

当用于提及核苷酸序列时术语“部分”是指所述核苷酸序列的片段。所述片段大小在5个核苷酸残基至整个核苷酸序列减去一个核酸残基的范围内。

DNA分子被说成具有“5′端”和“3′端”,因为单核苷酸以使得一个单核苷酸戊糖环的5′磷酸通过磷酸二酯键联连接至在一个方向上的其邻居的3′氧的方式反应以制备寡核苷酸。因此,如果寡核苷酸的5′磷酸未连接至单核苷酸戊糖环的3′氧,则寡核苷酸的那端被称为“5′端”。如果寡核苷酸的3′氧未连接至另一个单核苷酸戊糖环的5′磷酸,则寡核苷酸的那端被称为“3′端”。如本文所用,即使在较大寡核苷酸内部,核酸序列也可被称为具有5′端和3′端。在线性或环状DNA分子中,离散元件被称为在5′元件或3′元件的“上游”或“下游”。此术语反映转录沿DNA链在5′至3′方向上进行。引导所连接的基因的转录的启动子和增强子元件通过位于编码区的5′或上游。然而,增强子元件即使在位于启动子元件和编码区的3′时也可施加其作用。转录终止和多腺苷酸化信号位于编码区的3′或下游。

如本文所用的术语“重组DNA分子”是指通过分子生物学技术连接在一起的DNA区段构成的DNA分子。

如本文所用的术语“重组蛋白”或“重组多肽”是指使用重组DNA分子表达的蛋白质分子。

如本文所用,术语“载体”和“媒介物”可互换用于指将DNA区段从一个细胞转移至另一个细胞的核酸分子。

如本文所用的术语“处于可操作的组合中”、“处于可操作的顺序”以及“可操作地连接”是指核酸序列的键联处于这种方式,所述方式使得产生能够引导给定基因的转录和/或所需蛋白质分子的合成的核酸分子。所述术语还指氨基酸序列的键联处于这种方式,所述方式使得产生功能性蛋白质。

如本文所用的术语“转染”是指将外来DNA引入至细胞中。转染可通过本领域已知的各种方式来完成,包括磷酸钙-DNA共沉淀、DEAE葡聚糖介导的转染、聚凝胺介导的转染、电穿孔、显微注射、脂质融合、脂质转染剂、原生质体融合、逆转录病毒感染、基因枪(即,粒子轰击)等等。

如本文所用,术语“互补的”或“互补性”用于指通过碱基配对规则相关的“多核苷酸”和“寡核苷酸”(其是指核苷酸序列的可互换的术语)。例如,序列“5′-CAGT-3′”与序列“5′-ACTG-3′”互补。互补性可以是“部分的“或”全部”。“部分”互补性是其中一个或多个核酸碱基根据碱基配对规则不匹配。核酸之间的“全部”或“完全”互补性是其中每一个核酸碱基在碱基配对规则下与另一碱基匹配。核酸链之间的互补性程度可对核酸链之间杂交的效率和强度具有重要作用。这在扩增反应以及依赖于核酸之间的结合的检测方法中可能具有特殊重要性。为方便起见,术语“多核苷酸”和“寡核苷酸”包括包含核苷的分子。

如本文所用关于核苷酸序列的术语“同源性”和“同源的”是指与其他核苷酸序列的互补性程度。可存在部分同源性或完全同源性(即,同一性)。当关于双链核酸序列如cDNA或基因组克隆使用时,术语“基本上同源”是指能够在如上所述的低严格度条件下与双链核酸序列的任一链或两个链杂交的任何核酸序列(例如,探针)。与核酸序列部分互补,即“基本上同源”的核苷酸序列是至少部分地抑制完全互补的序列与靶核酸序列的杂交的核苷酸序列。完全互补核酸序列与靶序列的杂交的抑制可使用杂交测定(DNA印迹或RNA印迹、溶液杂交等)在低严格度条件下来检查。基本上同源的序列或探针将在低严格度条件下竞争并且抑制完全同源序列与靶序列的结合(即,杂交)。这并不是说低严格度条件使得允许非特异性结合,因为低严格度条件要求两个序列彼此的结合是特异性(即,选择性)相互作用。不存在非特异性结合可通过使用缺乏甚至部分互补性程度(例如,小于约30%同一性)的第二靶序列来测试;在不存在非特异性结合的情况下,探针将不与第二非互补靶标杂交。

低严格度条件包括等效于以下的条件:在68℃下在由以下组成的溶液中结合或杂交:5×SSPE(43.8g/l NaCl、6.9g/l NaH2PO4·H2O和1.85g/l EDTA,用NaOH将pH调节至7.4)、0.1%SDS、5×登哈特氏试剂(50×登哈特氏含有每500ml:5g Ficoll(400型,Pharmacia)、5g BSA(级分V;Sigma))和100μg/ml变性的鲑鱼精子DNA,接着当采用长度为约100至约1000个核苷酸的探针时在室温下在包含2.0×SSPE、0.1%SDS的溶液中洗涤。

此外,促进在高严格度条件下杂交(例如,增加杂交和/或洗涤步骤的温度,在杂交溶液中使用甲酰胺等)的条件是本领域中熟知的。当关于核酸杂交使用时,高严格度条件包括等效于以下的条件:在68℃下在由以下组成的溶液中结合或杂交:5×SSPE、1%SDS、5×登哈特氏试剂和100μg/ml变性的鲑鱼精子DNA,接着当采用长度为约100至约1000个核苷酸的探针时在68℃下在包含0.1×SSPE和0.1%SDS的溶液中洗涤。

本领域中熟知多种等效条件可用于包括低严格度条件;可改变因素如探针的长度和性质(DNA、RNA、碱基组成)和靶标的性质(DNA、RNA、碱基组成,存在于溶液中或固定的等)以及盐和其他组分的浓度(例如,甲酰胺、硫酸葡聚糖、聚乙二醇的存在或不存在)以及杂交溶液的组分以产生不同于但等效于上文列举的条件的低严格度杂交条件。

当在涉及目标杂交条件时提及杂交条件时,术语“等效”意指杂交条件和目标杂交条件导致具有相同范围的同源性百分比(%)的核酸序列的杂交。例如,如果目标杂交条件导致第一核酸序列与具有与所述第一核酸序列50%至70%同源性的其他核酸序列的杂交,那么另一种杂交条件在以下情况下被说成等效于所述目标杂交条件:此另一杂交条件也导致所述第一核酸序列与具有与所述第一核酸序列50%至70%同源性的其他核酸序列的杂交。

如本文所用,术语“杂交”用于指使用任何方法进行互补核酸的配对,通过所述方法核酸的一条链通过碱基配对与互补链连接以形成杂交复合物。杂交和杂交的强度(即,核酸之间的缔合强度)受这类因素如核酸之间的互补性程度、所涉及的条件的严格度、所形成的杂合体的Tm以及核酸内的G:C比例影响。

如本文所用,术语“杂交复合物”是指通过在互补G和C碱基之间和互补A和T碱基之间形成氢键在两个核酸序列之间形成的复合物;这些氢键可通过碱基堆叠相互作用进一步稳定。两个互补核酸序列氢键呈反平行构型。杂交复合物可在溶液中(例如,科特(Cot)或罗特(Rot)分析)或在存在于溶液中的一个核酸序列与固定至固相支持体(例如,如用于DNA印迹和RNA印迹、斑点印迹中的尼龙膜或硝基纤维素滤膜,或如用于原位杂交、包括FISH(荧光原位杂交)中的载玻片)的另一个核酸序列之间形成。

如本文所用,术语“Tm”用于指“解链温度”。解链温度是双链核酸分子的群体变成半数解离成单个链的温度。用于计算核酸的Tm的等式是本领域中熟知的。如由标准参考文献所指示,Tm值的简单估算可通过以下等式计算:Tm=81.5+0.41(%G+C),当核酸处于1M NaCl下的水溶液中时(参见,例如Anderson和Young,Quantitative Filter Hybridization,in Nucleic Acid Hybridization,1985)。其他参考文献包括更复杂的计算,所述计算将结构以及序列特征考虑在内用于计算Tm。

如本文所用,术语“严格度”用于指进行核酸杂交的温度条件、离子强度和其他化合物如有机溶剂的存在。“严格度”通常在约Tm-5℃(低于探针的熔解温度5℃)到低于Tm约20℃至25℃的范围内发生。如本领域的技术人员将了解,严格杂交可用于鉴别或检测相同的多核苷酸序列或用于鉴别或检测类似或相关的多核苷酸序列。

当提及第一核苷酸序列与第二核苷酸序列的结合时,术语“特异性结合”、“结合特异性”以及其语法等效物是指相较于所述第二核苷酸序列与第三核苷酸序列之间的相互作用,所述第一核苷酸序列与第二核苷酸序列之间的优先相互作用。特异性结合时不要求绝对结合特异性的相关术语;换言之,术语“特异性结合”不要求所述第二核苷酸序列与所述第一核苷酸序列在不存在所述第二核苷酸序列和第三核苷酸序列的相互作用的情况下相互作用。而是,所述第一核苷酸序列与所述第二核苷酸序列之间的相互作用水平足够大于所述第二核苷酸序列与所述第三核苷酸序列之间的相互作用水平。第一核苷酸序列与第二核苷酸序列的“特异性结合”还意指所述第一核苷酸序列与所述第二核苷酸序列之间的相互作用依赖于所述第一核苷酸序列之上或之内的特定结构的存在;换言之,所述第二核苷酸序列识别且结合所述第一核苷酸序列之上或之内的特异性结构而不是总体上结合核酸或结合核苷酸序列。例如,如果第二核苷酸序列对于第一核苷酸序列之上或之内的结构“A”具有特异性,则含有结构A的第三核酸序列的存在将减少结合至第一核苷酸序列的第二核苷酸序列的量。

如本文所用,术语“可扩增的核酸”用于指可通过任何扩增方法扩增的核酸。考虑“可扩增的核酸”通常将包括“样品模板”。

术语“异源核酸序列”或“异源DNA”可互换地用于指连接至核酸序列的核苷酸序列,在自然中所述核苷酸不与所述核酸序列连接或在自然中所述核苷酸序列与所述核酸序列在不同位置连接。异源DNA对于其所引入的细胞不是内源的,而是获自另一细胞。通常但不是必须地,这种异源DNA编码通常不由表达其的细胞产生的RNA和蛋白质。异源DNA的实例包括报道基因、转录和翻译调控序列、选择性标志物蛋白(例如,赋予耐药性的蛋白质)等。

“扩增”被定义为产生核酸序列的另外拷贝,并且通常使用本领域中熟知的聚合酶链反应技术来进行(Dieffenbach C W和G S Dveksler(1995)PCR Primer,a Laboratory Manual,Cold Spring Harbor Press,Plainview,N.Y.)。如本文所用,术语“聚合酶链反应”(“PCR”)是指特此以引用的方式并入的K.B.Mullis美国专利号4,683,195和4,683,202的方法,所述专利描述用于在无克隆或纯化的情况下增加基因组DNA的混合物中靶序列的区段浓度的方法。所需靶序列的扩增区段的长度由两个寡核苷酸引物相对于彼此的相对位置决定,并且因此此长度是可控制的参数。通过所述方法的重复方面,所述方法被称为“聚合酶链反应”(“PCR”)。因为靶序列的所需扩增区段变成混合物中的主要序列(就浓度而言),所以它们被称为“PCR扩增的”。

使用PCR,有可能将基因组DNA中的特定靶序列的单个拷贝扩增至可通过几种不同方法(例如,与标记的探针杂交;并入生物素化的引物,接着抗生物素蛋白-酶缀合物检测;将32P标记的脱氧核苷三磷酸如dCTP或dATP并入至扩增区段中)检测的水平。除了基因组DNA之外,任何寡核苷酸序列可用适当组的引物分子扩增。具体地说,通过PCR方法本身产生的扩增区段本身是用于后续PCR扩增的有效模板。

这样一种优选的方法(特别是对于商业应用来说)是基于广泛使用的实时PCR技术,并且组合等位基因特异性PCR与阻断剂(ASB-PCR)来抑制野生型等位基因的扩增。ASB-PCR可用于检测从任何类型的组织(包括福尔马林固定的石蜡包埋的肿瘤标本)提取的DNA或RNA中的种系或体细胞突变。发展了一组试剂设计规则,从而实现针对野生型等位基因的背景呈千倍或更大过量的单个点取代、插入或缺失的敏感性和选择性检测。(Morlan J,Baker J,Sinicropi D Mutation Detection by Real-Time PCR:A Simple,Robust and Highly Selective Method.PLoS ONE 4(2):e4584,2009)

术语“逆转录聚合酶链反应”和“RT-PCR”是指一种用于逆转录RNA序列以产生cDNA序列的混合物,接着在无克隆或纯化的情况下增加所述混合物中所转录cDNA序列的所需区段的浓度的方法。通常,在使用两种引物PCR扩增所转录DNA的所需区段之前使用单个引物(例如,寡-dT引物)逆转录RNA。

如本文所用,术语“引物”是指无论是作为纯化的限制性酶切消化物天然存在的还是合成产生的寡核苷酸,当置于诱导与核酸链互补的引物延伸产物的合成的条件下(即,在核苷酸和诱导剂如DNA聚合酶的存在下和在适合的温度和pH下)时所述寡核苷酸能够充当合成起始点。在一些实施方案中,引物是单链的以获得最大扩增效率,但可替代地是双链的。如果是双链的,首先对引物进行处理以在用于制备延伸产物之前分离其链。在一些实施方案中,引物是寡脱氧核糖核苷酸。引物必须足够长以在诱导剂存在下引发延伸产生的合成。引物的确切长度将取决于许多因素,包括温度、引物来源和方法的使用。

如本文所用,术语“探针”是指无论是作为纯化的限制性酶切消化物天然存在还是合成、重组或通过PCR扩增产生的寡核苷酸(即,核苷酸的序列),所述寡核苷酸能够与另一目标寡核苷酸杂交。探针可以是单链的或双链的。探针适用于特定基因序列的检测、鉴别和分离。考虑用于本公开的任何探针将用任何“报道分子”标记,以使得它可在任何检测系统中检测,所述系统包括但不限于酶(例如,ELISA以及基于酶的组织化学测定)、荧光系统、放射性系统和发光系统。不意图本发明限于任何特定检测系统或标记。

如本文所用,术语“限制性核酸内切酶”和“限制酶”是指细菌酶,其各自在特异性核苷酸序列处或附近切割双链或单链DNA或使其缺口,例如可使用IIS型限制性核酸内切酶的核酸内切酶结构域(例如,FokI),如由Kim等,1996,Proc.Nat’l.Acad.Sci.USA,6:1 156-60)所教导。

如本文所用,术语“具有编码基因的核苷酸序列的寡核苷酸”意指包含基因的编码区的核酸序列,即编码基因产物的核酸序列。编码区可以cDNA、基因组DNA或RNA形式存在。当以DNA形式存在时,寡核苷酸可以是单链的(即,有义链)或双链的。另外,如果需要允许正确起始初级RNA转录物的转录和/或正确加工,“具有编码基因的核苷酸序列的寡核苷酸”可包括适合的控制元件,如增强子、启动子、剪接点、多腺苷酸化信号等。此外,本公开的编码区可包含内源性增强子、剪接点、插入序列、多腺苷酸化信号等。

真核细胞中的转录控制信号包含“增强子”元件。增强子包括与参与转录的细胞蛋白质特异性地相互作用的DNA序列的较短阵列(Maniatis,T.等,Science 236:1237,1987)。增强子元件已经从多种真核细胞来源分离,包括植物、酵母、昆虫和哺乳动物和细胞和病毒中的基因。特定增强子的选择取决于将使用什么细胞类型来表达目标蛋白质。

表达载体上“剪接信号”的存在经常导致较高水平的重组转录物表达。剪接信号介导从初级RNA转录物除去内含子并且包括剪接供体和受体位点(Sambrook,J.等,Molecular Cloning:A Laboratory Manual,第2版,Cold Spring Harbor Laboratory Press,New York,第16.7-16.8页,1989)。通常使用的剪接供体和受体位点是来自SV40的16S RNA的剪接点。

真核细胞中重组DNA序列的有效表达需要表达引导所得到的转录物的有效终止和多腺苷酸化的信号。转录终止信号通常见于多腺苷酸化信号的下游并且长度是数百个核苷酸。如本文所用的术语“聚A位点”或“聚A序列”表示引导新生RNA转录物的终止和多腺苷酸化两者的DNA序列。重组转录物的有效多腺苷酸化是合乎需要的,因为缺乏聚A尾的转录物是不稳定的且快速降解。表达载体中使用的聚A信号可以是“异源性的”或“内源性的”。内源性聚A信号是在基因组中给定基因的编码区的3′端天然发现的聚A信号。异源性聚A信号是与一种基因分离且位于另一基因的3′的聚A信号。

如本文所用的术语“启动子”、“启动子元件”或“启动子序列”是指当置于寡核苷酸序列的5′端(即,在其前面)时能够控制寡核苷酸序列转录成mRNA的DNA序列。启动子通常位于寡核苷酸序列的5′(即,上游),其控制寡核苷酸转录成mRNA,并且提供用于由RNA聚合酶特异性结合和用于起始转录的位点。

当提及核酸序列时,术语“启动子活性”是指核酸序列起始寡核苷酸序列转录成mRNA的能力。

术语“组织特异性”在其应用于启动子时是指能够在于不同类型的组织中寡核苷酸的表达的相对不存在下引导针对特定类型的组织选择性表达相同寡核苷酸序列的启动子。启动子的组织特异性可通过以下方式来评估:例如,将报道基因可操作地连接至启动子序列以产生报道基因构建体,将所述报道基因构建体引入至植物或动物的基因组中,以使得所述报道基因构建体被整合至所得到的转基因动物的每一组织中,并且检测所述转基因植物或动物的不同组织中报道基因的表达(例如,检测mRNA、蛋白质或由报道基因编码的蛋白质的活性)。选择性不必是绝对的。在一种或多种组织中检测到报道基因相对于在其他组织中报道基因的表达水平更高的表达水平表明启动子对于其中检测到更高表达水平的组织来说是特异性的。

术语“细胞类型特异性”在应用于启动子时是指能够在于同一组织内的不同细胞类型中寡核苷酸序列的表达的相对不存在下引导相同寡核苷酸序列在特定细胞类型中的选择性表达的启动子。术语“细胞类型特异性”当应用于启动子时也意指能够促进寡核苷酸在单一组织内的区域中的选择性表达的启动子。再次,选择性不必是绝对的。启动子的细胞类型特异性可使用本领域中熟知的方法来评定,例如,如本文所述的免疫组织化学染色。简言之,将组织切片包埋于石蜡中,并且使石蜡切片与第一抗体反应,所述第一抗体对由寡核苷酸序列编码的多肽产物具有特异性,所述寡核苷酸序列的表达受启动子控制。作为石蜡切片的替代方案,可将样品冷冻切片。例如,可在切片之前或期间冷冻切片,从而避免残余石蜡的潜在干扰。允许对第一抗体具有特异性的标记的(例如,过氧化物酶缀合的)第二抗体结合切片的组织且通过显微术检测特异性结合(例如,用抗生物素蛋白/生物素)。

术语“选择性表达”、“选择性地表达"及其语法等效物是指在两个或更多个目标区域中相对表达水平的比较。例如,“选择性表达”当与组织结合使用时是指目标基因在特定组织中或表达所述基因的细胞在所述组织内分别与同一基因在另一组织中的表达水平和表达所述基因的细胞在另一组织中的数目相比基本上更高的表达水平或基本上更大的细胞数目(即,选择性不必是绝对的)。选择性表达不要求(但它可包括)目标基因在特定组织中的表达和同一基因在另一组织中表达的总体不存在。类似地,如本文关于细胞类型所用的“选择性表达”是指目标基因在特定细胞类型中或表达所述基因的细胞在特定细胞类型中当分别与所述基因在另一细胞类型中的表达水平或表达所述基因的细胞在另一细胞类型中的数目相比时基本上更高的表达水平或基本上更大的细胞数目。

当关于两个或更多个核苷酸序列使用时术语“连续的”意指核苷酸序列在不存在插入序列的情况下或在存在不包含一个或多个控制元件的插入序列的情况下串联连接。

如本文所用,术语“编码……的核酸分子”、“编码……的核苷酸”、“编码……的DNA序列”和“编码……的DNA”是指沿着脱氧核糖核酸链的脱氧核糖核苷酸的顺序或序列。这些脱氧核糖核苷酸的顺序确定沿着多肽(蛋白质)链的氨基酸顺序。因此,DNA序列编码氨基酸序列。

当关于核酸使用时,术语“分离的”(如在“分离的寡核苷酸”中)是指在其天然来源中通常与之缔合的至少一种污染物核酸分离的核酸序列。分离的核酸是以不同于在自然中发现它的形式或布置存在的核酸。相比之下,未分离的核酸是以它们存在于自然中的状态发现的核酸如DNA和RNA。例如,给定DNA序列(例如,基因)接近邻近基因在宿主细胞染色体上发现;RNA序列如编码特定蛋白质的特异性mRNA序列在细胞中作为与编码众多蛋白质的多种其他mRNA的混合物发现。然而,编码目标多肽的分离的核酸作为举例包括通常表达目标多肽的细胞中的核酸,其中所述核酸处于不同于天然细胞的核酸的染色体或染色体外位置中,或以另外的方式由与在自然中发现的不同的核酸序列侧接。分离的核酸或寡核苷酸可以单链或双链形式存在。分离的核酸可通过多种技术(例如杂交、斑点印迹等)容易地鉴别(如果需要)。当分离的核酸或寡核苷酸待用于表达蛋白质时,所述寡核苷酸将最低限度含有有义链或编码链(即,寡核苷酸可以是单链的)。或者,它可含有有义链和反义链(即,寡核苷酸可以是双链的)。

如本文所用,术语“纯化的”或“以纯化”是指从样品中除去一种或多种(不需要的)组分。例如,在重组多肽在细菌宿主细胞中表达的情况下,通过除去宿主细胞蛋白质纯化多肽,从而增加重组多肽在所述样品中的百分比。

如本文所用,术语“基本上纯化的”是指从其天然环境中除去、分离或分开的并且至少60%不含、在一些实施方案中75%不含且其他实施方案90%不含与它们所天然缔合的其他组分的分子(核酸或氨基酸序列)。因此“分离的多核苷酸”是基本上纯化的多核苷酸。

如本文所用,当关于结构基因使用时术语“编码区”是指编码由于mRNA分子的翻译而在初生多肽中发现的氨基酸的核苷酸序列。在真核生物中编码区在5'侧的边界通常为编码起始子甲硫氨酸的核苷酸三联体“ATG”,而在3'侧的边界为规定终止密码子的三个三联体(即,TAA、TAG、TGA)之一。

“编码序列”意指可转录和/或翻译以产生mRNA和/或多肽或其片段的核酸或其补体或其部分的序列。编码序列包括基因组DNA或不成熟的初级RNA转录物中的外显子,所述外显子通过细胞的生物化学机器连接在一起以提供成熟的mRNA。反义链是这种核酸的补体,并且编码序列可从其中推断出。

“非编码序列”意指不体内转录成氨基酸或其中tRNA不相互作用以放置或试图放置氨基酸的核酸或其补体或其部分的序列。非编码序列包括基因组DNA或不成熟的初级RNA转录物中的内含子序列和基因相关序列如启动子、增强子、沉默子等两者。

如本文所用,术语“结构基因”或“结构核苷酸序列”是指编码RNA的DNA序列或不控制其他基因的表达的蛋白质。相比之下,“调控基因”或“调控序列”是编码控制其他基因的表达的产物(例如,转录因子)的结构基因。

如本文所用,术语“调控元件”是指控制核酸序列的表达的一些方面的遗传元件。例如,启动子是有助于起始可操作地连接的编码区的转录的调控元件。其他调控元件包括剪接信号、多腺苷酸化信号、终止信号等。

如本文所用,术语“肽转录因子结合位点”或“转录因子结合位点”是指结合蛋白质转录因子并且从而控制核酸序列表达的一些方面的核苷酸序列。例如,Sp-1和AP1(激活蛋白1)结合位点是肽转录因子结合位点的实例。

如本文所用,术语“基因”意指包含结构基因的编码区的脱氧核糖核苷酸序列。“基因”还可包括在5'端和3'端两者上与编码区相邻定位的非翻译序列,以使得所述基因对应于全长mRNA的长度。位于编码区的5'且存在于mRNA上的序列被称为5'非翻译序列。位于编码区的3'或下游且存在于mRNA上的序列被称为3'非翻译序列。术语“基因”涵盖基因的cDNA和基因组形式。基因的基因组形式或克隆含有以被称为“内含子”或“插入区域”或“插入序列”的非编码序列来间断的编码区域。内含子是转录至异源核RNA(hnRNA)中的基因区段;内含子可含有调控元件如增强子。内含子从核或初级转录物中除去或“剪除”;因此,内含子不存在于信使RNA(mRNA)转录物中。mRNA在翻译期间起作用以指定新生多肽中的氨基酸的序列或顺序。基因通常是单个基因座。在正常二倍体生物种,基因具有两个等位基因。然而在,在四倍体土豆中,每个基因具有4个等位基因。在为十二倍体的甘蔗中,可存在12个等位基因/基因。具体实例包括亚麻,其具有两个具有两个等位基因的EPSPS基因座;以及水稻,其具有单个具有两个等位基因的同聚质体ACC酶。

除了含有内含子以外,基因的基因组形式还可包括位于RNA转录物上存在的序列的5'和3'端上的序列。这些序列被称为“侧接”序列或区域(这些侧接序列位于存在于mRNA转录物上的非翻译序列的5'或3')。5'侧接区域可含有控制或影响基因转录的调控序列如启动子和增强子。3'侧接区域可含有引导转录终止、转录后裂解和多腺苷酸化的序列。

“非人动物”是指不为人的任何动物并且包括脊椎动物如啮齿类动物、非人灵长类动物、绵羊、牛、反刍动物、兔类动物、猪、山羊、马、犬科动物、猫科动物、鸟类等。优选的非人动物选自啮齿目。“非人动物”另外是指两栖动物(例如非洲蟾蜍属)、爬行动物、昆虫(例如果蝇属)和其他非哺乳动物物种。

如本文所用,术语“转基因”是指具有来源于另一种生物体的DNA插入的生物体或细胞,所述DNA变得整合至植物或动物的体细胞和/或种系细胞任一者的基因组中。“转基因”意指对于其中发现其的植物或动物来说部分或完全异源(即,在自然中不存在)或对于内源序列(即,在自然中在动物中发现的序列)来说同源且在与天然存在的序列的位置不同的位置处插入至植物或动物的基因组中的DNA序列。包含一种或多种转基因的转基因植物或动物在本公开的范围之内。另外,如本文所用的“转基因的”是指通过本公开的方法、通过同源重组、TFO突变或通过类似的过程修饰和/或“敲除”一种或多种基因(使无功能或使在降低的水平下起作用,即“敲除”突变)的生物体。例如,在一些实施方案中,转基因生物体或细胞包括包含外来启动子和/或编码区的插入的DNA。

“转化的细胞”是已经获得在细胞培养物中生长以获得多个代的能力、在软琼脂中生长的能力和/或不具有通过细胞与细胞接触抑制的细胞生长的能力的细胞或细胞系。在此方面,转化是指外来遗传物质引入至细胞或生物体中。转化可通过已知的任何方法完成,所述方法允许核酸成功引入至细胞中且导致所引入的核酸的表达。“转化”包括但不限于这类方法,如转染、显微注射、电穿孔、核转染和脂质转染(脂质体介导的基因转移)。转化可通过使用任何表达载体完成。例如,考虑使用杆状病毒以将外来核酸引入至昆虫细胞中。术语“转化”还包括方法如P-元件介导的整个昆虫的种系转化。另外,转化是指已经自然地转化(通常通过遗传突变)的细胞。

如本文所用,“外源性”意指编码蛋白质的基因通常不在细胞中表达。此外,“外源性”是指转染至细胞中以增加所述基因的正常(即自然)表达水平。

肽序列和核苷酸序列可以是“内源性的”或“异源的”(即“外来的”)。术语“内源性的”是指在其所引入的细胞中天然发现的序列,只要其不含相对于天然存在的序列的一些修饰。术语“异源性的”是指对于它所引入的细胞来说不是内源性的序列。例如,异源DNA包括连接至或进行操作以变得连接至核酸序列的核苷酸序列,在自然中所述核苷酸序列不与所述核酸序列连接或在自然中所述核苷酸序列与所述核酸序列在不同位置连接。异源性DNA还包括在其所引入的细胞中天然发现的且含有相对于天然存在的序列的一些修饰的核苷酸序列。通常但不是必须地,异源DNA编码通常不由其所引入的细胞产生的异源RNA和异源蛋白质。异源DNA的实例包括编码选择性标志物蛋白(例如,赋予耐药性的蛋白质)的报道基因、转录和翻译调控序列、DNA序列等。

构建体

本文所公开的核酸分子(例如,位点特异性核酸酶或CRISPR的引导RNA)可用于产生重组核酸构建体。在一个实施方案中,本公开的核酸分子可用于制备核酸构建体,例如,用于在目标植物、微生物或动物中表达的表达盒。这种表达可以是瞬时的,例如当构建体未整合至宿主基因组中或在由启动子和构建体在宿主基因组内的位置(如果构建体变得整合)提供的控制下维持。

表达盒可包括可操作地连接至本文所公开的位点特异性核酸酶或引导RNA序列的调控序列。所述盒可另外地包含至少一种待共转化至生物体中的另外基因。或者,可在多个表达盒上提供另外基因。

所述核酸构建体可配备有多个限制位点,所述限制位点用于插入位点特异性核酸酶编码序列以便处于调控区的转录调控之下。核酸构建体可另外地包含编码选择性标志物基因的核酸分子。

任何启动子可用于产生核酸构建体。启动子对于本文所公开的植物、微生物或动物宿主核酸序列而言可以是天然的或类似的、或外来的或异源的。另外地,启动子可以是天然序列或可替代地是合成序列。在启动子对于植物、微生物或动物宿主而言是“外来的”或“异源的”的情况下,意图启动子是在所述启动子所引入的天然植物、微生物或动物中未发现的。如本文所用,嵌合基因包含可操作地连接至对于编码序列而言异源的转录起始区的编码序列。

本文公开的位点定向核酸酶序列可使用异源启动子表达。

任何启动子可用于制备构建体以控制位点定向核酸酶序列的表达,如提供用于在植物、微生物或动物中表达的组成型、组织优选的、诱导型或其他启动子的启动子。组成型启动子包括例如,Rsyn7启动子的核心启动子和在WO 99/43 838和美国专利号6,072,050中公开的其他组成型启动子;核心CaMV 35S启动子(Odell等Nature 313:810-812;1985);稻肌动蛋白(McElroy等,Plant Cell 2:163-171,1990);泛素(Christensen等,Plant Mol.Biol.12:619-632,1989和Christensen等,Plant Mol.Biol.18:675-689,1992);pEMU(Last等,Theor.Appl.Genet.81:581-588,1991);MAS(Velten等,EMBO J.3:2723-2730,1984);ALS启动子(美国专利号5,659,026)等。其他组成型启动子包括例如美国专利号5,608,149;5,608,144;5,604,121;5,569,597;5,466,785;5,399,680;5,268,463;5,608,142以及6,177,611。

组织优选的启动子可用于引导特定植物组织内的位点定向核酸酶表达。这类组织优选的启动子包括但不限于叶优选的启动子、根优选的启动子、种子优选的启动子以及干优选的启动子。组织优选的启动子包括Yamamoto等,Plant J.12(2):255-265,1997;Kawamata等,Plant Cell Physiol.38(7):792-803,1997;Hansen等,Mol.Gen Genet.254(3):337-343,1997;Russell等,Transgenic Res.6(2):157-168,1997;Rinehart等,Plant Physiol.1 12(3):1331-1341,1996;Van Camp等,Plant Physiol.1 12(2):525-535,1996;Canevascini等,Plant Physiol.112(2):513-524,1996;Yamamoto等,Plant Cell Physiol.35(5):773-778,1994;Lam,Results Probl.Cell Differ.20:181-196,1994;Orozco等Plant Mol Biol.23(6):1129-1138,1993;Matsuoka等,Proc Nat’l.Acad.Sci.USA 90(20):9586-9590,1993;以及Guevara-Garcia等,Plant J.4(3):495-505,1993。

核酸构建体还可包括转录终止区。在使用转录终止区的情况下,任何终止区可用于制备核酸构建体。例如,终止区可源自另一来源(即,对于启动子而言外来或异源的)。可供用于本公开的构建体中的终止区的实例包括来自根癌农杆菌(A.tumefaciens)的Ti质粒的那些,如章鱼碱合酶和胭脂碱合酶终止区。还参见Guerineau等,Mol.Gen.Genet.262:141-144,1991;Proudfoot,Cell 64:671-674,1991;Sanfacon 等,Genes Dev.5:141-149,1991;Mogen等,Plant Cell 2:1261-1272,1990;Munroe等,Gene 91:151-158,1990;Ballas等,Nucleic Acids Res.17:7891-7903,1989;以及Joshi等,Nucleic Acid Res.15:9627-9639,1987。

与本文公开的任何方面、实施方案、方法和/或组合物结合,核酸可进行优化以获得在转化的植物中增加的表达。即,编码位点定向核酸酶蛋白质的核酸可使用植物优选的密码子进行合成以获得改进的表达。关于宿主优选的密码子使用的讨论,参见例如,Campbell和Gowri,(Plant Physiol.92:1-11,1990)。用于合成植物优选的基因的方法在本领域内是可供使用的。参见,例如美国专利号5,380,831和5,436,391,以及Murray等,Nucleic Acids Res.17:477-498,1989。还参见例如,Lanza等人,BMC Systems Biology 8:33-43,2014;Burgess-Brown等人.,Protein Expr.Purif.59:94-102,2008;Gustafsson等人,Trends Biotechnol 22:346-353,2004。

此外,可对本文公开的核酸序列进行其他序列修饰。例如,另外的序列修饰已知增强在细胞宿主中的基因表达。这些包括消除编码假多腺苷酸化信号、外显子/内含子剪接位点信号、转座子样重复序列的序列以及对于基因表达可能有害的其他这类良好表征的序列。还可将序列的G-C含量调整至靶细胞宿主的平均水平,如参照在所述宿主细胞中表达的已知基因来计算。此外,可对序列进行修饰以避免预测的发夹二级mRNA结构。

其他核酸序列也可用于制备本公开的构建体,例如以增强位点定向核酸酶编码序列的表达。这类核酸序列包括来自烟草花叶病毒(TMV)、苞米枯黄斑点病毒和苜蓿花叶病毒的苞米AdhI、内含子基因(Callis等,Genes and Development 1:1183-1200,1987)以及前导序列(W-序列)的内含子(Gallie等,Nucleic Acid Res.15:8693-8711,1987;和Skuzeski等,Plant Mol.Biol.15:65-79,1990)。来自苞米的萎缩-1基因座的第一内含子已经显示增加嵌合基因构建体中基因的表达。美国专利号5,424,412和5,593,874公开了在基因表达构建体中使用特异性内含子,并且Gallie等(Plant Physiol.106:929-939,1994)也已经显示内含子适用于在组织特异性基础上调控基因表达。为了进一步增强或优化位点定向核酸酶基因表达,本文公开的植物表达载体还可包含含有基质结合区(MAR)的DNA序列。用这类修饰的表达系统转化的植物细胞然后可展示本公开的核苷酸序列的过量表达或组成型表达。

本文公开的表达构建体还可包括能够引导针对叶绿体或原核生物和真核生物种的其他细胞器和结构的位点定向核酸酶序列的表达的核酸序列。这类核酸序列包括叶绿体靶向序列,所述序列编码叶绿体转运肽以将目标基因产物引导至植物细胞叶绿体。这类转运肽是本领域中已知的。关于叶绿体靶向序列,“可操作地连接”意指编码转运肽的核酸序列(即,叶绿体靶向序列)连接至本文公开的位点定向核酸酶核酸分子,以使得两个序列是连续的且在同一阅读框中。参见例如,Von Heijne等,Plant Mol.Biol.Rep.9:104-126,1991;Clark等,J.Biol.Chem.264:17544-17550,1989;Della-Cioppa等,Plant Physiol.84:965-968,1987;Romer等,Biochem.Biophys.Res.Commun.196:1414-1421,1993;以及Shah等,Science 233:478-481,1986。

叶绿体靶向序列是本领域中已知的并且包括核酮糖-1,5-双磷酸羧化酶的叶绿体小亚基(Rubisco)(de Castro Silva Filho等,Plant Mol.Biol.30:769-780,1996;Schnell等,J.Biol.Chem.266(5):3335-3342,1991);5-(烯醇丙酮酰)莽草酸-3-磷酸合酶(EPSPS)(Archer等,J.Bioenerg.Biomemb.22(6):789-810,1990);色氨酸合酶(Zhao等人,J.Biol.Chem.270(1 1):6081-6087,1995);质体蓝素(Lawrence等,J.Biol.Chem.272(33):20357-20363,1997);分支酸合酶(Schmidt等,J.Biol.Chem.268(36):27447-27457,1993);以及光收获叶绿素a/b结合蛋白(LHBP)(Lamppa等,J.Biol.Chem.263:14996-14999,1988)。还参见,Von Heijne等,Plant Mol.Biol.Rep.9:104-126,1991;Clark等,J.Biol.Chem.264:17544-17550,1989;Della-Cioppa等,Plant Physiol.84:965-968,1987;Romer等,Biochem.Biophys.Res.Commun.196:1414-1421,1993;以及Shah等,Science 233:478-481,1986。

与本文公开的任何方面、实施方案、方法和/或组合物结合,可制备核酸构建体以引导从植物细胞叶绿体表达突变体位点定向核酸酶编码序列。用于叶绿体转化的方法是本领域中已知的。参见例如,Svab等,Proc.Nat’l.Acad.Sci.USA 87:8526-8530,1990;Svab和Maliga,Proc.Nat’l.Acad.Sci.USA 90:913-917,1993;Svab和Maliga,EMBO J.12:601-606,1993。所述方法依赖于通过同源重组将含有选择性标志物的DNA粒子枪递送至质体基因组中。另外地,质体转化可通过核编码的和质体引导的RNA聚合酶的组织优选的表达、通过沉默的携带质体的转基因的反式活化来完成。这种系统已经在McBride等Proc.Nat’l.Acad.Sci.USA 91:7301-7305,1994中报道。

可针对在叶绿体中的表达来优化待靶向叶绿体的目标核酸,以便考虑在所述植物细胞核与这种细胞器之间在密码子使用方面的差异。按照这种方式,可使用叶绿体优选的密码子来合成目标核酸。参见例如美国专利号5,380,831,其以引用的方式并入本文。

核酸构建体可用于转化植物细胞且再生包含位点定向核酸酶编码序列的转基因植物。用于转化植物的多种植物转化载体和方法是可供使用的。参见例如美国专利号6,753,458,An,G.等,Plant Physiol.,81:301-305,1986;Fry,J.等,Plant Cell Rep.6:321-325,1987;Block,M.,Theor.Appl Genet.76:767-774,1988;Hinchee等,Stadler.Genet.Symp.203212.203-212,1990;Cousins等,Aust.J.Plant Physiol.18:481-494,1991;Chee,P.P.和Slightom,J.L.,Gene.118:255-260,1992;Christou等,Trends.Biotechnol.10:239-246,1992;D'Halluin等,Bio/Technol.10:309-3 14,1992;Dhir等,Plant Physiol.99:81-88,1992;Casas等,Proc.Nat’l.Acad Sci.USA 90:11212-11216,1993;Christou,P.,In Vitro Cell.Dev.Biol.-Plant 29P:1 19-124,1993;Davies,等,PlantCell Rep.12:180-183,1993;Dong,J.A.和Mc Hughen,A.,Plant Sci.91:139-148,1993;Franklin,C.I.和Trieu,T.N.,Plant.Physiol.102:167,1993;Golovkin等,Plant Sci.90:41-52,1993;Guo Chin Sci.Bull.38:2072-2078;Asano,等,Plant Cell Rep.13,1994;Ayeres N.M.和Park,W.D.,Crit.Rev.Plant.Sci.13:219-239,1994;Barcelo等,Plant.J.5:583-592,1994;Becker,等,Plant.J.5:299-307,1994;Borkowska等,Acta.Physiol Plant.16:225-230,1994;Christou,P.,Agro.Food.Ind.HiTech.5:17-27,1994;Eapen等,Plant Cell Rep.13:582-586,1994;Hartman等,Bio-Technology 12:919923,1994;Ritala等,Plant.Mol.Biol.24:317-325,1994;以及Wan,Y.C.和Lemaux,P.G.,Plant Physiol.104:3748,1994。所述构建体还可使用同源重组转化至植物细胞中。

当提及肽序列和核苷酸序列时术语“野生型”分别是指当从天然存在的来源分离时具有所述肽序列和核苷酸序列的特征的肽序列和核苷酸序列(基因座/基因/等位基因)。野生型肽序列和核苷酸序列是在群体中最经常观察到的序列,并且因此分别任意指定所述肽序列和核苷酸序列的“正常”或“野生型”形式。“野生型”还可指在一个或多个特定核苷酸位置处的序列,或在一个或多个特定密码子位置处的序列,或在一个或多个特定氨基酸位置处的序列。

“共有序列”被定义为对于至少25%的序列含有相同的氨基酸或核苷酸或功能上等效的氨基酸或核苷酸的氨基酸或核苷酸的序列。相同的或功能上等效的氨基酸或核苷酸不必是连续的。

如本文所用的术语“芸苔属”是指芸苔属的植物。示例性芸苔属物种包括但不限于埃塞俄比亚芥(B.carinata)、长芥(B.elongate)、地中海包心菜(B.fruticulosa)、芥菜型油菜(B.juncea)、甘蓝型油菜(B.napus)、塌棵菜(B.narinosa)、黑芥(B.nigra)、甘蓝(B.oleracea)、小松菜(B.perviridis)、芜菁(B.rapa)(同义词B.campestris)、褐芥(B.rupestris)、B.septiceps以及亚洲芥(B.tournefortii)。

核碱基是碱基,在某些优先的实施方案中其是嘌呤、嘧啶或其衍生物或类似物。核苷是含有戊呋喃糖基部分的核碱基,例如,任选取代的核糖核苷或2'-脱氧核糖核苷。核苷可通过一些键联部分中的一种连接,所述连接部分可能含磷或不含磷。通过未取代的磷酸二酯键联连接的核苷被称为核苷酸。如本文所用的术语“核碱基”包括肽核碱基、肽核酸的亚基和吗啉核碱基以及核苷和核苷酸。

寡核碱基是包含核碱基的聚合物;在一些实施方案中所述聚合物的至少一部分可通过沃森-克里克(Watson-Crick)碱基配对与具有互补序列的DNA杂交。寡核碱基链可具有单个5'和3'末端,其是聚合物的最终核碱基。特殊的寡核碱基链可含有所有类型的核碱基。寡核碱基化合物是含有一个或多个可为互补的且通过沃森-克里克碱基配对杂交的寡核碱基链的化合物。核糖型核碱基包括含有戊呋喃糖基的核碱基,其中2'碳是被羟基、烷氧基或卤素取代的亚甲基。脱氧核糖型核碱基是不同于核糖型核碱基的核碱基且包括所有不含有戊呋喃糖基部分的核碱基。

在某些实施方案中,寡核碱基链可包括寡核碱基链和寡核碱基链的区段或区域两者。寡核碱基链可具有3'端和5'端,并且当寡核碱基链与一条链同延时,所述链的3'和5'端也是所述链的3'和5'末端。

如本文所用,术语“密码子”是指构成遗传密码的三个相邻核苷酸(RNA或DNA)的序列,所述序列决定在蛋白质合成期间特异性核酸插入多肽链中或用于终止蛋白质合成的信号。术语“密码子”还用于指原始DNA所转录至其中的信使RNA中的三个核苷酸的对应(和互补)序列。

如本文所用,术语“同源性”是指在蛋白质和DNA之中的序列相似性。术语“同源性”或“同源的”是指同一性程度。可存在部分同源性或完全同源性。部分同源序列是当与另一序列相比时具有小于100%序列同一性的序列。

“杂合的”是指在同源染色体区段中在一个或多个遗传基因座处具有不同的等位基因。如本文所用,“杂合的”还可指样品、细胞、细胞群体或生物体,其中可检测到在一个或多个遗传基因座处的不同等位基因。杂合样品还可通过本领域中已知的方法例如像核酸测序来测定。例如,如果测序电泳图谱显示在单个基因座处的两个峰且两个峰大约是相同大小,则样品可被表征为杂合的。或者,如果一个峰小于另一个,但是较大峰的大小的至少约25%,则样品可被表征为杂合的。在一些实施方案中,较小峰是较大峰的至少约15%。在其他实施方案中,较小峰是较大峰的至少约10%。在其他实施方案中,较小峰是较大峰的至少约5%。在其他实施方案中,检测到最小量的较小峰。

如本文所用,“纯合的”是指在同源染色体区段中在一个或多个遗传基因座处具有相同的等位基因。“纯合的”还可指样品、细胞、细胞群体或生物体,其中可检测到在一个或多个遗传基因座处的相同等位基因。纯合样品可通过本领域中已知的方法例如像核酸测序来测定。例如,如果测序电泳图谱显示在特定基因座处的单个峰,则样品可关于所述基因座被称为“纯合的”。

术语“半合子的”是指因为第二等位基因缺失或不存在于同源染色体区段上而在细胞或生物体的基因型中仅出现一次的基因或基因区段。如本文所用,“半合子的”还可指样品、细胞、细胞群体或生物体,其中在基因型中仅可检测到一次在一个或多个遗传基因座处的基因。

如本文所用的术语“接合性状态”是指如通过本领域中已知和本文所述的测试方法所测定出现杂合、纯合或半合子的样品、细胞群体或生物体。术语“核酸的接合性状态”意指测定核酸的来源是否出现杂合、纯合或半合子的。“接合性状态”可指序列中的单个核苷酸位置中的差异。在一些方法中,关于单个突变样品的接合性状态可被分类为纯合野生型、杂合(即,一个野生型等位基因和一个突变体等位基因)、纯合突变体或半合子的(即,野生型或突变体等位基因的单个拷贝)。

如本文所用,术语“RTDS”是指由Cibus开发的The Rapid Trait Development SystemTM(RTDS)。RTDS是在不并入外来基因或控制序列的情况下有效于进行基因序列中的精确变化的位点特异性基因修饰系统。

如本文所用的术语“约”意指数量上加或减10%。例如,“约3%”将涵盖2.7%-3.3%,并且“约10%”将涵盖9%-11%。此外,在本文中结合定量术语使用“约”的情况下,应理解,除将值加上或减去10%以外,也涵盖和描述了定量术语的精确值。例如,术语“约3%”明确地考虑、描述并精确地包括3%。

RTDS和修复寡核苷酸(GRON)

本公开总体上涉及用于改进对基因组或其他核苷酸序列中的特定位置的修饰的靶向效率的新颖方法。另外,本公开涉及已经通过本文所公开的方法修饰、突变或标记的靶DNA。本公开还涉及已经通过本公开的方法修饰的细胞、组织和生物体。本公开依赖于与成功的转化系统Rapid Trait Development System(RTDSTM,Cibus US LLC)部分相关的组合物和方法的发展。

RTDS是基于酮利用细胞自己的基因修复系统来特异性地修饰原位基因序列并且不插入外来DNA和基因表达控制序列而改变靶向基因。这种工序实现基因序列中的精确变化,而基因组的剩余部分保持未改变。与常规转基因GMO相比,既不不存在外来遗传物质的整合,也不存在任何外来遗传物质留在植物中。通过RTDS引入的基因序列的变化不是随机插入的。因为受影响的基因保持在其天然位置中,所以未发生随机、不受控制的或不利的表达模式。

实现这种变化的RTDS是如本文所述的化学合成的寡核苷酸(GRON),其可由DNA和修饰的RNA碱基两者以及其他化学部分组成,并且被设计成在靶向基因位置处杂交以产生错配的碱基对。这种错配的碱基对充当信号以将细胞自身的天然基因修复系统吸引至所述位点并且校正(置换、插入或缺失)所述基因内的指定核苷酸。一旦校正过程完成,RTDS分子降解并且现在修饰的或修复的基因在所述基因的正常内源性控制机制下表达。

本文公开的方法和组合物可用具有如本文和下文中详述描述的构象和化学的“基因修复寡核碱基”(GRON)实践或进行。如本文考虑的“基因修复寡核碱基”还已经使用其他名称描述在公布的科学和专利文献中,所述名称包括“重组诱发性(recombinagenic)寡核碱基”;“RNA/DNA嵌合寡核苷酸”;“嵌合寡核苷酸”;“混合双链寡核苷酸(MDON)”;“RNA DNA寡核苷酸(RDO)”;“基因靶向寡核苷酸”;“基因质体”;“单链修饰的寡核苷酸”;“单链寡脱氧核苷酸突变载体”(SSOMV);“双链突变载体”和“异源双链突变载体”。基因修复寡核碱基可使用本领域中通常使用的任何方法引入至植物细胞中,所述方法包括但不限于微载体(生物射弹递送)、微纤维、聚乙二醇(PEG)介导的摄取、电穿孔和显微注射。

在一个实施方案中,基因修复寡核碱基是混合双链寡核苷酸(MDON),其中混合双链寡核苷酸的RNA型核苷酸通过用氟、氯或溴官能团置换2'-羟基或通过在2'-O上安置取代基而成为RNA酶抗性的。适合的取代基包括Kmiec II中教导的取代基。替代取代基包括美国专利号5,334,711(Sproat)教导的取代基和专利公布EP 629 387和EP 679 657(总称Martin申请案)教导的取代基,其特此以引用的方式并入。如本文所用,核糖核苷酸的2'-氟、2'-氯或2'-溴衍生物或者其T-OH被Martin申请案或Sproat中所述的取代基取代的核糖核苷酸被称为“T-取代的核糖核苷酸”。如本文所用,术语“RNA型核苷酸”意指通过未取代的磷酸二酯键联或由Kmiec I或Kmiec II教导的任何非天然键联与混合双链寡核苷酸的其他核苷酸连接的T-羟基或2'-取代核苷酸。如本文所用,术语“脱氧核糖型核苷酸”意指具有T-H的核苷酸,其可通过未取代的磷酸二酯键联或由Kmiec I或Kmiec II教导的任何非天然键联与基因修复寡核碱基的其他核苷酸连接。

在本公开的一个具体实施方案中,基因修复寡核碱基是单独通过未取代的磷酸二酯键连接的混合双链寡核苷酸(MDON)。在替代实施方案中,通过由Kmiec II教导的取代的磷酸二酯、磷酸二酯衍生物和无磷基键联进行连接。在又一个实施方案中,混合双链寡核苷酸中的每个RNA型核苷酸是2'-取代的核苷酸。2'-取代的核糖核苷酸的具体优选实施方案是2'-氟、T-甲氧基、2'-丙氧基、2'-烯丙氧基、2'-羟乙氧基、2'-甲氧基乙氧基、T-氟丙氧基和2'-三氟丙氧基取代的核糖核苷酸。2'-取代的核糖核苷酸的更优选的实施方案是2'-氟、2'-甲氧基、2'-甲氧基乙氧基和2'-烯丙氧基取代的核苷酸。在另一个实施方案中,混合双链寡核苷酸通过未取代的磷酸二酯键连接。

虽然仅具有单一类型的2'-取代的RNA型核苷酸的混合双链寡核苷酸(MDON)更方便合成,但本公开的方法仍可用具有两种或更多种类型的RNA型核苷酸的混合双链寡核苷酸实践。由在两个RNA型三核苷酸之间引入脱氧核苷酸引起的中断可能不会影响RNA区段的功能,因此,术语RNA区段涵盖术语如“中断的RNA区段”。未中断的RNA区段被称为连续RNA区段。在一个替代实施方案中,RNA区段可含有交替的抗RNA酶核苷酸和未取代的2'-OH核苷酸。混合双链寡核苷酸在一些实施方案中具有少于100个核苷酸且其他实施方案中少于85个核苷酸、但多于50个核苷酸。第一条链和第二条链进行沃森-克里克碱基配对。在一个实施方案中,混合双链寡核苷酸的链通过接头如单链六、五或四核苷酸共价键合,以使得第一条链和第二条链是具有单个3'端和单个5'端的寡核苷酸单链的区段。通过添加“发夹帽”可保护3'端和5'端,借此3'端和5'端核苷酸与邻近核苷酸进行沃森-克里克配对。另外,可在远离3'端和5'端的第一条链与第二条链之间的接点处安置第二发夹帽,以使得第一条链和第二条链之间的沃森-克里克配对稳定。

第一条链和第二条链含有与靶基因/等位基因的两个片段同源的两个区域,即,具有与靶基因/等位基因相同的序列。同源区含有RNA区段的核苷酸,并且可含有连接DNA区段的一种或多种DNA型核苷酸,并且还可含有不在插入DNA区段内的DNA型核苷酸。具有同源性的两个区域被一个区域分开且各自与所述区域相邻,所述区域具有与靶基因的序列不同的序列,被称为“异源区”。异源区可含有一个、两个或三个错配的核苷酸。错配的核苷酸可以是连续的或者可替代地被与靶基因/等位基因同源的一个或两个核苷酸分开。或者,异源区还可含有插入或一个、两个、三个或五个或更少的核苷酸。或者,混合双链寡核苷酸的序列可能与靶基因/等位基因序列不同,差别在于从混合双链寡核苷酸中缺失一个、两个、三个或五个或更少的核苷酸。在这种情况下,异源区的长度和位置被视为缺失的长度,即使没有混合双链寡核苷酸的核苷酸在异源区内。当意图一个或多个取代时,与两个同源区互补的靶基因片段之间的距离与异源区的长度相同。当异源区含有插入时,同源区在混合双链寡核苷酸中分开的距离因而比其互补同源片段在基因/等位基因中分开的距离要远,而当异源区编码缺失时情况相反。

混合双链寡核苷酸的RNA区段各自是同源区的一部分,即,序列中与靶基因的片段相同的区域,其区段一起在一些实施方案中含有至少13个RNA型核苷酸且在一些实施方案中16至25个RNA型核苷酸或其他实施方案中18-22个RNA型核苷酸或在一些实施方案中20个核苷酸。在一个实施方案中,同源区的RNA区段被插入DNA区段分开且与其相邻,即,由插入DNA区段“连接”。在一个实施方案中,异源区的每个核苷酸是插入DNA区段的核苷酸。含有混合双链寡核苷酸的异源区的插入DNA区段被称为“突变区段(mutator segment)”。

在本公开的另一个实施方案中,基因修复寡核碱基(GRON)是单链寡脱氧核苷酸突变载体(SSOMV),如公开于国际专利申请PCT/USOO/23457、美国专利号6,271,360、6,479,292和7,060,500中,其以引用的方式整体并入。SSOMV的序列与美国专利号5,756,325;5,871,984;5,760,012;5,888,983;5,795,972;5,780,296;5,945,339;6,004,804和6,010,907以及国际公布号WO 98/49350;WO 99/07865;WO 99/58723;WO 99/58702;和WO 99/40789中描述的突变载体基于相同的原理。SSOMV的序列含有与靶序列同源、被一个区域分开的两个区域,所述区域含有所需的遗传改变,其被称为突变区。突变区可具有与靶序列中分开同源区的序列相同长度的序列,但是具有不同的序列。这样的突变区可引起取代。或者,SSOMV中的同源区可彼此邻接,而具有相同序列的靶基因中的区域被一个、两个或更多个核苷酸分开。这样的SSOMV引起不在SSOMV上的核苷酸从靶基因缺失。最后,与同源区相同的靶基因的序列可能在靶基因中相邻,但被SSOMV序列中的一个、两个或更多个核苷酸分开。这样的SSOMV引起靶基因序列中的插入。在某些实施方案中,SSOMV不会与本身退火。

SSOMV的核苷酸是通过未修饰的磷酸二酯键连接的脱氧核糖核苷酸,除了3'末端和/或5'末端核苷酸间键联或者可替代地两个3'末端和/或5'末端核苷酸间键联可以是硫代磷酸酯或氨基磷酸酯。如本文所用,核苷酸间键联是SSOMV的核苷酸之间的键联,并且不包括3'端核苷酸或5'端核苷酸与封闭取代基之间的键联。在一个具体的实施方案中,SSOMV的长度在21与55个脱氧核苷酸之间,并且相应地,同源区的长度具有至少20个脱氧核苷酸的总长度且至少两个同源区应各自具有至少8个脱氧核苷酸的长度。

SSOMV可被设计为与靶基因的编码链或非编码链互补。当所需的突变是单碱基取代时,优选突变核苷酸和靶向核苷酸是嘧啶。在与实现所需的功能结果一致的程度上,优选突变核苷酸和互补链中的靶核苷酸都是嘧啶。特别优选是编码颠换突变的SSOMV,即,C或T突变核苷酸分别与互补链中的C或T核苷酸错配。

冈崎片段/2’-OME GRON设计。在各种实施方案中,GRON可具有RNA和DNA核苷酸和/或其他类型的核碱基。在一些实施方案中,所述DNA或RNA核苷酸中的一个或多个包含修饰。在一些实施方案中,第一5’核苷酸是RNA核苷酸并且所述核苷酸的剩余部分是DNA。在其他实施方案中,第一5’RNA核苷酸用2-O-Me进行修饰。在其他实施方案中,前两个、三个、四个、五个、六个、七个、八个、九个、十个或更多个5’核苷酸是RNA核苷酸并且所述核苷酸的剩余部分是DNA。在其他实施方案中,所述前两个、三个、四个、五个、六个、七个、八个、九个、十个或更多个5’RNA核苷酸中的一个或多个用2-O-Me进行修饰。在植物细胞中,DNA中的双链断裂通常通过NHEJ DNA修饰途径进行修复。所述途径不需要模板来修复DNA并且因此是易错的。使用这种途径来修复植物细胞的DNA的优点是它是快速、普遍的且最重要地可在细胞未在进行DNA复制的任何时间发生。在修复植物细胞中的复制叉外部的双链断裂中起作用的另一种DNA修复途径称为同源重组(HR);然而,与NHEJ途径不同,这种类型的修复是精确的且需要施用DNA模板(GRON)。因为这些GRON模拟靶向基因的DNA复制叉处的冈崎片段,所以对于本领域的技术人员来说与双链DNA切割体一起使用它们不是显而易见的。

提高效率

本公开提供多种方法以使用修复寡核苷酸增加靶基因的转化效率,并且所述方法可单独地或彼此组合使用。这些包括:

1.将修饰引入至修复寡核苷酸,其将DNA修复机器吸引至靶向(错配)位点。

A.在寡核苷酸中引入一个或多个无碱基位点(例如,10个碱基内,并且在一些实施方案中具有所需错配位点的5个碱基)产生为碱基切除修复(BER)中的中间体并且将BER机器吸引至靶向通过修复寡核苷酸转化的位点附近的损害。dSpacer(无碱基呋喃)修饰的寡核苷酸可如在例如Takeshita等,J.Biol.Chem.,262:10171-79,1987中所描述来制备。

B.包括诱导单链或双链断裂成寡核苷酸或与寡核苷酸一起断裂的化合物产生通过NHEJ、微同源介导的末端连接(MMEJ)和同源重组修复的损害。作为举例,抗生物素的博来霉素家族、锌指、FokI(或限制酶的任何IIS型类别)可共价连接至修复寡核苷酸的3’或5’端,以便在靶向通过修复寡核苷酸转化的位点附近引入双链断裂。抗生物素的博来霉素家族是DNA裂解糖肽,其包括博来霉素、博莱霉素(zeocin)、腐草霉素(phleomycin)、他利霉素(tallysomycin)、培洛霉素以及其他。

C.引入并入寡核苷酸中的一个或多个8’氧代dA或dG(例如,在10个碱基内,并且在一些实施方案中具有所需错配位点的5个碱基)产生与由活性氧物种产生的损害类似的损害。这些损害诱导所谓的“推动修复”系统。参见例如,Kim等,J.Biochem.Mol.Biol.37:657-62,2004。

2.增加修复寡核苷酸的稳定性:

在寡核苷酸的3’端引入反向碱基(idC)在修复寡核苷酸上产生3’封闭端。

在修复寡核苷酸的5’和/或3’引入一个或多个2’O-甲基核苷酸或碱基,所述核苷酸或碱基增加杂交能量(参见例如WO2007/073149)。

在修复寡核苷酸的5’端引入一个或多个2’O-甲基RNA核苷酸,从而导致DNA碱基,所述碱基提供所需的错配位点,从而产生冈崎片段样核酸结构。

缀合的(5’或3’)嵌入燃料如吖啶、补骨脂素、溴化乙锭和赛博(Syber)染料。

引入5’末端帽如T/A钳夹、胆固醇部分、SIMA(HEX)、riboC和亚磷酰胺(amidite)。

主链修饰如硫代磷酸酯、2’-O甲基、膦酸甲酯、锁核酸(LNA)、MOE(甲氧基乙基)、di PS和肽核酸(PNA)。

使修复寡核苷酸例如与链内交联试剂如顺铂和丝裂霉素C交联。

与荧光染料如Cy3、DY547、Cy3.5、Cy3B、Cy5和DY647缀合。

3.通过并入增加杂交能量的碱基增加修复寡核苷酸的杂交能量(参加例如WO2007/073149)。

4.通过使用核苷酸多聚体(二聚体、三聚体、四聚体等)作为合成的结构单元提高修复寡核苷酸合成的质量。这导致更少的偶联步骤和更容易地分离全长产物与结构单元。

5.使用较长修复寡核苷酸(即,长度大于55核苷酸,例如像本文所述的长度,例如具有在修复寡核苷酸中靶向的一个或多个突变或两个或更多个突变。

前述方法的实例提供在表1中。

表1.示例性GRON化学

前述修饰还可包括已知的核苷酸修饰如甲基化、5’嵌入染料、对5’和3’端的修饰、主链修饰、交联剂、环化和“帽”以及用类似物如肌苷取代一个或多个天然存在的核苷酸。核苷酸的修饰包括添加吖啶、胺、生物素、瀑布蓝、胆固醇、Cy3@、Cy5@、Cy5.5@Daboyl、地高辛、二硝基苯基、Edans、6-FAM、荧光素、3'-甘油基、HEX、IRD-700、IRD-800、JOE、磷酸补骨脂素、若丹明、ROX、硫醇(SH)、间隔基、TAMRA、TET、AMCA-S"、SE、BODIPY°、Marina Blue@、PacificBlue@、Oregon Green@、Rhodamine Green@、Rhodamine Red@、Rhodol Green@和Texas Red@。多核苷酸主链修饰包括膦酸甲酯、2'-OMe-膦酸甲酯RNA、硫代磷酸酯、RNA、2'-OMeRNA。碱基修饰包括2-氨基-dA、2-氨基嘌呤、3'-(ddA)、3'dA(蛹虫草菌素)、7-脱氮-dA、8-Br-dA、8-氧代-dA、N6-Me-dA、无碱基位点(dSpacer)、生物素dT、2'-OMe-5Me-C、2'-OMe-丙基-C、3'-(5-Me-dC)、3'-(ddC)、5-Br-dC、5-1-duc、5-Me-dC、5-F-dC、羧基-dT、可转化的dA、可转化的dC、可转化的dG、可转化的dT、可转化的dU、7-脱氮-dG、8-Br-dG、8-氧代-dG、O6-Me-dG、S6-DNP-dG、4-甲基-吲哚、5-硝基吲哚、2'-OMe-肌苷、2'-dl、o6-苯基-dl、4-甲基-吲哚、2'-脱氧水粉菌素、5-硝基吲哚、2-氨基嘌呤、dP(嘌呤类似物)、dK(嘧啶类似物)、3-硝基吡咯、2-硫代-dT、4-硫代-dT、生物素-dT、羧基-dT、04-Me-dT、04-三唑dT、2'-OMe-丙炔基-U、5-Br-dU、2'-dU、5-F-dU、5-l-dU、04-三唑dU。所述术语还涵盖肽核酸(PNA)、DNA类似物,其中主链是由N-(2-氨基乙基)-甘氨酸单元而不是糖组成的假肽。PNA模拟DNA的行为并且结合互补核酸链。PNA的中性主链导致比正常所实现的更强结合和更大特异性。此外,已经利用PNA的独特化学、物理和生物特性以产生强大的生物分子工具、反义和反义剂、分子探针和生物传感器。

寡核苷酸可具有缺口、间隙、修饰的寡核苷酸如修饰的寡核苷酸主链、无碱基核苷酸或其他化学部分。在另一实施方案中,寡核碱基的至少一个链包括至少一个另外修饰的核苷酸,例如,2′-O-甲基修饰的核苷酸如MOE(甲氧基乙基)、具有5′-硫代磷酸酯基的核苷酸、连接至胆固醇基衍生物、2′-脱氧-2′-氟修饰的核苷酸、2′-脱氧-修饰的核苷酸、锁核苷酸、无碱基核苷酸(核碱基缺失或具有替代其的羟基(参见例如,Glen Research,http://www.glenresearch.com/GlenReports/GR21-14.html))、2′-氨基修饰的核苷酸、2′-烷基修饰的核苷酸、吗啉代核苷酸、亚磷酰胺以及包含核苷酸的非天然碱基。还包括各种盐、混合盐以及游离酸形式。

优选的修饰的寡核苷酸主链包括例如硫代磷酸酯、手性硫代磷酸酯、二硫代磷酸酯、磷酸三酯、氨基烷基磷酸三酯、甲基以及其他烷基膦酸酯(包括3'-亚烷基膦酸酯、5'-亚烷基膦酸酯以及手性膦酸酯)、亚膦酸酯、氨基磷酸酯(包括3'-氨基氨基磷酸酯以及氨基烷基氨基磷酸酯)、硫代氨基磷酸酯、硫代烷基膦酸酯、硫代烷基膦酸三酯、具有正常3'-5'键联、这些键联的2'-5'连接类似物的硒代磷酸酯和硼烷磷酸酯,以及具有其中一个或多个核苷酸间键联为3'至3'、5'至5'或2'至2'键联的那些。具有反向极性的优选的寡核苷酸在3'最末端的核苷酸间键联处包含单个3'至3'键联,即可为无碱基(核碱基缺失或其被羟基替代)的单个反向核苷残基。键联翻转的最常见用途是添加3'-3'键联至具有硫代磷酸酯主链的反义寡核苷酸的末端。3'-3'键联通过产生具有两个5'-OH端和无3'-OH端的寡核苷酸使反义寡核苷酸至外切核酸酶降解稳定。可通过使用“逆转亚磷酰胺”在寡核苷酸合成期间将键联翻转引入至特定位置中。这些试剂在5'-OH位置上具有亚磷酰胺基团且在3'-OH位置上具有二甲氧基三苯甲基(DMT)保护基。通常,DMT保护基是在5'-OH上且亚磷酰胺是在3'-OH上。

修饰碱基的实例包括但不限于2-氨基嘌呤、2′-氨基-丁酰芘-尿苷、2'-氨基尿苷、2′-脱氧尿苷、2′-氟-胞苷、2′-氟-尿苷、2,6-二氨基嘌呤、4-硫代-尿苷、5-溴-尿苷、5-氟-胞苷、5-氟尿苷、5-吲哚-尿苷、5-甲基-胞苷、肌苷、N3-甲基-尿苷、7-脱氮-鸟嘌呤、8-氨基己基-氨基-腺嘌呤、6-硫代-鸟嘌呤、4-硫代-胸腺嘧啶、2硫代-胸腺嘧啶、5-碘-尿苷、5-碘-胞苷、8-溴-鸟嘌呤、8-溴-腺嘌呤、7-脱氮-腺嘌呤、7-二氮杂-鸟嘌呤、8-氧代-鸟嘌呤、5,6-二氢-尿苷以及5-羟基甲基-尿苷。这些合成单元是可商购的(例如,购自Glen Research公司)并且可通过化学合成并入至DNA中。

糖部分的修饰的实例是3′-脱氧化2′-氟化和阿拉伯糖苷化,然而,它不应被解释为限于此。通过化学合成也可能将这些并入DNA中。

5′端修饰的实例是5′-胺化、5′-生物素化、5′-荧光素化、5′-四氟-荧光素化、5′-硫化以及5′-丹磺酰化,然而,它不应被解释为限于此。

3′端修饰的实例是3′-胺化、3′-生物素化、2,3-二脱氧化、3′-硫化、3′-丹磺酰化、3′-羧化以及3′-胆固醇化,然而,它不应被解释为限于此。

在一个优选的实施方案中,寡核苷酸可含有5'封闭取代基,其通过接头连接至5'末端碳。接头的化学结构并不重要,除了它的长度,长度在一些实施方案中应为至少6个原子长,且接头应当灵活。可使用多种无毒取代基,如生物素、胆固醇或其他类固醇或非嵌入的阳离子荧光染料。特别优选的制造寡核碱基的试剂是由Glen Research,Sterling Va.(现在GE Healthcare)作为Cy3TM和Cy5TM销售的试剂,所述试剂是封闭的亚磷酰胺,其并入寡核苷酸后分别产生3,3,3',3'-四甲基N,N'-异丙基取代的吲哚单碳菁染料和吲哚二碳菁染料。Cy3是特别优选的。当吲哚碳菁是N-氧基烷基取代的时,其可通过具有5'端磷酸酯的磷酸二酯,方便地与寡脱氧核苷酸的5'末端连接。当直接使用可商购的Cy3亚磷酰胺时,所得的5'修饰包括封闭取代基和接头,所述封闭取代基和接头一起是N-羟丙基、N'-磷脂酰丙基3,3,3',3'-四甲基吲哚单碳菁。所考虑的其他染料包括若丹明6G、四甲基若丹明、磺酰若丹明101、部花青540、Atto565、Atto550 26、Cy3.5、Dy547、Dy548、Dy549、Dy554、Dy555、Dy556、Dy560、mStrawberry和mCherry。

在一个优选实施方案中,吲哚碳菁染料在吲哚环的3和3'位置被四次取代。不受理论的限制,这些取代防止染料变成嵌入染料。在这些位置处的取代基的身份不重要。

本文所述的寡核苷酸设计还可与其他DNA编辑或重组技术组合用作更有效的供体模板,所述技术包括但不限于使用位点特异性同源重组通过锌指核酸酶基因靶向、转录活化因子样效应物核酸酶(TALEN)或成簇的规律间隔的短回文重复序列(CRISPR)。

本公开在某些方面和实施方案中总体上涉及用于有效修饰基因组细胞DNA和/或将DNA重组至细胞的基因组DNA中的方法。虽然不限于任何具体用途,但文提供的一些方法可在某些实施方案中适用于例如将修饰引入细胞的基因组中以便测定所述修饰对细胞的作用。例如,可将修饰引入编码酶的核苷酸序列中以测定所述修饰是否改变酶的酶活性,和/或测定酶的催化区的位置。或者,可将修饰引入DNA结合蛋白的编码序列中以测定所述蛋白质的DNA结合活性是否被改变,并且因此以描述蛋白质内的特定DNA结合区。另一个替代方案是将修饰引入非编码调控序列(例如,启动子、增强子、调控RNA序列(miRNA)等)中以便测定修饰修饰对可操作地连接至非编码调控序列的第二序列的表达水平的作用。这对于例如限定具有调控活性的特定序列来说可能是合乎需要的。

DNA切割体

用于产生靶向基因破坏的一种策略是通过使用DNA切割体如位点特异性核酸内切酶产生单链或双链DNA断裂。核酸内切酶最常用于生物体中的靶向基因破坏,所述生物体在传统上对于更常规的基因靶向方法难治,如海藻、植物和较大动物模型,包括人。例如,存在涉及用于治疗和预防HIV感染的锌指核酸酶的进行中的当前人临床试验。另外,核酸内切酶工程化当前用于尝试破坏作物中产生不希望的表型的基因。

锌指

一类人工核酸内切酶是锌指核酸内切酶。锌指核酸内切酶将非特异性裂解结构域(通常FokI核酸内切酶的非特异性裂解结构域)与工程化以结合特异性DNA序列的锌指蛋白结构域组合。锌指核酸内切酶的分子结构使得它们是用于将位点特异性双链断裂递送至基因组的通用平台。因为FokI核酸内切酶裂解为二聚体,所以防止脱靶裂解事件的一种策略一直是设计在相邻的9碱基对位点处结合的锌指结构域。还参见美国专利号7,285,416;7,521,241;7,361,635;7,273,923;7,262,054;7,220,719;7,070,934;7,013,219;6,979,539;6,933,113;6,824,978;其各自特此以引用的方式整体并入本文。

TALEN

TALEN是用于诱导单链或双链断裂成特异性DNA位点的可靶向的核酸酶,其然后通过可用于产生裂解位点处的序列改变的机制修复。

用于工程化TALEN的DNA结合区的基本构件是来源于由黄单胞菌属(Xanthomonas spp.)变形菌门编码的天然存在的TALE的高度保守的重复结构域。通过TALEN的DNA结合由在重复序列的氨基末端和羧基末端侧接另外的TALE衍生结构域的高度保守的33-35个氨基酸重复序列的阵列介导。

这些TALE重复序列特异性地结合DNA的单个碱基,所述碱基的身份由通常在重复序列的位置12和13处发现的两个高变残基确定,其中阵列中重复序列的数目对应于所需靶核酸的长度,选择重复序列的身份以匹配靶核酸序列。在一些实施方案中,靶核酸在15与20个碱基对之间以便最大化靶位点的选择性。靶核酸的裂解通常在TALEN结合的50个碱基对内发生。用于TALEN识别位点设计的计算机程序已经在本领域中描述。参见例如,Cermak等,Nucleic Acids Res.2011年7月;39(12):e82。

一旦被设计来匹配所需的靶序列,TALEN可重组表达且引入至原生质体中作为外源蛋白质,或从原生质体内的质粒表达或作为mRNA施用。

大范围核酸酶

归巢核酸内切酶(还被称为大范围核酸酶)是序列特异性核酸内切酶,所述核酸内切酶由于其较大(例如,>14bp)裂解位点而以较高特异性程度产生基因组DNA中的双链断裂。虽然归巢核酸内切酶对于其靶位点的特异性允许所诱导的DNA断裂的确切靶向,但归巢核酸内切酶裂解位点是罕见的并且发现靶向基因中的天然存在的裂解位点的概率较低。

另一类人工核酸内切酶是工程化的大范围核酸酶。工程化的归巢核酸内切酶通过修饰现有归巢核酸内切酶的特异性产生。在一种方法中,将变异引入天然存在的归巢核酸内切酶的氨基酸序列中并且然后筛选所得到的工程化的归巢核酸内切酶以选择裂解靶向结合位点的功能性蛋白质。在另一种方法中,嵌合归巢核酸内切酶通过组合两种不同归巢核酸内切酶的识别位点来进行工程化以产生由每个归巢核酸内切酶的半位点组成的新识别位点。参见,例如美国专利号8,338,157。

CRISPR或CRISPR/cas系统

CRISPR-Cas系统包含三种基本设计组分:1)Cas基因、转录物(例如,mRNA)或蛋白质;2)引导RNA(gRNA);以及3)crRNA(CRISPR RNA)是从编码CRISPR重复阵列的RNA转录物加工的RNA区段,其具有与外源DNA位点互补的“原型间隔区”(例如,内源性DNA靶区域)以及CRISPR重复的一部分。参见例如,PCT申请号WO/2014/093661和WO/2013/176772。

Cas(CRISPR相关的)基因、转录物(例如,mRNA)或蛋白质

来自质粒载体的瞬时Cas表达指导Cas蛋白递送和或指导CasmRNA递送至植物细胞中。Cas基因针对在高等植物、藻类或酵母中表达进行密码子优化并且在适用时由组成型、诱导型、阻止特异性或物种特异性启动子驱动。Cas转录终止和聚腺苷酸化信号是NosT、RBCT、HSP18.2T或其他基因特异性或物种特异性终止子。Cas基因盒或mRNA可包含内含子,天然的或与基因特异性启动子和或合成启动子组合。Cas蛋白可包含一个或多个核定位信号序列(NLS)、突变、缺失、改变或截短。在瞬时表达系统中,Cas基因盒可与CRISPR-Cas系统的其他组分如同一瞬时表达载体上的gRNA盒组合。或者,Cas基因盒可独立于gRNA盒或CRISPR-Cas系统的其他组分定位且从构建体表达。CRISPR相关(Cas)基因编码具有各种预测的核酸操作活性的蛋白质,如核酸酶、解旋酶和聚合酶。Cas基因包括cas9。Cas9是编码含有预测的RuvC样和HNH核酸内切酶结构域的大蛋白质,并且与存在于大多数古细菌和许多细节中的CRISPR适应性免疫系统相关。Cas9蛋白由两个叶组成:

1)识别(REC)叶-由三个结构域组成:

a)BH(桥螺旋)

b)REC1-有助于RNA引导的DNA靶向

c)REC2-有助于RNA引导的DNA靶向

2)核酸酶(NUC)叶-由三个结构域组成:

a)RuvC-有助于RNA引导的DNA靶向;核酸内切酶活性

b)HNH–核酸内切酶活性

c)PI-PAM相互作用

在其他实施方案中,所述Cas基因可以是cas9的同源物,其中RuvC、HNH、REC和BH结构域是高度保守的。在一些实施方案中,cas基因是来自以下种类的那些。

引导RNA(gRNA)

gRNA或sgRNA(单引导RNA)被工程化为crRNA与反式活化CRISPR RNA(tracrRNA)序列的一部分之间的融合,其将Cas9引导至与所述原型间隔区互补的特异性DNA序列。引导RNA可包括含有嵌合RNA设计与长tracerRNA杂合体、短tracrRNA杂合体或天然CRISPR阵列+tracrRNA构象的表达盒。嵌合gRNA将crRNA的靶向特异性与tracrRNA的骨架特性组合至单一转录物中。gRNA转录物表达通过物种特异性高等植物RNA聚合酶III启动子如来自U6或U3snRNA基因家族的那些进行控制(Wang等人2008)。gRNA转录终止根据Wang等人2008通过聚dT的6-20个核苷酸序列段进行控制。gRNA表达盒位于来自CRISPR-Cas系统的相同或不同瞬时表达载体上。gRNA转录物可体外合成且直接递送至植物细胞中,独立于gRNA瞬时表达载体或与其组合。

靶区域

引导RNA包含限定对DNA靶区域、原型间隔区和原型间隔区相邻基序(PAM)的特异性的两种组分。通常20个核苷酸、但可基于DNA靶标变化的原型间隔区序列提供对CRISPR-Cas复合物的DNA序列特异性。DNA靶标还包含NNG或NAG三核苷酸序列(PAM),其中N表示紧邻原型间隔区3’或下游的任何核苷酸。

单组分方法

与Le Cong等人(2013)和其他类似,用于CRISPR-Cas基因编辑的简化的“单组分方法”,其中单一瞬时表达构建体包含CRISPR-Cas复合物的所有组分,即gRNA和Cas表达盒两者。这允许任何给定植物或作物中用于靶向单个或多个基因座的简单分子设计。靶向多个基因座可通过靶标特异性gRNA盒中的简单跳过来实现。另外,物种特异性启动子、终止子或其他表达增强元件可容易地穿梭进出“单组分方法”瞬时载体,从而允许以物种特异性方式最优表达gRNA和Cas蛋白。

双组分方法

在双组分方法中,Cas和gRNA表达盒位于不同的瞬时表达载体上。这允许单独地递送CRISPR-Cas编辑组分,从而允许同一细胞内gRNA与Cas的不同比率。类似于单组份方法,所述双组分方法还允许影响CRISPR–Cas组分的表达的启动子、终止子或其他元件容易地改变且允许以物种特异性方法靶向DNA。

抗生素

另一种类别的核酸内切酶是抗生素,其是DNA裂解糖肽,如抗生素的博来霉素家族是DNA裂解糖肽,其包括博来霉素、博莱霉素(zeocin)、腐草霉素(phleomycin)、他利霉素(tallysomycin)、培洛霉素以及在本文进一步描述的其他。

其他DNA修饰分子可用于靶向基因重组中。例如,肽核酸可用于将修饰诱导至一个或多个靶细胞的基因组中(参见例如,Ecker,美国专利号5,986,053,其以引用的方式并入本文)。简言之,包含至少部分肽主链的合成寡核苷酸用于靶向同源基因组核苷酸序列。在结合双螺旋DNA之后或通过连接至肽核酸的诱变剂,诱导靶DNA序列的修饰和/或重组发生。靶向特异性通过靶向序列与基因组序列之间的序列同源性程度测定。

此外,本公开不限于本文用于执行基因组序列的修饰的具体方法。确实,考虑多种方法。例如,可使用三链体螺旋形成寡核苷酸(TFO)靶向基因。TFO可例如通过PCR或通过使用基因合成仪设备合成产生。另外,在发现适合的天然序列的情况下TFO可分离自基因组DNA。TFO可以多种方式使用,包括例如通过键结至诱变剂如包括但不限于补骨脂素或苯丁酸氮芥(参见例如,Havre等,Proc Nat’l Acad Sci,U.S.A.90:7879-7883,1993;Havre等,J Virol 67:7323-7331,1993;Wang等,Mol Cell Biol 15:1759-1768,1995;Takasugi等,Proc Nat’l Acad Sci,U.S.A.88:5602-5606,1991;Belousov等,Nucleic Acids Res 25:3440-3444,1997)。此外,例如,TFO可键结至供体双链DNA(参见例如,Chan等,J Biol Chem 272:11541-11548,1999)。TFO还可通过以足够亲和力结合以引起易错修复来起作用(Wang等,Science 271:802-805,1996)。

本文所公开的方法不必限于所使用的DNA修饰试剂的性质或类型。例如,这类DNA修饰试剂释放自由基,所述自由基导致DNA链断裂。或者,所述试剂烷基化DNA以形成将阻断复制和转录的加合物。在另一个替代方案中,所述试剂产生抑制细胞酶、从而导致链断裂的交联或分子。已经连接至寡核苷酸以形成TFO的DNA修饰试剂的实例包括但不限于,吲哚并咔唑、萘二咸亚安(NDI)、反铂、博来霉素、环丙烷并吡咯并吲哚的类似物以及菲并二氢二噁英。具体地说,吲哚并咔唑是拓扑异构酶I抑制剂。这些酶的抑制导致链断裂和DNA蛋白质加合物形成(Arimondo等,Bioorganic and Medicinal Chem.8,777,2000)。NDI是可氧化鸟嘌呤的光氧化剂,所述鸟嘌呤可能引起鸟嘌呤残基的位点处的突变(Nunez,等,Biochemistry,39,6190,2000)。反铂已经显示在TFO连接至所述试剂时与三链体靶标中的DNA反应。这种反应引起将是致突变的DNA加合物的形成(Columbier,等,Nucleic Acids Research,24:4519,1996)。博来霉素是广泛作用辐射模拟物的DNA断裂剂。它已经连接至寡核苷酸并且显示作为呈所述型式的断裂剂是活性的(Sergeyev,Nucleic Acids Research 23,4400,1995;Kane,等,Biochemistry,34,16715,1995)。环丙烷并吡咯并吲哚的类似物已经连接至TFO并且显示烷基化三链体靶序列中的DNA。烷基化DNA然后将含有将是致突变的化学加合物(Lukhtanov,等,Nucleic Acids Research,25,5077,1997)。菲并二氢二噁英是在光活化时释放自由基种类的掩蔽醌。它们已经连接至TFO且已经显示在光活化时将断裂引入双链DNA中(Bendinskas等,Bioconjugate Chem.9,555,1998)。

本公开考虑诱导修饰和/或重组的其他方法。例如,另一个实施方案涉及诱导外源DNA片段与靶基因之间的同源重组(参见例如,Capecchi等,Science 244:1288-1292,1989)或通过使用具有针对靶向位点的亲和力的肽核酸(PNA)。仍然其他方法包括通过聚酰胺进行的序列特异性DNA识别和靶向(参见例如,Dervan等,Curr Opin Chem Biol 3:688-693,1999;Biochemistry 38:2143-2151,1999)和使用具有位点特异性活性的核酸酶(例如,锌指蛋白、TALEN、大范围核酸酶和/或CRISPR)。

本公开不限于修饰和/或重组的任何特定频率。在一些实施方案中,本文公开的方法导致把核苷酸序列中0.2%至3%的修饰频率。然而,考虑任何修饰和/或重组频率(即,0%与100%之间)在本公开的范围内。修饰和/或重组频率取决于用于诱导修饰和/或重组的方法、所使用的细胞类型、所靶向的特定基因以及所使用的DNA突变试剂(如果存在)。另外,由于检测方法的限制,用于检测修饰和/或重组的方法可能不能检测修饰和/或重组的所有发生。此外,一些修饰和/或重组事件可能是沉默的,从而未给出已发生修饰和/或重组的可检测的指示。不能检测沉默的修饰和/或重组事件提供修饰和/或重组的人工低估。由于这些原因及其他原因,本公开不必限于任何具体修饰和/或重组频率。在一个实施方案中,修饰和/或重组的频率在0.01%与100%之间。在另一个实施方案中,修饰和/或重组的频率在0.01%与50%之间。在另一个实施方案中,修饰和/或重组的频率在0.1%与10%之间。在另一个实施方案中,修饰和/或重组的频率在0.1%与5%之间。

如本文关于用能够将突变引入细胞基因组中的靶位点的DNA修饰分子处理的细胞群体所用的术语“突变的频率”是指在处理的群体中与用DNA修饰分子处理的细胞的总数目相比含有在靶位点处的突变的细胞的数目。例如,相对于用被设计来在细胞基因组中的靶位点处引入突变的键结至补骨脂素DNA修饰分子TFO处理的细胞群体,5%的突变频率意指在用TFO-补骨脂素处理的总计100个细胞之中,5个细胞含有靶位点处的突变。

虽然本公开不必限于细胞中DNA修饰和/或重组的任何精确度,但应考虑取决于所需结果,本公开的一些实施方案要求较高精确度。例如,基因修复所需的特异性序列变化(例如,特定碱基变化)要求与产生仅需要破坏基因的基因敲除相比更高的精确度。使用本公开的方法,实现大于现有技术方法的修饰和/或同源重组的更高精确度水平。

基因修复寡核碱基至植物细胞中的递送

用于转化植物细胞的任何通常已知的方法可用于递送基因修复寡核苷酸。说明性方法在以下列出。本文的方法和组合物可涉及许多方法中的任一种来用一种或多种DNA修饰试剂转染细胞。用于将DNA修饰试剂引入一种或多种细胞的方法是本领域中熟知的并且包括但不限于,显微注射、电穿孔、被动吸附、磷酸钙-DNA共沉淀、DEAE葡聚糖介导的转染、聚凝胺介导的转染、脂质融合、脂质转染剂、核转染、原生质体融合、逆转录病毒感染、基因枪(即,粒子轰击)等。

用于通过射弹穿透将DNA的较大片段引入具有纤维素细胞壁的植物细胞中的金属微载体(微球体)的使用是相关领域的技术人员所熟知的(自此生物射弹递送)。美国专利号4,945,050;5,100,792和5,204,253描述用于选择用于发射它们的微载体和装置的一般技术。

在本文公开的方法中使用微载体的具体条件可包括描述于国际公布WO 99/07865中的条件。在说明性技术中,按顺序添加冰冷的微载体(60mg/mL)、混合双链寡核苷酸(60mg/mL)、2.5M CaCl2和0.1M亚精胺;例如通过涡旋轻轻搅拌混合物10分钟,并且然后在室温下静置10分钟,随后将微载体在5体积的乙醇中稀释,离心并重悬于100%乙醇中。在粘附溶液使用8-10μg/μL微载体、14-17μg/mL混合双链寡核苷酸、1.1-1.4M CaCl2和18-22mM亚精胺的浓度可获得良好结果。在8μg/μL微载体、16.5μg/mL混合双链寡核苷酸、1.3M CaCl2和21mM亚精胺的条件下观察到最佳结果。

还可使用微纤维将基因修复寡核碱基引入植物细胞中以穿透细胞壁和细胞膜。Coffee等的美国专利号5,302,523描述使用碳化硅纤维来促进黑色墨西哥甜的苞米悬浮培养物的转化。可用于使用微纤维引入用于植物细胞转化的DNA的任何机械技术可用于递送用于衍变的基因修复寡核碱基。

用于基因修复寡核碱基的微纤维递送的示例性技术是如下:将无菌微纤维(2μg)悬浮在150μL的含有约10μg的混合双链寡核苷酸的植物培养基中。使悬浮培养物沉降并且将等体积的压积细胞和无菌纤维/核苷酸悬浮液涡旋10分钟并接种。立即或在达约120小时的延迟情况下(如对于特定性状适当的)施加选择性培养基。

在替代实施方案中,基因修复寡核碱基可通过来源于植物部分的原生质体的电穿孔递送至植物细胞。根据本领域的技术人员熟知的技术通过植物部分、特别是叶的酶处理来形成原生质体。参见,例如Gallois等,1996,Methods in Molecular Biology 55:89-107,Humana Press,Totowa,N.J.;Kipp等,1999,Methods in Molecular Biology 133:213-221,Humana Press,Totowa,NJ。原生质体不需要在电穿孔之前在生长培养基中培养。用于电穿孔的示例性条件是0.3mL总体积中的300,000个原生质体,其中基因修复寡核碱基的浓度是0.6-4μg/mL之间。

在一个替代实施方案中,根据本领域的技术人员熟知的技术在膜修饰剂聚乙二醇的存在由植物原生质体摄取核酸。在另一个替代实施方案中,基因修复寡核碱基可通过用微毛细管将其注射至植物细胞中或至原生质体中来递送。

在一个替代实施方案中,将核酸包埋在由藻酸钙组成的微珠中并且在存在膜修饰剂聚乙二醇的情况下由植物原生质体摄取(参见例如,Sone等,2002,Liu等,2004)。

在一个替代实施方案中,将核酸冷冻在水中并且通过轰击以微颗粒的形式引入植物细胞中(参见例如,Gilmore,1991,美国专利5,219,746;Brinegar等)。

在一个替代实施方案中,将连接至纳米颗粒的核酸通过在含有所述纳米颗粒的悬浮液中孵育细胞来引入完整植物细胞中(参见例如,Pasupathy等,2008)或通过经由颗粒轰击将它们递送至完整细胞或通过共孵育将它们递送至原生质体中(参见,例如Torney等,2007)。

在一个替代实施方案中,使核酸与穿透肽复合且通过共孵育递送至细胞中(参见例如,Chugh等,2008,WO 2008148223A1;Eudes和Chugh)。

在一个替代实施方案中,通过电穿孔将核酸引入完整细胞中(参见例如,He等,1998,US 2003/0115641A1,Dobres等)。

在一个替代实施方案中,通过将干燥胚胎细胞浸渍在具有核酸的溶液中来将核酸递送至细胞中(参见例如,等,1989,Senaratna等,1991)或在一些实施方案中通过Cellsqueeze(SQZ Biotech)引入。

植物的选择

在不同实施方案中,如本文所公开的植物可以是双子叶植物、单子叶植物或裸子植物的任何物种,包括作为树或灌木生长的任何木本植物物种、任何草本物种或产生食用水果、种子或蔬菜的任何物种或产生彩色或芳香花的任何物种。例如,植物可选自由以下组成的组的植物物种:芥花、向日葵、玉米、烟草、甜菜、棉花、苞米、小麦、大麦、水稻、苜蓿、大麦、高粱、西红柿、芒果、桃子、苹果、梨、草莓、香蕉、甜瓜、木薯、土豆、胡萝卜、莴苣、洋葱、大豆、大豆属、甘蔗、豌豆、鹰嘴豆、紫花豌豆、蚕豆、扁豆、芜菁、芜菁甘蓝、球芽甘蓝、羽扇豆、花椰菜、羽衣甘蓝、菜豆、杨树、松树、桉树、葡萄、柑橘、黑小麦、苜蓿、黑麦、燕麦、草皮和牧草、亚麻、油菜、芥菜、黄瓜、牵牛花、香脂、辣椒、茄子、万寿菊、莲花、卷心菜、菊花、康乃馨、郁金香、鸢尾、百合以及产坚果植物(在它们尚未具体地提及的情况下)。

可使用本领域中通常已知的方法针对对除草剂的抗性或耐受性对植物和植物细胞进行测试,例如通过在存在除草剂的情况下生长植物或植物细胞且测量相较于在不存在除草剂情况下的生长的生长速率。

如本文所用,植物、植物器官、植物组织或植物细胞的基本上正常生长被定义为植物、植物器官、植物组织或植物细胞的生长率或细胞分裂率为表达野生型目标蛋白的对应植物、植物器官、植物组织或植物细胞的生长率或细胞分裂率的至少35%、至少50%、至少60%或至少75%。

如本文所用,植物、植物器官、植物组织或植物细胞的基本上正常发育被定义为植物、植物器官、植物组织或植物细胞中的一个或多个发育事件的出现与在表达野生型蛋白质的对应植物、植物器官、植物组织或植物细胞中发生的那些发育事件基本上相同。

在某些实施方案中,本文提供的植物器官包括但不限于叶、茎、根、叶芽、花芽、分生组织、胚芽、子叶、胚乳、萼片、花瓣、雌蕊、心皮、雄蕊、花药、小孢子、花粉、花粉管、胚珠、子房和果实或从其取得的切片、薄片或盘。植物组织包括但不限于愈伤组织、基本组织、维管组织、贮藏组织、分生组织、叶片组织、茎组织、根组织、冠瘿组织、植物肿瘤组织以及再生组织。植物细胞包括但不限于具有细胞壁的分离的细胞、其各种大小的聚集体以及原生质体。

当与由类似经受的非耐受样植物提供的相比,植物当其经受相关除草剂时是对所述除草剂基本上“耐受性的”并且提供转移至右侧的剂量/响应曲线。这类剂量/响应曲线具有绘制在X轴上的“剂量”和绘制在y轴上的“致死百分比”、“除草作用”等。耐受性植物将需要比非耐受性样植物更多的除草剂,以便产生给定除草作用。当经受在通常由农用化学品团体用于杀死地中的杂草的浓度和比例下的除草剂时,对除草剂基本上“抗性”的植物展示很少(如果有)坏死、溶解、褪绿或其他损害。对除草剂具有抗性的植物还是能够容忍除草剂的。

植物的产生

植物物种的不同组织的组织培养和自其再生植物是已知的。例如,通过组织培养繁育芥花栽培品系在以下的任一者中描述但不限于以下中的任一者:Chuong等,"A Simple Culture Method for Brassica hypocotyls Protoplasts,"Plant Cell Reports 4:4-6,1985;Barsby,T.L.,等,"A Rapid and Efficient Alternative Procedure for the Regeneration of Plants from Hypocotyl Protoplasts of Brassica napus,"Plant Cell Reports (Spring,1996);Kartha,K.,等,"In vitro Plant Formation from Stem Explants of Rape,"Physiol.Plant,31:217-220,1974;Narasimhulu,S.,等,"Species Specific Shoot Regeneration Response of Cotyledonary Explants of Brassicas,"Plant Cell Reports(Spring 1988);Swanson,E.,"Microspore Culture in Brassica,"Methods in Molecular Biology,第6卷,第17章,第159页,1990。

变种的进一步繁殖可通过组织培养和再生发生。大豆的不同组织的组织培养和自其再生植物是熟知的和广泛公布的。例如,可参考Komatsuda,T.等,"Genotype X Sucrose Interactions for Somatic Embryogenesis in Soybeans,"Crop Sci.31:333-337,1991;Stephens,P.A.,等,"Agronomic Evaluation of Tissue-Culture-Derived Soybean Plants,"Theor.Appl.Genet.82:633-635,1991;Komatsuda,T.等,"Maturation and Germination of Somatic Embryos as Affected by Sucrose and Plant Growth Regulators in Soybeans Glycine gracilis Skvortz and Glycine max(L.)Merr."Plant Cell,Tissue and Organ Culture,28:103-113,1992;Dhir,S.等,"Regeneration of Fertile Plants from Protoplasts of Soybean(Glycine max L.Merr.);Genotypic Differences in Culture Response,"Plant Cell Reports 11:285-289,1992;Pandey,P.等,"Plant Regeneration from Leaf and Hypocotyl Explants of Glycine wightii(W.and A.)VERDC.var.longicauda,"Japan J.Breed.42:1-5,1992;以及Shetty,K.,等,"Stimulation of In Vitro Shoot Organogenesis in Glycine max(Merrill.)通过尿囊素和酰胺,"Plant Science 81:245-251,1992。Collins等的1991年6月18日颁布的美国专利号5,024,944和Ranch等的1991年4月16日颁布的美国专利号5,008,200特此以引用的方式整体并入本文。

示例性实施方案

除了所描述的和在本公开其他地方提供的方面和实施方案,具体地考虑特定实施方案的以下非限制性列表。

1.一种引起细胞中的遗传变化的方法,所述方法包括使所述细胞暴露于DNA切割体和修饰的GRON。

2.一种细胞,其包含DNA切割体和GRON。

3.如前述实施方案中任一项所述的方法或细胞,其中所述细胞是选自由以下组成的组的细胞的一种或多种物种:植物、细菌、酵母、真菌、藻类以及哺乳动物。

4.如前述实施方案中任一项所述的方法或细胞,其中所述细胞是选自由以下组成的组的细胞的一种或多种物种:大肠杆菌、耻垢分枝杆菌、枯草杆菌、小球藻、苏云金芽孢杆菌、酿酒酵母、解脂耶氏酵母、Chlamydamonas rhienhardtii、毕赤酵母、棒状杆菌、黑曲霉以及粗糙脉孢菌。拟南芥、马铃薯、富利亚薯、水稻、大豆、糙果苋、亚麻以及玉米

5.如前述实施方案中任一项所述的方法或细胞,其中所述细胞是解脂耶氏酵母。

6.如前述实施方案中任一项所述的方法或细胞,其中所述细胞是不为酿酒酵母的酵母细胞。

7.一种引起植物细胞中的遗传变化的方法,所述方法包括使所述细胞暴露于DNA切割体和修饰的GRON。

8.一种植物细胞,其包含DNA切割体和修饰的GRON。

9.一种引起植物细胞中的遗传变化的方法,所述方法包括使所述细胞暴露于DNA切割体和包含DNA和RNA的GRON。

10.一种植物细胞,其包含DNA切割体,所述DNA切割体包含DNA和RNA。

11.一种引起细胞中的乙酰辅酶A羧化酶(ACC酶)基因的遗传变化的方法,其中所述遗传变化在一个或多个氨基酸位置处引起所述乙酰辅酶A羧化酶(ACC酶)中的变化,所述位置选自由以下组成的组:基于大穗看麦娘参考序列SEQ ID NO:1或在ACC酶横向同源物中的类似氨基酸残基处的编号1781、1783、1786、2078、2079、2080和2088,所述方法包括使所述细胞暴露于修饰的GRON。

12.一种引起细胞中的乙酰辅酶A羧化酶(ACC酶)基因的遗传变化的方法,其中所述遗传变化在一个或多个氨基酸位置处引起所述乙酰辅酶A羧化酶(ACC酶)中的变化,所述位置选自由以下组成的组:基于大穗看麦娘参考序列SEQ ID NO:1或在ACC酶横向同源物中的类似氨基酸残基处的编号1781、1783、1786、2078、2079、2080和2088,所述方法包括使所述细胞暴露于DNA切割体和修饰的GRON。

13.一种用于产生植物或植物细胞的方法,所述方法包括将具有乙酰辅酶A羧化酶(ACC酶)基因中的靶向突变的基因修复寡核碱基(GRON)引入植物细胞中以便产生具有ACC酶基因的植物细胞,所述ACC酶基因表达ACC酶蛋白,所述ACC酶蛋白包含在对应于选自由以下组成的组的位置的一个或多个氨基酸位置处的突变:基于大穗看麦娘参考序列SEQ ID NO:1或在ACC酶横向同源物中的类似氨基酸残基处的编号1781、1783、1786、2078、2079、2080和2088。

14.一种用于产生植物或植物细胞的方法,所述方法包括将DNA切割体和具有乙酰辅酶A羧化酶(ACC酶)基因中的靶向突变的基因修复寡核碱基(GRON)引入植物细胞中以便产生具有ACC酶基因的植物细胞,所述ACC酶基因表达ACC酶蛋白,所述ACC酶蛋白包含在对应于选自由以下组成的组的位置的一个或多个氨基酸位置处的突变:基于大穗看麦娘参考序列SEQ ID NO:1或在ACC酶横向同源物中的类似氨基酸残基处的编号1781、1783、1786、2078、2079、2080和2088。

15.一种能育植物,其包含编码蛋白质的乙酰辅酶A羧化酶(ACC酶)基因,所述蛋白质包含在基于大穗看麦娘参考序列SEQ ID NO:1或在ACC酶横向同源物中的类似氨基酸残基处的编号的位置2078处的突变。

16.一种能育水稻植物,其包含编码蛋白质的乙酰辅酶A羧化酶(ACC酶)基因,所述蛋白质包含在基于大穗看麦娘参考序列SEQ IDNO:1或在ACC酶横向同源物中的类似氨基酸残基处的编号的位置2078处的突变。

17.一种植物细胞,其包含编码蛋白质的乙酰辅酶A羧化酶(ACC酶)基因,所述蛋白质包含在基于大穗看麦娘参考序列SEQ ID NO:1或在ACC酶横向同源物中的类似氨基酸残基处的编号的位置2078处的突变;并且还包含编码蛋白质的乙酰辅酶A羧化酶(ACC酶)基因,所述蛋白质包含在一个或多个氨基酸位置处的突变,所述位置选自由以下组成的组:基于大穗看麦娘参考序列SEQ ID NO:1或在ACC酶横向同源物中的类似氨基酸残基处的编号1781、1783、1786、2079、2080和2088。

18.一种能育植物细胞,其包含编码蛋白质的乙酰辅酶A羧化酶(ACC酶)基因,所述蛋白质包含在基于大穗看麦娘参考序列SEQ ID NO:1或在ACC酶横向同源物中的类似氨基酸残基处的编号的位置2078处的突变;并且还包含编码蛋白质的乙酰辅酶A羧化酶(ACC酶)基因,所述蛋白质包含在一个或多个氨基酸位置处的突变,所述位置选自由以下组成的组:基于大穗看麦娘参考序列SEQ ID NO:1或在ACC酶横向同源物中的类似氨基酸残基处的编号1781、1783、1786、2079、2080和2088。

19.一种引起细胞中的乙酰辅酶A羧化酶(ACC酶)基因的遗传变化的方法,其中所述遗传变化在基于大穗看麦娘参考序列SEQ ID NO:1或在ACC酶横向同源物中的类似氨基酸残基处的编号的位置2078处引起所述乙酰辅酶A羧化酶(ACC酶)蛋白中的变化,所述方法包括使所述细胞暴露于修饰的GRON。

20.一种引起细胞中的乙酰辅酶A羧化酶(ACC酶)基因的遗传变化的方法,其中所述遗传变化在基于大穗看麦娘参考序列SEQ ID NO:1或在ACC酶横向同源物中的类似氨基酸残基处的编号的位置2078处引起所述乙酰辅酶A羧化酶(ACC酶)蛋白中的变化,所述方法包括使所述细胞暴露于DNA切割体和修饰的GRON。

21.如前述实施方案中任一项所述的方法、植物或细胞,其中乙酰辅酶A羧化酶(ACC酶)基因中的所述突变或变化(如果存在)产生包含选自由以下组成的组的一个或多个的乙酰辅酶A羧化酶(ACC酶)蛋白:在对应于SEQ ID NO:1的位置1781的位置处的异亮氨酸至丙氨酸;在对应于SEQ ID NO:1的位置1781的位置处的异亮氨酸至亮氨酸;在对应于SEQ ID NO:1的位置1781的位置处的异亮氨酸至蛋氨酸;在对应于SEQ ID NO:1的位置1781的位置处的异亮氨酸至天冬酰胺;在对应于SEQ ID NO:1的位置1781的位置处的异亮氨酸至丝氨酸;在对应于SEQ ID NO:1的位置1781的位置处的异亮氨酸至苏氨酸;在对应于SEQ ID NO:1的位置1781的位置处的异亮氨酸至缬氨酸;在对应于SEQ ID NO:1的位置1783的位置处的甘氨酸至半胱氨酸;在对应于SEQ ID NO:1的位置1786的位置处的丙氨酸至脯氨酸;在对应于SEQ ID NO:1的位置2078的位置处的天冬氨酸至甘氨酸;在对应于SEQ ID NO:1的位置2078的位置处的天冬氨酸至赖氨酸;在对应于SEQ ID NO:1的位置2078的位置处的天冬氨酸至苏氨酸;在对应于SEQ ID NO:1的位置2079的位置处的丝氨酸至苯丙氨酸;在对应于SEQ ID NO:1的位置2080的位置处的赖氨酸至谷氨酸;在对应于SEQ ID NO:1的位置2088的位置处的半胱氨酸至苯丙氨酸;在对应于SEQ ID NO:1的位置2088的位置处的半胱氨酸至甘氨酸;在对应于SEQ ID NO:1的位置2088的位置处的半胱氨酸至组氨酸;在对应于SEQ ID NO:1的位置的位置2088处的半胱氨酸至赖氨酸;在对应于SEQ ID NO:1的位置2088的位置处的半胱氨酸至亮氨酸;在对应于SEQ ID NO:1的位置2088的位置处的半胱氨酸至天冬酰胺;在对应于SEQ ID NO:1的位置2088的位置处的半胱氨酸至脯氨酸;在对应于SEQ ID NO:1的位置2088的位置处的半胱氨酸至谷氨酰胺;在对应于SEQ ID NO:1的位置2088的位置处的半胱氨酸至精氨酸;在对应于SEQ ID NO:1的位置2088的位置处的半胱氨酸至丝氨酸;在对应于SEQ ID NO:1的位置2088的位置处的半胱氨酸至苏氨酸;在对应于SEQ ID NO:1的位置2088的位置处的半胱氨酸至缬氨酸;以及在对应于SEQ ID NO:1的位置2088的位置处的半胱氨酸至色氨酸。

22.如前述实施方案中任一项所述的植物或细胞,或通过如前述实施方案所述的方法中的任一种制备的植物或植物细胞,其中所述植物或细胞包含乙酰辅酶A羧化酶(ACC酶)蛋白,所述蛋白包含选自由以下组成的组的一个或多个:在对应于SEQ ID NO:1的位置1781的位置处的异亮氨酸至丙氨酸;在对应于SEQ ID NO:1的位置1781的位置处的异亮氨酸至亮氨酸;在对应于SEQ ID NO:1的位置1781的位置处的异亮氨酸至蛋氨酸;在对应于SEQ ID NO:1的位置1781的位置处的异亮氨酸至天冬酰胺;在对应于SEQ ID NO:1的位置1781的位置处的异亮氨酸至丝氨酸;在对应于SEQ ID NO:1的位置1781的位置处的异亮氨酸至苏氨酸;在对应于SEQ ID NO:1的位置1781的位置处的异亮氨酸至缬氨酸;在对应于SEQ ID NO:1的位置1783的位置处的甘氨酸至半胱氨酸;在对应于SEQ ID NO:1的位置1786的位置处的丙氨酸至脯氨酸;在对应于SEQ ID NO:1的位置2078的位置处的天冬氨酸至甘氨酸;在对应于SEQ ID NO:1的位置2078的位置处的天冬氨酸至赖氨酸;在对应于SEQ ID NO:1的位置2078的位置处的天冬氨酸至苏氨酸;在对应于SEQ ID NO:1的位置2079的位置处的丝氨酸至苯丙氨酸;在对应于SEQ ID NO:1的位置2080的位置处的赖氨酸至谷氨酸;在对应于SEQ ID NO:1的位置2088的位置处的半胱氨酸至苯丙氨酸;在对应于SEQ ID NO:1的位置2088的位置处的半胱氨酸至甘氨酸;在对应于SEQ ID NO:1的位置2088的位置处的半胱氨酸至组氨酸;在对应于SEQ ID NO:1的位置的位置2088处的半胱氨酸至赖氨酸;在对应于SEQ ID NO:1的位置2088的位置处的半胱氨酸至亮氨酸;在对应于SEQ ID NO:1的位置2088的位置处的半胱氨酸至天冬酰胺;在对应于SEQ ID NO:1的位置2088的位置处的半胱氨酸至脯氨酸;在对应于SEQ ID NO:1的位置2088的位置处的半胱氨酸至谷氨酰胺;在对应于SEQ ID NO:1的位置2088的位置处的半胱氨酸至精氨酸;在对应于SEQ ID NO:1的位置2088的位置处的半胱氨酸至丝氨酸;在对应于SEQ ID NO:1的位置2088的位置处的半胱氨酸至苏氨酸;在对应于SEQ ID NO:1的位置2088的位置处的半胱氨酸至缬氨酸;以及在对应于SEQ ID NO:1的位置2088的位置处的半胱氨酸至色氨酸。

23.如前述实施方案中任一项所述的植物或细胞,或通过如前述实施方案所述的方法中的任一种制备的植物或细胞,其中所述植物或植物细胞包含编码蛋白质的乙酰辅酶A羧化酶(ACC酶)基因,所述蛋白质包含在一个或多个氨基酸位置处的突变,所述位置选自由以下组成的组:基于大穗看麦娘参考序列SEQ ID NO:1或在ACC酶横向同源物中的类似氨基酸残基处的编号1781、1783、1786、2078、2079、2080和2088。

24.如前述实施方案中任一项所述的植物或细胞,或通过如前述实施方案所述的方法中的任一种制备的植物或细胞,其中所述植物或细胞包含编码蛋白质的乙酰辅酶A羧化酶(ACC酶)基因,所述蛋白质包含在基于大穗看麦娘参考序列SEQ ID NO:1或在ACC酶横向同源物中的类似氨基酸残基处的编号的位置2078处的突变;并且还包含编码蛋白质的乙酰辅酶A羧化酶(ACC酶)基因,所述蛋白质包含在一个或多个氨基酸位置处的突变,所述位置选自由以下组成的组:基于大穗看麦娘参考序列SEQ ID NO:1或在ACC酶横向同源物中的类似氨基酸残基处的编号1781、1783、1786、2079、2080和2088。

在前述ACC酶实施方案11-24中的任一项中,无论是方法、植物、细胞或是其他,以下是在其中使用的适合突变:

替代突变包括但不限于以下:

关于实施方案11-24,与基于大穗看麦娘参考序列的编号的1781m、1783、1786、2078、2079和2080对应的位置是本领域中熟知的且可容易地从适当的序列数据库获得。作为举例,以下表示出水稻ACC酶序列中的对应位置:

Am:大穗看麦娘;OsI:水稻籼稻品种;OsJ:水稻粳稻品种

25.一种用于产生具有突变的EPSPS基因的植物或植物细胞的方法,所述方法包括将具有5-烯醇丙酮酰莽草酸-3-磷酸合酶(EPSPS)基因中的靶向突变的基因修复寡核碱基(GRON)引入植物细胞中以便产生具有EPSPS基因的植物细胞,所述EPSPS基因表达EPSPS蛋白,所述EPSPS蛋白包含在对应于选自由以下组成的组的位置的一个或多个氨基酸位置处的突变:基于大肠杆菌参考序列SEQ ID NO:2的氨基酸序列或在EPSPS横向同源物中的类似氨基酸残基处的编号96、97和101。

26.一种用于产生具有突变的EPSPS基因的植物或植物细胞的方法,所述方法包括将DNA切割体和具有5-烯醇丙酮酰莽草酸-3-磷酸合酶(EPSPS)基因中的靶向突变的基因修复寡核碱基(GRON)引入植物细胞中以便产生具有EPSPS基因的植物细胞,所述EPSPS基因表达EPSPS蛋白,所述EPSPS蛋白包含在对应于选自由以下组成的组的位置的一个或多个氨基酸位置处的突变:基于大肠杆菌参考序列SEQ ID NO:2的氨基酸序列或在EPSPS横向同源物中的类似氨基酸残基处的编号96、97和101。

27.一种具有突变的EPSPS基因的植物或细胞,其中所述植物或细胞是通过将DNA切割体和具有5-烯醇丙酮酰莽草酸-3-磷酸合酶(EPSPS)基因中的靶向突变的基因修复寡核碱基(GRON)引入植物细胞中以便产生具有EPSPS基因的植物细胞的方法制备的,所述EPSPS基因表达EPSPS蛋白,所述EPSPS蛋白包含在对应于选自由以下组成的组的位置的一个或多个氨基酸位置处的突变:基于大肠杆菌参考序列SEQ ID NO:2的氨基酸序列或在EPSPS横向同源物中的类似氨基酸残基处的编号96、97和101。

28.如前述实施方案中任一项所述的植物或细胞,或通过如前述实施方案所述的方法中的任一种制备的植物或细胞,其中所述植物或植物细胞表达EPSPS蛋白,所述蛋白包含选自由以下组成的组的一个或多个氨基酸位置处的突变:在对应于SEQ ID NO:2的位置96的位置处的甘氨酸至丙氨酸;在对应于SEQ ID NO:2的位置97的位置处的苏氨酸至异亮氨酸;在对应于SEQ ID NO:2的位置101的位置处的脯氨酸至丙氨酸;在对应于SEQ ID NO:2的位置101的位置处的脯氨酸至丝氨酸;以及在对应于SEQ ID NO:2的位置101的位置处的脯氨酸至苏氨酸。

29.如前述实施方案中任一项所述的植物或细胞,或通过如前述实施方案所述的方法中的任一种制备的植物或细胞,其中所述植物或植物细胞表达EPSPS蛋白,所述蛋白包含选自由以下组成的组的突变组合:在对应于SEQ ID NO:2的位置97的位置处的苏氨酸至异亮氨酸和在对应于SEQ ID NO:2的位置101的位置处的脯氨酸至丙氨酸;在对应于SEQ ID NO:2的位置97的位置处的苏氨酸至异亮氨酸和在对应于SEQ ID NO:2的位置101的位置处的脯氨酸至丙氨酸;在对应于SEQ ID NO:2的位置97的位置处的苏氨酸至异亮氨酸和在对应于SEQ ID NO:2的位置101的位置处的脯氨酸至丝氨酸;在对应于SEQ ID NO:2的位置97的位置处的苏氨酸至异亮氨酸和在对应于SEQ ID NO:2的位置101的位置处的脯氨酸至苏氨酸。

关于实施方案25-30,与基于大肠杆菌参考序列SEQ ID NO:2的编号的96、97和101对应的位置是本领域中熟知的且可容易地从适当的序列数据库获得。参见,例如美国专利号8,268,622。作为举例,以下表示出亚麻EPSPS序列中的对应位置:

亚麻EPSPS

大肠杆菌EPSPS序列是AroA,其具有序列

MESLTLQPIARVDGTINLPGSKTVSNRALLLAALAHGKTVLTNLLDSDDVRHMLNALTALGVSYTLSADRTRCEIIGNGGPLHAEGALELFLGNAGTAMRPLAAALCLGSNDIVLTGEPRMKERPIGHLVDALRLGGAKITYLEQENYPPLRLQGGFTGGNVDVDGSVSSQFLTALLMTAPLAPEDTVIRIKGDLVSKPYIDITLNLMKTFGVEIENQHYQQFVVKGGQSYQSPGTYLVEGDASSASYFLAAAAIKGGTVKVTGIGRNSMQGDIRFADVLEKMGATICWGDDYISCTRGELNAIDMDMNHIPDAAMTIATAALFAKGTTRLRNIYNWRVKETDRLFAMATELRKVGAEVEEGHDYIRITPPEKLNFAEIATYNDHRMAMCFSLVALSDTPVTILDPKCTAKTFPDYFEQLARISQAA

亚麻基因1序列是lcl-g41452_1333,其具有序列

MALVTKICGGANAVALPATFGTRRTKSISSSVSFRSSTSPPSLKQRRRSGNVAAAAAAPLRVSASLTTAAEKASTVPEEVVLQPIKDISGIVTLPGSKSLSNRILLLAALSEGTTVVDNLLNSDDVHYMLGALKTLGLNVEHSSEQKRAIVEGCGGVFPVGKLAKNDIELFLGNAGTAMRPLTAAVTAAGGNSSYILDGVPRMRERPIGDLVVGLKQLGADVTCSSTSCPPVHVNGQGGLPGGKVKLSGSISSQYLTALLMAAPLALGDVEIEIVDKLISVPYVDMTLKLMERFGVAVEHSGSWDRFFVKGGQKYKSPGNAYVEGDASSASYFLAGAAITGGTITVEGCGTSSLQGDVKFAEVLEKMGAKVIWTENSVTVTGPPRDASGRKHLRAVDVNMNKMPDVAMTLAVVALYADGPTAIRDVASWRVKETERMIAICTELRKLGATVEEGPDYCIITPPEKLNIAEIDTYDDHRMAMAFSLAACADVPVTIRDPGCTKKTFPDYFEVLERYTKH

亚麻基因2序列是lcl-g40547_1271,其具有序列

MAQVTKICGGANAVALPATFGTRRTKSISSSVSFRSSTSPPSLKQRRLLGNVAAAAAAAPLRISASLATAAEKASTVPEEIVLQPIKDISGIVTLPGSKSLSNRILLLAALSFGKTVVDNLLNSDDVHYMLGALKTLGLNVEHSSEQKRAIVEGRGGVFPVGKLGKNDIELFLGNAGTAMRPLTAAVTAAGGNSSYILDGVPRMRERPIGDLVVGLKQLGADVSCSSTSCPPVHVNAKGGLPGGKVKLSGSISSQYLTALLMAAPLALGDVEIEIVDKLISVPYVDMTLKLMERFGVAVEHSGSWDRFFVKGGQKYKSPGNAYVEGDASSASYFLAGAAITGGTITVEGCGTSSLQGDVKFAEVLEKMGAKVTWTETSVTVTGPPRDASGKKHLRAVDVNMNKMPDVAMTLAVVALYADGPTAIRDVASWRVKETERMIAVCTELRKLGATVEEGPDYCIITPPEKLSIAEIDTYDDHRMAMAFSLAACADVPVTIRDPGCTKKTFPDYFEVLERYTKH

30.如前述实施方案中任一项所述的方法或细胞,其中所述DNA切割体是选自CRISPR、TALEN、锌指、大范围核酸酶以及DNA切割抗生素的一种或多种。

31.如前述实施方案中任一项所述的方法或细胞,其中所述DNA切割体是CRISPR或TALEN。

32.如前述实施方案中任一项所述的方法或细胞,其中所述DNA切割体是CRISPR。

33.如前述实施方案中任一项所述的方法或细胞,其中所述DNA切割体是TALEN。

34.如前述实施方案中任一项所述的方法或细胞,其中所述DNA切割体是选自由以下各项组成的组的一种或多种DNA切割抗生素:博来霉素(bleomycin)、博菜霉素(zeocin)、腐草霉素、他利霉素以及培洛霉素。

35.如前述实施方案中任一项所述的方法或细胞,其中所述DNA切割体是博菜霉素(zeocin)。

36.如前述实施方案中任一项所述的方法或细胞,其中所述GRON是单链的。

37.如前述实施方案中任一项所述的方法或细胞,其中所述GRON是化学保护的寡核苷酸。

38.如前述实施方案中任一项所述的方法或细胞,其中所述GRON包含在5’端受保护的化学保护的寡核苷酸。

39.如前述实施方案中任一项所述的方法或细胞,其中所述GRON包含在3’端受保护的化学保护的寡核苷酸。

40.如前述实施方案中任一项所述的方法或细胞,其中所述GRON包含在所述5’端和所述3’端受保护的化学保护的寡核苷酸。

41.如前述实施方案中任一项所述的方法或细胞,其中所述GRON包含选自Cy3基团、3PS基团和2’-O-甲基的一个或多个。

42.如前述实施方案中任一项所述的方法或细胞,其中所述GRON包含Cy3基团。

43.如前述实施方案中任一项所述的方法或细胞,其中所述GRON包含在所述5’端上的所述第一碱基处的Cy3基团。

44.如前述实施方案中任一项所述的方法或细胞,其中所述GRON包含在所述3’端上的所述第一碱基处的Cy3基团。

45.如前述实施方案中任一项所述的方法或细胞,其中所述GRON包含3PS基团。

46.如前述实施方案中任一项所述的方法或细胞,其中所述GRON包含两个或更多个3PS基团。

47.如前述实施方案中任一项所述的方法或细胞,其中所述GRON包含三个或更多个3PS基团。

48.如前述实施方案中任一项所述的方法或细胞,其中所述GRON包含在所述5’端上的所述第一碱基处的3PS基团。

49.如前述实施方案中任一项所述的方法或细胞,其中所述GRON包含在所述3’端上的所述第一碱基处的3PS基团。

50.如前述实施方案中任一项所述的方法或细胞,其中所述GRON包含2’-O-甲基。

51.如前述实施方案中任一项所述的方法或细胞,其中所述GRON包含两个或更多个2’-O-甲基。

52.如前述实施方案中任一项所述的方法或细胞,其中所述GRON包含在所述5’端上的所述第一碱基处的2’-O-甲基。

53.如前述实施方案中任一项所述的方法或细胞,其中所述GRON在所述5’端上的所述第一碱基处具有2’-O-甲基并且不具有任何其他2’-O-甲基。

54.如前述实施方案中任一项所述的方法或细胞,其中所述GRON包含在所述5’端处的前两个或更多个碱基中的每个上的2’-O-甲基。

55.如前述实施方案中任一项所述的方法或细胞,其中所述GRON包含在所述5’端处的前三个或更多个碱基中的每个上的2’-O-甲基。

56.如前述实施方案中任一项所述的方法或细胞,其中所述GRON包含在所述5’端处的前四个或更多个碱基中的每个上的2’-O-甲基。

57.如前述实施方案中任一项所述的方法或细胞,其中所述GRON包含在所述5’端处的前五个或更多个碱基中的每个上的2’-O-甲基。

58.如前述实施方案中任一项所述的方法或细胞,其中所述GRON包含在所述5’端处的前六个或更多个碱基中的每个上的2’-O-甲基。

59.如前述实施方案中任一项所述的方法或细胞,其中所述GRON包含在所述5’端处的前七个或更多个碱基中的每个上的2’-O-甲基。

60.如前述实施方案中任一项所述的方法或细胞,其中所述GRON包含在所述5’端处的前八个或更多个碱基中的每个上的2’-O-甲基。

61.如前述实施方案中任一项所述的方法或细胞,其中所述GRON包含在所述5’端处的前九个或更多个碱基中的每个上的2’-O-甲基。

62.如前述实施方案中任一项所述的方法或细胞,其中所述GRON包含在所述5’端处的前十个或更多个碱基中的每个上的2’-O-甲基。

63.如前述实施方案中任一项所述的方法或细胞,其中所述GRON包含在所述5’端处的1、2、3、4、5、6、7、8、9或10个RNA碱基。

64.如前述实施方案中任一项所述的方法或细胞,其中所述GRON相对于所述靶序列具有摇摆碱基对以获得所述遗传变化。

65.如前述实施方案中任一项所述的方法或细胞,其中所述GRON的长度是15与60个核苷酸之间。

66.如前述实施方案中任一项所述的方法或细胞,其中所述GRON的长度是41个核苷酸。

67.如前述实施方案中任一项所述的方法或细胞,其中所述GRON的长度是50与110个核苷酸之间。

68.如前述实施方案中任一项所述的方法或细胞,其中所述GRON的长度是101个核苷酸。

69.如前述实施方案中任一项所述的方法或细胞,其中所述GRON的长度是150与210个核苷酸之间。

70.如前述实施方案中任一项所述的方法或细胞,其中所述GRON的长度是201个核苷酸。

71.如前述实施方案中任一项所述的方法或细胞,其中所述GRON的长度是70与210个核苷酸之间。

72.如前述实施方案中任一项所述的方法或细胞,其中所述GRON的长度是长于70个核苷酸。

73.如前述实施方案中任一项所述的方法或细胞,其中所述GRON的长度是长于100个核苷酸。

74.如前述实施方案中任一项所述的方法或细胞,其中所述GRON的长度是长于165个核苷酸。

75.如前述实施方案中任一项所述的方法或细胞,其中所述GRON的长度是长于175个核苷酸。

76.如前述实施方案中任一项所述的方法或细胞,其中所述GRON的长度是长于185个核苷酸。

77.如前述实施方案中任一项所述的方法或细胞,其中所述GRON的长度是长于195个核苷酸。

78.如前述实施方案中任一项所述的方法或细胞,其中所述GRON的长度是长于200个核苷酸。

79.如前述实施方案中任一项所述的方法或细胞,其中所述GRON的长度是长于210个核苷酸。

80.如前述实施方案中任一项所述的方法或细胞,其中所述GRON的长度是长于220个核苷酸。

81.如前述实施方案中任一项所述的方法或细胞,其中所述GRON的长度是长于230个核苷酸。

82.如前述实施方案中任一项所述的方法或细胞,其中所述GRON的长度是长于240个核苷酸。

83.如前述实施方案中任一项所述的方法或细胞,其中所述GRON的长度是长于250个核苷酸。

84.如前述实施方案中任一项所述的方法或细胞,其中所述GRON的长度是长于260个核苷酸。

85.如前述实施方案中任一项所述的方法或细胞,其中所述GRON的长度是长于270个核苷酸。

86.如前述实施方案中任一项所述的方法或细胞,其中所述GRON的长度是长于280个核苷酸。

87.如前述实施方案中任一项所述的方法或细胞,其中所述GRON的长度是长于290个核苷酸。

88.如前述实施方案中任一项所述的方法或细胞,其中所述GRON的长度是长于300个核苷酸。

89.如前述实施方案中任一项所述的方法或细胞,其中所述GRON的长度是长于400个核苷酸。

90.如前述实施方案中任一项所述的方法或细胞,其中所述GRON的长度是长于500个核苷酸。

91.如前述实施方案中任一项所述的方法或细胞,其中所述GRON的长度是长于600个核苷酸。

92.如前述实施方案中任一项所述的方法或细胞,其中所述GRON的长度是长于700个核苷酸。

93.如前述实施方案中任一项所述的方法或细胞,其中所述GRON的长度是长于800个核苷酸。

94.如前述实施方案中任一项所述的方法或细胞,其中所述GRON的长度是长于900个核苷酸。

95.如前述实施方案中任一项所述的方法或细胞,其中所述GRON的长度是长于1000个核苷酸。

96.如前述实施方案中任一项所述的方法,其中所述植物细胞选自由以下组成的组:芥花、向日葵、玉米、烟草、甜菜、棉花、苞米、小麦、大麦、水稻、苜蓿、大麦、高粱、西红柿、芒果、桃子、苹果、梨、草莓、香蕉、甜瓜、木薯、土豆、胡萝卜、莴苣、洋葱、大豆、大豆属、甘蔗、豌豆、鹰嘴豆、紫花豌豆、蚕豆、扁豆、芜菁、芜菁甘蓝、球芽甘蓝、羽扇豆、花椰菜、羽衣甘蓝、菜豆、杨树、松树、桉树、葡萄、柑橘、黑小麦、苜蓿、黑麦、燕麦、草皮和牧草、亚麻、油菜、芥菜、黄瓜、牵牛花、香脂、辣椒、茄子、万寿菊、莲花、卷心菜、菊花、康乃馨、郁金香、鸢尾以及百合。

97.如前述实施方案中任一项所述的方法或细胞,其中所述植物是芥花。

98.如前述实施方案中任一项所述的方法或细胞,其中所述植物是玉米。

99.如前述实施方案中任一项所述的方法或细胞,其中所述植物是苞米。

100.如前述实施方案中任一项所述的方法或细胞,其中所述植物是水稻。

101.如前述实施方案中任一项所述的方法或细胞,其中所述植物是高粱。

102.如前述实施方案中任一项所述的方法或细胞,其中所述植物是土豆。

103.如前述实施方案中任一项所述的方法或细胞,其中所述植物是大豆。

104.如前述实施方案中任一项所述的方法或细胞,其中所述植物是亚麻。

105.如前述实施方案中任一项所述的方法或细胞,其中所述植物是油菜。

106.如前述实施方案中任一项所述的方法或细胞,其中所述植物是木薯。

107.如前述实施方案中任一项所述的方法或细胞,其中所述植物是向日葵。

108.一种引起植物细胞中的遗传变化的方法,所述方法包括使所述细胞暴露于CRISPR和修饰的GRON。

109.如前述实施方案中任一项所述的方法或细胞,其中进行多种遗传变化。

110.如前述实施方案中任一项所述的方法或细胞,其中使用两个或更多个引导RNA。

111.如前述实施方案中任一项所述的方法或细胞,其中所述多于一个引导RNA中的每个与用于遗传变化的不同靶标互补

112.如前述实施方案中任一项所述的方法或细胞,其中所述CRISPR包含切口酶。

113.如前述实施方案中任一项所述的方法或细胞,其中所述DNA切割体包含两种或更多种切口酶。

114.如前述实施方案中任一项所述的方法或细胞,其中两种或更多种切口酶在所述靶核酸序列的相对链上切割。

115.如前述实施方案中任一项所述的方法或细胞,其中两种或更多种切口酶在所述靶核酸序列的同一链上切割。

116.一种非转基因除草剂抗性或耐性植物,其通过如前述实施方案中任一项所述的方法或由如前述实施方案中任一项所述的细胞制备。

117.如前述实施方案中任一项所述的方法或细胞,其中所述植物细胞具有乙酰辅酶A羧化酶(ACC酶)的遗传变化或突变,并且选自由以下组成的组:大麦、苞米、小米、燕麦、黑麦、水稻、高粱、甘蔗、草皮草和小麦。

118.如前述实施方案中任一项所述的方法或细胞,其中所述植物细胞具有乙酰辅酶A羧化酶(ACC酶)的遗传变化或突变并且是对一种或多种除草剂抗性或耐性的。

119.如前述实施方案中任一项所述的方法或细胞,其中所述植物细胞具有乙酰辅酶A羧化酶(ACC酶)的遗传变化或突变,是对一种或多种ACC酶抑制性除草剂抗性的。

120.如前述实施方案中任一项所述的方法或细胞,其中所述植物细胞具有乙酰辅酶A羧化酶(ACC酶)的遗传变化或突变,是对选自由以下组成的组的一种或多种除草剂抗性的:禾草灭、丁氧环酮、烯草酮、cloproxydim,噻草酮、稀禾定、吡喃草酮、肟草酮、chlorazifop、炔草酯、clofop、禾草灵、噁唑禾草灵、精噁唑禾草灵、噻唑禾草灵、吡氟禾草灵、精吡氟禾草灵、吡氟氯禾灵、精吡氟氯禾灵、异噁草醚、喔草酯、喹禾灵、精喹禾灵、三氟禾草肟、唑啉草酯、这些除草剂中的任一种的农学上可接受的盐和酯以及其组合。

121.如前述实施方案中任一项所述的方法或细胞,其中所述植物细胞具有5-烯醇丙酮酰莽草酸-3-磷酸合酶(EPSPS)中的遗传变化或突变,并且其中所述植物细胞选自由以下组成的组:玉米、小麦、水稻、大麦、高粱、燕麦、黑麦、甘蔗、大豆、棉花、甜菜、油菜、芥花、亚麻、木薯、向日葵、土豆、烟草、西红柿、苜蓿、杨树、松树、桉树、苹果、莴苣、豌豆、扁豆、葡萄以及草皮草。

122.如前述实施方案中任一项所述的方法或细胞,其中所述植物或植物细胞具有5-烯醇丙酮酰莽草酸-3-磷酸合酶(EPSPS)中的遗传变化或突变,并且其中植物或植物细胞是对至少一种除草剂抗性的。

123.如前述实施方案中任一项所述的方法或细胞,其中所述植物或植物细胞具有5-烯醇丙酮酰莽草酸-3-磷酸合酶(EPSPS)中的遗传变化或突变,并且其中植物或植物细胞是对磷酰甲基甘氨酸家族的除草剂抗性的。

124.如前述实施方案中任一项所述的方法或细胞,其中所述植物或植物细胞具有5-烯醇丙酮酰莽草酸-3-磷酸合酶(EPSPS)中的遗传变化或突变,并且其中植物或植物细胞是对草甘膦抗性的。

125.如前述实施方案中任一项所述的方法或细胞,其中所述植物或植物细胞具有5-烯醇丙酮酰莽草酸-3-磷酸合酶(EPSPS)中的遗传变化或突变,并且其中植物或植物细胞选自由以下组成的组:玉米、小麦、水稻、大麦、高粱、燕麦、黑麦、甘蔗、大豆、棉花、甜菜、油菜、芥花、亚麻、木薯、向日葵、土豆、烟草、西红柿、苜蓿、杨树、松树、桉树、苹果、莴苣、豌豆、扁豆、葡萄以及草皮草。

126.如前述实施方案中任一项所述的方法或细胞,其中所述细胞中的遗传变化或突变在所述基因的一个等位基因处发生。

127.如前述实施方案中任一项所述的方法或细胞,其中所述细胞中的遗传变化或突变在所述基因的两个等位基因处发生。

128.如前述实施方案中任一项所述的方法或细胞,其中所述细胞中的遗传变化或突变在所述基因的三个等位基因处发生。

129.如前述实施方案中任一项所述的方法或细胞,其中所述细胞中的遗传变化或突变在所述基因的四个等位基因处发生。

130.如前述实施方案中任一项所述的方法或细胞,其中所述细胞中的遗传变化或突变在所述基因的一个、两个、三个、四个、五个、六个、七个、八个、九个、十个、十一个或十二个等位基因处发生。

131.如前述实施方案中任一项所述的方法或细胞,其中所述细胞中的遗传变化或突变包含产生所述基因的一个等位基因的敲除的缺失或插入。

132.如前述实施方案中任一项所述的方法或细胞,其中所述细胞中的遗传变化或突变包含产生所述基因的两个等位基因的敲除的缺失或插入。

133.如前述实施方案中任一项所述的方法或细胞,其中所述细胞中的遗传变化或突变包含产生所述基因的三个等位基因的敲除的缺失或插入。

134.如前述实施方案中任一项所述的方法或细胞,其中所述细胞中的遗传变化或突变包含产生所述基因的四个等位基因的敲除的缺失或插入。

135.如前述实施方案中任一项所述的方法或细胞,其中所述细胞中的遗传变化或突变包含产生所述基因的一个、两个、三个、四个、五个、六个、七个、八个、九个、十个、十一个或十二个等位基因的敲除的缺失或插入。

136.如前述实施方案中任一项所述的方法或细胞,其中所述细胞中的遗传变化或突变在所述基因的一个等位基因处发生,并且所述基因的第二等位基因包含产生所述第二等位基因的敲除的缺失或插入。

137.如前述实施方案中任一项所述的方法或细胞,其中所述细胞中的遗传变化或突变在所述基因的一个等位基因处发生,并且所述基因的第二等位基因和第三等位基因包含产生所述第二等位基因和所述第三等位基因的敲除的缺失或插入。

138.如前述实施方案中任一项所述的方法或细胞,其中所述细胞中的遗传变化或突变在所述基因的一个等位基因处发生,并且所述基因的第二等位基因、第三等位基因和第四等位基因包含产生所述第二等位基因、所述第三等位基因和所述第四等位基因的敲除的缺失或插入。

139.如前述实施方案中任一项所述的方法或细胞,其中所述细胞中的遗传变化包含在一个等位基因处的至少一个突变以及在另一个等位基因处的至少一个敲除。

140.如前述实施方案中任一项所述的方法或细胞,其中所述细胞中的遗传变化包含在一个等位基因处的至少一个突变以及在至少一个其他等位基因处的至少一个敲除。

141.如前述实施方案中任一项所述的方法或细胞,其中所述细胞中的遗传变化包含在一个等位基因处的至少一个突变以及在至少两个其他等位基因处的至少一个敲除。

142.如前述实施方案中任一项所述的方法或细胞,其中所述细胞中的遗传变化包含在一个等位基因处的至少一个突变以及在至少三个其他等位基因处的至少一个敲除。

143.如前述实施方案中任一项所述的方法或细胞,其中所述细胞中的遗传变化包含在一个等位基因处的至少一个突变以及所有其他等位基因中的敲除。

实施例

以下是实施例,所述实施例说明用于实践本文所述的方法和组合物的程序。这些实施例不应被解释为限制性的。

实施例1:GRON长度

Sommer等(Mol Biotechnol.33:115-22,2006)描述了用于检测体内基因转化的报道系统,所述系统依赖于单核苷酸变化在绿色荧光蛋白(GFP)变体中在蓝色与绿色荧光之间转换。这种报道系统适用于使用拟南芥作为模型物种以便评定在GRON长度的修饰之后GRON转化的效率的以下实验中。

简言之,对于此实施例和后续实施例,通过本领域的技术人员已知的方法产生具有蓝色荧光蛋白基因的多个拷贝的拟南芥品系(参见例如,Clough和Brent,1998)。用此品系建立源自根的分生组织培养物,其用于原生质体分离和培养(参见例如,Mathur等,1995)。GRON递送至原生质体中通过聚乙二醇(PEG)介导的GRON摄取至原生质体中来实现。使用与由Fujiwara和Kato(2007)描述的方法类似的使用96孔型式的方法。在以下简要描述方案。所给出的体积是施加至96孔培养皿的单独孔的体积。

1.将6.25μl的GRON(80μM)与25μl的拟南芥BFP转基因根分生组织源性的原生质体在于96孔板的每个孔中5x106个细胞/ml下进行混合。

2.添加31.25μl的40%PEG溶液并且混合原生质体。

3.将处理的细胞在冰上孵育30分钟。

4.向每个孔添加200μl的W5溶液且混合细胞。

5.使板在冰上孵育30分钟,从而允许原生质体沉降至每个孔的底部。

6.除去在沉降的原生质体以上的200μl培养基。

7.添加85μl的培养基(MSAP,参见Mathur等,1995)。

8.将板在室温下在黑暗中孵育48小时。在添加培养基之后GRON的最终浓度是8μM。

在GRON递送之后四十八小时,通过流式细胞术对样品进行分析以便检测绿色和黄色荧光不同于对照原生质体的绿色和黄色荧光的原生质体(BFP0指示与BFP靶标相比非靶向GRON无变化;C是编码链设计且NC是非编码链设计)。单一C至T核苷酸差异(编码链)或G至A核苷酸靶向BFP4分子中心中的突变(非编码链)。绿色荧光由在BFP基因中引入靶向突变引起,从而导致GFP的合成。图1中示出了结果。

表2示出被设计用于将蓝色荧光蛋白(BFP)基因转化成绿色荧光的示例性101聚体和201聚体BFP4/NC 5’-3PS/3’-3PS GRON的序列。“3PS”指示在5’和3’寡核苷酸端中的每个处的3个硫代磷酸酯键联)。

表2.用于BFP至GFP转化的示例性GRON核苷酸序列

*=PS键联(硫代磷酸酯)

实施例2:使用5’Cy3/3’idC标记的GRON的转化率

这一系列实施例的目的是比较硫代磷酸酯(PS)标记的GRON(GRON的每一端具有3PS部分)至5’Cy3/3’idC标记的GRON的效率。5’Cy3/3’idC标记的GRON具有5’Cy3荧光团(亚磷酰胺)和3’idC反向碱基。使用蓝色荧光蛋白(BFP)至绿色荧光的转化评定效率。

在所有三个实施例中,通过将GRON PEG递送至单独Falcon管(标记的“管”)或96孔板(标记的“96孔培养皿”)进行,如通过细胞计量术所测定,在BFP至GFP转化效率方面在不同GRON化学之间不存在显著差异(图1)。

实施例3:41聚体BFP4/NC 5’-3PS/3’-3PS GRON与2’-O-Me GRON之间的比较

这一系列实施例的目的是在存在和不存在多种博来霉素家族ZeocinTM(1mg/ml)以诱导DNA断裂的情况下,比较在GRON的各端具有3PS部分的硫代磷酸酯(PS)标记的GRON与2’-O-Me或“冈崎片段GRON”的转化效率。这些GRON的设计在图2中描绘。通过PEG处理将GRON递送至拟南芥BFP原生质体中,并且通过细胞计量术在处理后24小时测定BFP至GFP转化。将用博莱霉素(1mg/ml)处理的样品在PEG处理之前与博莱霉素一起在冰上孵育90分钟。

一般来说,博莱霉素(1mg/ml)的存在增加BFP至GFP转化,如通过细胞计量术所测定(表3)。在博莱霉素存在和不存在的情况下,当与在前九个5’RNA碱基中的每个上含有一个2’-O Me基团的NC冈崎GRON相比时,在GRON的5’端处的第一RNA碱基上含有一个2’-O Me基团的NC冈崎GRON在将BFP转化至GFP方面更有效(图2和表3)。

在所有实施例中,在存在或不存在1mg/ml的博莱霉素的情况下,在41聚体BFP4/NC 5’3PS/3’3PS与在第一5’RNA碱基上含有一个5’2’-O me基团的71聚体冈崎片段BFP4/NC GRON(指代为BFP4 71聚体(1)NC)之间在BFP至GFP转化方面不存在显著差异,如通过细胞计量术所测定(图2和表3)。重要的是注意在博莱霉素存在下(并且预期对于博来霉素、腐草霉素、他利霉素、培洛霉素以及此抗生素家族的其他成员来说),所述转化变成链独立性(即,具有在这些实施例中测试的设计的编码(C)和非编码(NC)GRON两者展示大约相等的活性)。

表3:在存在和不存在糖肽抗生素博来霉素的情况下标准GRON设计与冈崎片段GRON设计的比较。

实施例4:41聚体、101聚体和201聚体BFP4/NC 5’-3PS/3’-3PSGRON之间的比较

这一系列实施例的目的是比较在不同长度的GRON的各端处具有3PS部分的硫代磷酸酯(PS)标记的GRON的转化效率(在存在或不存在博莱霉素的情况下):表2中所示的41聚体、101聚体和201聚体。再次,博莱霉素(1mg/ml)的存在增加BFP至GFP转化率,如通过细胞计量术所测定(表4)。在存在或不存在博莱霉素的两者情况下在NC GRON长度增加的情况下所有三个实施例的总体趋势是线性的。除了在博莱霉素存在下BFP-4/NC/101和BFP-4/C/101,这具有接近于等于但小于41聚体NC GRON的转化率。这与使用BFP-4/41编码和非编码GRON的所有先前实施例形成对比,其中非编码总是远远优异于编码GRON。转化频率的这种不对称还适用于在此实施例系列中使用的BFP-4/201GRON。

表4:

实施例5:Cas9蛋白递送至植物中

所述实施例利用重组Cas9蛋白直接递送至植物细胞中作为递送CRISPR-Cas表达质粒的替代方案。所述方法单独地或组合地采用载体如细胞穿透肽(CPP)、转染脂质体试剂、聚(乙二醇)(PEG)以便允许活性重组Cas9蛋白递送至细胞。

方法

将源自诱导的根组织的BFP转基因拟南芥原生质体以250,000个细胞/孔以1x107个细胞/ml的细胞密度接种在平底96孔板上。然后将预先以20:1、10:或5:1以及其他CPP与货物比(例如TAT、穿膜肽、ChariotTM、PEP-1或其他)涂覆有CPP或用脂质体试剂封装的荧光标记的重组Cas9蛋白(1μg)与所接种的原生脂质体混合且在23℃下孵育2-6小时以允许Cas9/载体复合物穿透细胞。在另一系列的处理中,使用PEG方法将如上所述预先涂覆有CPP或未涂覆的荧光标记的重组Cas9蛋白(1μg)引入原生质体中。然后在处理之后第24小时通过流式细胞术对原生质体进行分析以便测定给定处理内的Cas9阳性原生质体的百分比。

实施例6:具有201聚体±摇摆碱基GRON的CRISPR

所述系列实施例的目的是展示使用CRISPR来在bfp基因和201聚体GRON中产生靶向双链断裂以介导转化的拟南芥转基因BFP模型系统中的BFP至GFP转化。所述BFP CRISPR靶向bfp基因的编码链并且转化位点是PAM序列的上游27bp(图3)。所述GRON用作模板来修复bfp基因中通过CRISPR产生的双链断裂且连同将来自BFP的靶向基因转化成GFP,它也在bfp基因中引入对应于BFP CRISPR的PAM序列的摇摆碱基。一旦已经发生转化,就假设BFP CRISPR的PAM序列中的摇摆碱基通过CRISPR最小化bfp基因的再切割。所述系列的实施例将帮助解决将摇摆碱基引入转化的bfp基因中的BFP CRISPR的PAM序列中是否将提高转化效率。

方法

将源自诱导的根组织的BFP转基因拟南芥原生质体以250,000个细胞/孔以1x107个细胞/ml的细胞密度接种在平底96孔板上。所述CRISPR编码的质粒包含驱动Cas9编码序列的甘露碱合酶(MAS)启动子与rbcSE9终止子以及驱动sgRNA的拟南芥U6启动子与聚-T10终止子。将所述CRISPR质粒连同GRON通过PEG介导的递送分别以0.05μg/μl和0.16μM的最终浓度引入原生质体中。将原生质体在黑暗中在23℃下孵育72小时,且然后通过流式细胞仪进行分析以便测定给定处理内的GFP阳性原生质体的百分比。

所述CRISPR由两种组分组成:植物密码子优化的酿脓链球菌Cas9(SpCas9)和sgRNA,所述两者均从同一质粒表达。sgRNA是CRISPR RNA(crRNA)与反式活化crRNA(tracrRNA)的融合。所述crRNA区包含用于将Cas9核酸酶引导至BFP靶基因的间隔区序列。在此实施例中,BFP靶向bfp基因(图3)。有或无摇摆碱基的靶向BFP的201聚体GRON用于测定其对BFP至GFP转化速率的影响。表5给出GRON及其对应序列的列表。

表5.在这些实施例中使用的GRON的列表

结果

使用BFP CRISPR,当相较于无摇摆碱基的BFP4/C GRON时,具有摇摆碱基的BFP4/C GRON在BFP至GFP转化中达3.5倍更有效(表6)。当具有摇摆碱基的BFP4/C GRON用于代替具有摇摆碱基的BFP4/NC GRON时,存在BFP至GFP转化的达5.9倍增加(表6)。因此,当与BFP CRISPR一起使用时,具有摇摆碱基的BFP4/C GRON在BFP至GFP转化中最有效。

结论

在GRON中包括改变转化的靶基因中的BFP CRISPR的PAM序列的摇摆碱基增加BFP至GFP转化。通过下一代测序证实通过BFPCRISPR连同基于摇摆的GRON进行的BFP至GFP转化(数据未示出)。另外,通过下一代测序证实BFP CRISPR裂解DNA且产生bfp基因中的插入缺失的能力(数据未示出)。

表6.在将BFP CRISPR和GRON PEG递送至源自拟南芥BFP转基因品系21-15-09的原生质体中之后第72小时通过流式细胞术测定的BFP至GFP转化的百分比。

实施例7:具有Cy3修饰的GRON的CRISPR

所述系列实施例的目的是展示使用CRISPR来在bfp基因和GRON中产生靶向双链断裂以介导转化的拟南芥BFP转基因模型系统中的BFP至GFP转化。在这些实施例中使用的BFP6 CRISPR(CR:BFP6)靶向bfp基因并且引起转化位点附近的DNA中的双链断裂。与BFP6 CRISPR一起使用的GRON在转化位点周围包含bfp基因的编码序列并且在5’端用Cy3标记且在3’端用idC反向碱基标记,并且在本文被称为Cy3 GRON。这些GRON在三种不同长度的41聚体、101聚体和201聚体处进行测试,并且将它们与3PS GRON进行直接比较,所述3PS GRON与Cy3 GRON的唯一不同在于它们在GRON的5’和3’端两者上具有3个硫代磷酸酯键联。这些GRON在本文被称为3PS GRON。关于在这些实施例中使用的GRON的列表参见表7。

方法

将源自诱导的根组织的BFP转基因拟南芥原生质体以250,000个细胞/孔以1x107个细胞/ml的细胞密度接种在平底96孔板上。所述CRISPR编码的质粒包含驱动Cas9编码序列的MAS启动子与rbcSE9终止子以及驱动sgRNA的拟南芥U6启动子与聚-T10终止子。将所述CRISPR质粒连同GRON通过PEG介导的递送以0.05μg/μl(对于CRISPR)和8.0μM(对于41聚体GRON)、0.32μM(对于101聚体GRON)和0.16μM 201聚体GRON的最终浓度引入原生质体中。在PEG递送之后单独GRON处理接受8.0μM(对于41聚体)、5.0μM(对于101聚体)和2.5μM(对于201聚体)的最终GRON浓度。将原生质体在黑暗中在23℃下孵育72小时,且然后通过流式细胞仪进行分析以便测定给定处理内的GFP阳性原生质体的百分比。

所述CRISPR由两种组分组成:植物密码子优化的酿脓链球菌C as9(SpCas9)和sgRNA,所述两者均从同一质粒表达。sgRNA是CRI SPR RNA(crRNA)与反式活化crRNA(tracrRNA)的融合。所述crR NA区包含用于将Cas9核酸酶引导至BFP靶基因的间隔区序列。在此实验中,使用BFP6 CRISPR(5’GGTGCCGCACGTCACGAAGTCGG 3’),其靶向bfp基因。所述GRON包含在转化位点附近的bfp基因的编码序列。表7给出所使用的GRON的列表。

表7.在这些实施例中使用的GRON的列表

结果

使用BFP6 CRISPR,在所测试的所有长度下的Cy3 GRON能够与3PS GRON一样有效地介导BFP至GFP转化(图4)。总之,当相较于仅GRON样品时,含有BFP6 CRISPR和GRON的样品具有更高水平的BFP与GFP转化(图4),从而证明CRISPR对提高转化率具有积极影响。

实施例8:具有不同大小的GRON的CRISPR

所述系列实施例的目的是展示使用CRISPR来在bfp基因和各种长度的GRON中产生靶向双链断裂以介导转化的拟南芥BFP转基因模型系统中的BFP至GFP转化。在这些实施例中使用的BFP CRISPR靶向bfp基因并且引起转化位点附近的DNA中的双链断裂。与BFP CRISPR一起使用的GRON在转化位点周围包含bfp基因的编码序列并且在5’端和3’端两者处用3个硫代磷酸酯键联标记,并且在本文被称为3PS GRON。将这些GRON在60聚体、101聚体和201聚体的三种不同长度下进行测试并且将它们与仅GRON处理进行直接比较。关于在这些实施例中使用的GRON的列表参见表8。

方法

将源自诱导的根组织的BFP转基因拟南芥原生质体以250,000个细胞/孔以1x107个细胞/ml的细胞密度接种在平底96孔板上。所述CRISPR编码的质粒包含驱动Cas9编码序列的MAS启动子与rbcSE9终止子以及驱动sgRNA的拟南芥U6启动子与聚-T10终止子。将所述CRISPR质粒连同GRON通过PEG介导的递送以0.05μg/μl(对于CRISPR)和0.547μM(对于60聚体GRON)、0.32μM(对于101聚体GRON)和0.16μM 201聚体GRON的最终浓度引入原生质体中。在PEG递送之后单独GRON处理接受7.5μM(对于60聚体)、5.0μM(对于101聚体)和2.5μM(对于201聚体)的最终GRON浓度。将原生质体在黑暗中在23℃下孵育72小时,且然后通过流式细胞术进行分析以便测定给定处理内的GFP阳性原生质体的百分比。

所述CRISPR由两种组分组成:植物密码子优化的酿脓链球菌Cas9(SpCas9)和sgRNA,所述两者均从同一质粒表达。sgRNA是CRISPR RNA(crRNA)与反式活化crRNA(tracrRNA)的融合。所述crRNA区包含用于将Cas9核酸酶引导至BFP靶基因的间隔区序列。所述BFP CRISPR间隔区序列是5’GTCGTGCTGCTTCATGTGGT3’。在此实施例中,使用BFP CRISPR,其靶向bfp基因。所述GRON包含在转化位点附近的bfp基因的编码序列。表8给出所使用的GRON的列表。

表8.在这些实施例中使用的GRON的列表。

结果

使用BFP CRISPR,当与60nt长的GRON直接比较时,在长度≥101nt下的GRON在介导BFP至GFP转化方面更好(图5)。总之,当相较于仅GRON样品时,含有BFP CRISPR和GRON的样品具有更高水平的BFP至GFP转化(图5),从而证明CRISPR对提高转化率具有积极影响。所述数据进一步证明当与CRISPR一起使用时,在介导BFP至GFP转化中最有效的GRON的长度需要是长度≥101nt。

实施例9:具有2’-O-Me GRON的CRISPR

此实施例的目的是展示使用CRISPR来在bfp基因和GRON中产生靶向双链断裂以介导转化的拟南芥BFP转基因模型系统中的BFP至GFP转化。在此实施例中使用的BFP CRISPR靶向bfp基因并且引起转化位点附近的DNA中的双链断裂。与BFP CRISPR一起使用的GRON在转化位点周围包含bfp基因的编码或非编码序列,其中GRON的前十个5’碱基是RNA碱基,而不是DNA碱基。将这些RNA碱基在第一5’RNA碱基或前九个5’RNA碱基处用2’-O-Me基团标记,如在图6中所描绘。这些GRON在本文被称为2’-O-Me GRON并且与具有类似长度的在GRON的5’和3’端包含具有3个硫代磷酸酯键联的DNA碱基的3PS GRON进行直接比较。这些GRON在本文被称为3PS GRON。关于在这些实施例中使用的GRON的列表参见表9。

方法

将源自诱导的根组织的BFP转基因拟南芥原生质体以250,000个细胞/孔以1x107个细胞/ml的细胞密度接种在平底96孔板上。所述CRISPR编码的质粒包含驱动Cas9编码序列的MAS启动子与rbcSE9终止子以及驱动sgRNA的拟南芥U6启动子与聚-T10终止子。sgRNA是CRISPR RNA(crRNA)与反式活化crRNA(tracrRNA)的融合。将所述CRISPR质粒连同GRON通过PEG介导的递送以0.05μg/μl(对于CRISPR)、0.5μM(对于71聚体GRON)和0.16μM(对于201聚体GRON)的最终浓度引入原生质体中。在PEG递送之后单独GRON处理接受5.0μM(对于71聚体)和2.5μM(对于201聚体)的最终GRON浓度。将原生质体在黑暗中在23℃下孵育72小时,且然后通过流式细胞仪进行分析以便测定给定处理内的GFP阳性原生质体的百分比。

所述CRISPR由两种组分组成:植物密码子优化的酿脓链球菌Cas9(SpCas9)和sgRNA,所述两者均从同一质粒表达。sgRNA是CRISPR RNA(crRNA)与反式活化crRNA(tracrRNA)的融合。所述crRNA区包含用于将Cas9核酸酶引导至BFP靶基因的间隔区序列。所述BFP CRISPR间隔区序列是5’CTCGTGACCACCTTCACCCA3’。在此实施例中,使用BFP CRISPR,其靶向bfp基因。所述GRON包含在转化位点附近的bfp基因的编码或非编码序列。表9示出所使用的GRON的列表。

表9.在这些实施例中使用的GRON的列表

结果

使用BFP CRISPR,当相较于各种不同类型的GRON保护((0)、(1)或(9))时,所述71聚体和201聚体2’-O-Me GRON具有类似的BFP至GFP转化(图7和8)。使用BFP CRISPR,所述2’-O-Me GRON在介导BFP至GFP转化方面比其3PS GRON对应物更有效(图7和8)。

实施例10:具有GRON引入的CRISPR切口酶

此实施例的目的是展示使用CRISPR来在bfp基因和GRON中产生靶向单链缺口以介导转化的拟南芥BFP转基因模型系统中的BFP至GFP转化。在此实施例中使用的BFP1 CRISPR(CR:BFP1)靶向bfp基因,并且包含催化残基(RuvC中的D10A和HNH中的H840A)中的引起分别与引导RNA互补或非互补的DNA链上的转化位点附近的bfp基因的DNA中的单链缺口的突变。这些CRISPR在本文被称为BFP1 CRISPR切口酶D10A和BFP1 CRISPR切口酶H840A并且在单独质粒上单独地抑或与BFP5 sgRNA一起使用。当多种CRISPR切口酶在此实施例中一起使用时,它们可以使同一DNA链或相对的DNA链缺口。当包含相同突变(D10A或H840A)的两种Cas9蛋白一起使用时,它们使同一DNA链缺口。相反,当两种Cas9蛋白一起使用并且它们中的一者包含D10A突变且另一者包含H840A突变时,它们使相对的DNA链缺口。与切口酶CRISPR一起使用的GRON在转化位点周围包含位于的BFP5 CRISPR的PAM序列中的具有一个摇摆碱基的bfp基因的编码或非编码序列。这些GRON在5’和3’端两者上具有3个硫代磷酸酯键联并且在本文被称为3PS GRON。关于在这些实施例中使用的GRON的列表参见表10。将所述切口酶CRISPR直接与它们的能够引起bfp基因的DNA中的靶向双链断裂的CRISPR对应物进行比较。

方法

将源自诱导的根组织的BFP转基因拟南芥原生质体以250,000个细胞/孔以1x107个细胞/ml的细胞密度接种在平底96孔板上。所述CRISPR编码的质粒包含驱动Cas9编码序列的MAS启动子与rbcSE9终止子以及驱动sgRNA的拟南芥U6启动子与聚-T10终止子。sgRNA是CRISPR RNA(crRNA)与反式活化crRNA(tracrRNA)的融合。所述Cas9基因包含催化残基中的突变,RuvC中的D10A或HNH中的H840A。将所述CRISPR质粒连同GRON通过PEG介导的递送以0.05μg/μl(对于CRISPR)和0.16μM(对于201聚体)的最终浓度引入原生质体中。在PEG递送之后单独GRON处理接受2.5μM(对于201聚体)的最终GRON浓度。将原生质体在黑暗中在23℃下孵育72小时,且然后通过流式细胞仪进行分析以便测定给定处理内的GFP阳性原生质体的百分比。

所述CRISPR由两种组分组成:植物密码子优化的酿脓链球菌C as9(SpCas9)和sgRNA,所述两者均从同一质粒表达。sgRNA是CRI SPR RNA(crRNA)与反式活化crRNA(tracrRNA)的融合。所述crRNA区包含用于将Cas9核酸酶引导至BFP靶基因的间隔区序列。在此实施例中,使用,BFP1和BFP5 sgRNA,其靶向转化位点附近的bfp基因的不同区域。BFP1间隔区(5’CTCGTGACCACCTTCACCCA3’)靶向编码链,而BFP5间隔区(5’GTCGTGCTGCTTCATGTGGT3’)靶向bfp基因的非编码链。所述GRON包含在转化位点附近的bfp基因的编码或非编码序列。表10示出所使用的GRON的列表。

表10.在这些实施例中使用的GRON的列表

结果

当BFP1 CRISPR和BFP5 CRISPR一起使用而不是单独使用时,两种CRISPR切口酶(D10A和H840A)在介导BFP至GFP转化方面更有效(图9)。此外,当相较于这些CRISPR切口酶与NC/201 1W GRON一起使用的处理时,在BFP1和BFP5 D10A CRISPR切口酶与C/2011W GRON一起使用时,BFP至GFP转化显著更高(图9)。当BFP1和BFP5 H840A CRISPR切口酶一起使用时,在C/201或NC/201 1W GRON情况下观察到大致相同的BFP至GFP转化(图9)。这些水平的BFP至GFP转化比单独使用BFP5 CRISPR时稍微更高,并且比单独使用BFP1 CRISPR时稍微更低(图9)。

实施例11:使用CRISPR靶向多种基因

此实施例的目的是展示使用CRISPR在源自拟南芥模型系统的原生质体的给定群体中同时转化多种基因以便在靶基因和GRON中产生双链断裂来介导转化。在此实施例中使用的CRISPR通过将编码Cas9基因的质粒和靶向拟南芥基因组中的BFP和乙酰羟酸合酶(AHAS)基因的多重sgRNA引入原生质体来靶向这两种不同基因。sgRNA是CRISPR RNA(crRNA)与反式活化crRNA(tracrRNA)的融合。这将允许Cas9在将介导其转化的GRON存在下引起BFP和AHAS基因两者中的双链断裂。

方法

将源自诱导的根组织的拟南芥原生质体以250,000个细胞/孔以1x107个细胞/ml的细胞密度接种在平底96孔板上。所述CRISPR编码的质粒包含驱动Cas9编码序列的MAS启动子与rbcSE9终止子以及驱动多种不同的sgRNA的拟南芥U6启动子与聚-T10终止子。sgRNA是CRISPR RNA(crRNA)与反式活化crRNA(tracrRNA)的融合。将所述CRISPR质粒连同GRON通过PEG介导的递送以0.05μg/μl(对于CRISPR)和0.16μM(对于201聚体)的最终浓度引入原生质体中。在PEG递送之后单独GRON处理接受2.5μM(对于201聚体)的最终GRON浓度。原生质体将在黑暗中在23℃下孵育72小时,且然后将它们通过流式细胞仪和等位基因特异性PCR测定进行分析以便分别测定给定处理内的BFP至GFP和AHAS转化的原生质体的百分比。

在等位基因特异性PCR测定中,基因组DNA的5,000基因组等效物的10-16个重复样品用于主要PCR反应中。

所述CRISPR由两种组分组成:植物密码子优化的酿脓链球菌Cas9(SpCas9)和sgRNA,所述两者从同一质粒或多个质粒表达。sgRNA是CRISPR RNA(crRNA)与反式活化crRNA(tracrRNA)的融合。所述crRNA区包含用于将Cas9核酸酶引导至靶向基因的间隔区序列。在此实施例中,不同的sgRNA和GRON用于靶向其转化位点附近的多个基因;BFP间隔区(5’CTCGTGACCACCTTCACCCA 3’)和AHAS间隔区(5’TGGTTATGCAATTGGAAGATCGC 3’)。表11描述所使用的GRON。

表11.在此实施例中使用的GRON的列表

结果

在将BFP和AHAS CRISPR质粒和BFP/C 201聚体和AHAS(W)574/NC 201聚体GRON PEG递送至拟南芥BFP转基因品系中之后144小时时测定BFP至GFP和AHAS转化。流式细胞术数据揭示处理1产生0.20%BFP至GFP转化(表12)。等位基因特异性PCR测定揭示处理1产生0.01%AHAS转化的原生质体(表12)。使用两种测定,仅GRON处理具有最小转化(表12)。此实施例展示在源自拟南芥BFP模型系统的原生质体的给定群体中两种独立靶基因(BFP和AHAS)的成功同时转化。

表12.通过以下来测量在将CRISPR质粒和GRON PEG递送至源自拟南芥BFP模型系统的原生质体的给定群体中之后144小时BFP和AHAS基因两者的转化:(1)流式细胞术,其测定GFP阳性原生质体的百分比,或(2)等位基因特异性PCR,其测定AHAS转化的原生质体的百分比。

实施例12:Cas9 mRNA递送至植物细胞中

此实施例利用重组Cas9 mRNA直接递送至植物细胞中作为递送CRISPR-Cas表达质粒的替代方案。所述方法包括(1)修饰的mRNA的体外合成,和(2)将所述修饰的mRNA递送至植物细胞中。

方法

Cas9 mRNA将使用RNA聚合酶如来自线性化质粒模板的T7、T3或SP6,包括5’UTR、蛋白质的编码序列(CDS)和3’UTR的组分在体外进行转录。一种RNA聚合酶可并入比彼此更好的特定修饰的核苷。所述5’UTR可包含提高其稳定性的元件,如丙型肝炎病毒的MiR-122(Shimakami等人,2012)。体外合成将并入保护性的核苷并且确保靶植物细胞中的良好翻译。重组Cas9 mRNA将被加帽且包含聚A尾。

将源自诱导的根组织的BFP转基因拟南芥原生质体以250,000个细胞/孔以1x107个细胞/ml的细胞密度接种在平底96孔板上。重组Cas9 mRNA将在以下方式中的一种中递送至植物细胞中(列表非包括性的):细胞穿透肽(CPP)、转染脂质体试剂、聚(乙二醇)(PEG)单独地或组合地以便允许活性重组Cas9蛋白递送至细胞中。

实施例13:用于键结DNA、RNA或蛋白质的CRISPR-Cas

此实施例利用修饰的单引导RNA(sgRNA)盒,其中接头序列(还可被称为键结序列)被包括在tracrRNA的3’端处,但在RNA聚合酶III终止信号的5’端处,如在以下实施例中所示(图10)。sgRNA是CRISPR RNA(crRNA)与反式活化crRNA(tracrRNA)的融合。虽然是优选的,接头的布置不限于tracerRNA的3’端,但将在sgRNA盒内的若干位置处研究。所述接头序列可在核苷酸长度上变化或包含将提高键结或增加通过三链体相互作用键结的分子的数目的二级结构。

所述接头将允许与包含互补序列的DNA、RNA或蛋白质沃森-克里克碱基配对(图10)。另外,sgRNA盒中的接头序列将被设计为包含高级二级和三级结构,从而允许将键结多个DNA、RNA或蛋白质分子的更复杂的多方面相互作用区域。

总体概念是CRISPR-Cas复合物将生物分子键结至核酸酶活性位点,从而提高基因编辑的可能性。这些生物分子包含GRON,其将介导靶向基因的转化。可通过简单使用例如基因串或退火的寡聚物来将键结接头添加至sgRNA。

方法

将源自诱导的根组织的BFP转基因拟南芥原生质体以250,000个细胞/孔以1x107个细胞/ml的细胞密度接种在平底96孔板上。所述CRISPR-Cas键结质粒包含驱动Cas9编码序列的MAS启动子与rbcSE9终止子。

驱动15-30bp的多核苷酸序列段互补的接头序列的sgRNA的拟南芥U6启动子位于靶向bfp的201聚体编辑GRON上(如在图10中所示)。所述sgRNA键结盒通过聚-T10终止子终止。将所述CRISPR-Cas质粒连同GRON通过PEG介导的递送以0.05μg/μl(对于CRISPR)和0.16μM(对于201聚体)GRON的最终浓度引入原生质体中。在PEG递送之后单独GRON处理接受2.5μM(对于201聚体)的最终GRON浓度。将原生质体在黑暗中在23℃下孵育72小时,且然后通过流式细胞仪进行分析以便测定给定处理内的GFP阳性原生质体的百分比。

所述CRISPR由两种组分组成:植物密码子优化的酿脓链球菌Cas9(SpCas9)和sgRNA,所述两者从同一质粒或不同质粒表达。sgRNA是CRISPR RNA(crRNA)与反式活化crRNA(tracrRNA)和接头的融合。所述crRNA区包含用于将Cas9核酸酶引导至BFP靶基因的间隔区序列。在此实施例中,使用CRISPR,其靶向bfp基因。所述GRON包含在转化位点附近的bfp基因的编码或非编码序列。

实施例14:具有截短的gRNA的CRISPR。

此实施例的目的是展示使用CRISPR在源自拟南芥BFP模型系统的原生质体中的BFP至GFP的转化以便在靶向基因和GRON中产生双链断裂来介导转化。在此实施例中使用的CRISPR通过将编码Cas9基因的质粒和两种不同长度的一种sgRNA引入原生质体来靶向拟南芥基因组中的bfp基因。sgRNA是CRISPR RNA(crRNA)与反式活化crRNA(tracrRNA)的融合。将Cas9引导至靶基因中的crRNA被称为间隔区并且长度典型地为20-nt(CR:BFP1 20-nt),然而,在这些实施例中,测试了使用17-nt(CR:BFP1 17-nt)的更小长度间隔区在介导BFP至GFP转化中的有效性。

方法

将源自诱导的根组织的拟南芥原生质体以250,000个细胞/孔以1x107个细胞/ml的细胞密度接种在平底96孔板上。所述CRISPR编码的质粒包含驱动Cas9编码序列的MAS启动子与rbcSE9终止子以及驱动多种不同的sgRNA的拟南芥U6启动子与聚-T10终止子。sgRNA是CRISPR RNA(crRNA)与反式活化crRNA(tracrRNA)的融合。将所述CRISPR质粒连同GRON通过PEG介导的递送以0.05μg/μl(对于CRISPR)和0.16μM(对于201聚体)的最终浓度引入原生质体中。在PEG递送之后单独GRON处理接受2.5μM(对于201聚体)的最终GRON浓度。原生质体将在黑暗中在23℃下孵育72小时,且然后通过流式细胞仪进行分析以便测定给定处理内的BFP至GFP的百分比。

所述CRISPR由两种组分组成:植物密码子优化的酿脓链球菌Cas9(SpCas9)和sgRNA,所述两者从同一质粒或多个质粒表达。sgRNA是CRISPR RNA(crRNA)与反式活化crRNA(tracrRNA)的融合。所述crRNA区包含用于将Cas9核酸酶引导至靶向基因的间隔区序列。在这些实施例中,对20-nt(5’CTCGTGACCACCTTCACCCA 3’)对比17-nt(5’GTGACCACCTTCACCCA 3’)的两种不同长度BFP1间隔区进行了测试。表13描述所使用的GRON。

表13.在此实施例中使用的GRON的列表

结果

将BFP1原型间隔区的长度从20bp减少至17bp在将质粒和GRON PEG递送至拟南芥BFP模型系统中之后第72小时分别具有0.163%对比0.177%的类似水平的BFP至GFP转化(图11)。

实施例15:具有扩增子gRNA的CRISPR。

此实施例的目的是展示使用CRISPR在源自拟南芥BFP模型系统的原生质体中的BFP至GFP的转化以便在靶向基因和GRON中产生双链断裂来介导转化。在此实施例中使用的CRISPR通过将编码Cas9基因的质粒和一种sgRNA引入原生质体来靶向拟南芥基因组中的bfp基因,所述sgRNA在质粒上编码或或作为扩增子引入原生质体。sgRNA是CRISPR RNA(crRNA)与反式活化crRNA(tracrRNA)的融合。所述crRNA将Cas9引导至靶基因,其中Cas9产生双链断裂并且GRON用作模板以便以位点定向方式将BFP转化成GFP。

方法

将源自诱导的根组织的拟南芥原生质体以250,000个细胞/孔以1x107个细胞/ml的细胞密度接种在平底96孔板上。所述CRISPR编码的质粒包含驱动Cas9编码序列的MAS启动子与rbcSE9终止子以及驱动多种不同的sgRNA的拟南芥U6启动子与聚-T10终止子。sgRNA是CRISPR RNA(crRNA)与反式活化crRNA(tracrRNA)的融合。将所述CRISPR质粒连同GRON通过PEG介导的递送以0.05μg/μl(对于CRISPR)和0.16μM(对于201聚体)的最终浓度引入原生质体中。在PEG递送之后单独GRON处理接受2.5μM(对于201聚体)的最终GRON浓度。原生质体将在黑暗中在23℃下孵育72小时,且然后通过流式细胞仪进行分析以便测定给定处理内的BFP至GFP的百分比。

所述CRISPR由两种组分组成:植物密码子优化的酿脓链球菌Cas9(SpCas9)和sgRNA,所述两者从同一质粒或多个质粒表达。sgRNA是CRISPR RNA(crRNA)与反式活化crRNA(tracrRNA)的融合。所述crRNA区包含用于将Cas9核酸酶引导至靶向基因的间隔区序列。在这些实施例中,将同一BFP6gRNA(5’GGTGCCGCACGTCACGAAGTCGG 3’)作为扩增子递送至原生质体中或在质粒上编码。表14描述所使用的GRON。

表14.在此实施例中使用的GRON的列表

结果

在将质粒和GRON PEG递送至拟南芥BFP模型系统中之后第72小时,当相较于用在单独质粒上编码的gRNA(gRNA质粒)和Cas9两者处理时,递送作为扩增子的BFP6 gRNA(CR:BFP6(gRNA扩增子))连同仅含有Cas9的质粒具有类似的BFP至GFP转化率(图12)。

实施例16:具有未修饰的GRON的CRISPR。

此实施例的目的是展示使用CRISPR来在bfp基因和GRON中产生靶向双链断裂以介导转化的拟南芥BFP转基因模型系统中的BFP至GFP转化。在此实施例中使用的BFP CRISPR靶向bfp基因并且引起转化位点附近的DNA中的双链断裂。所述3PS GRON在GRON的5’和3’端两者上包含具有3个硫代磷酸酯键联的DNA碱基并且在本文被称为3PS GRON。在BFP转基因拟南芥模型系统中使用BFPCRISPR将3PS GRON直接与其未修饰的GRON对应物在BFP至GFP转化方面进行比较。关于在这些实施例中使用的GRON的列表参见表15。

表15.在此实施例中使用的GRON的列表

方法

将源自诱导的根组织的BFP转基因拟南芥原生质体以250,000个细胞/孔以1x107个细胞/ml的细胞密度接种在平底96孔板上。所述CRISPR编码的质粒包含驱动Cas9编码序列的MAS启动子与rbcSE9终止子以及驱动sgRNA的拟南芥U6启动子与聚-T10终止子。sgRNA是CRISPR RNA(crRNA)与反式活化crRNA(tracrRNA)的融合。将所述CRISPR质粒连同GRON通过PEG介导的递送以0.05μg/μl(对于CRISPR)、0.16μM(对于41聚体GRON)的最终浓度引入原生质体中。在PEG递送之后单独GRON处理接受0.8μM(对于41聚体)的最终GRON浓度。将原生质体在黑暗中在23℃下孵育72小时,且然后通过流式细胞仪进行分析以便测定给定处理内的GFP阳性原生质体的百分比。

所述CRISPR由两种组分组成:植物密码子优化的酿脓链球菌Cas9(SpCas9)和sgRNA,所述两者均从同一质粒表达。sgRNA是CRISPR RNA(crRNA)与反式活化crRNA(tracrRNA)的融合。所述crRNA区包含用于将Cas9核酸酶引导至BFP靶基因的间隔区序列。所述BFP CRISPR间隔区序列是5’CTCGTGACCACCTTCACCCA 3’。在此实施例中,使用BFP CRISPR,其靶向bfp基因。所述GRON包含在转化位点附近的bfp基因的非编码序列。表16示出所使用的GRON的列表。

表16.在此实施例中使用的GRON的列表

结果

使用BFP CRISPR,所述41聚体3PS GRON在介导BFP至GFP转化方面比其未修饰的GRON对应物更有效(图13)。

实施例17:亚麻中的TALEN和GRON

此实施例的目的是展示在递送TALEN质粒和GRON之后在原生质体中24小时和微小愈伤组织中3周时大麻中的EPSPS转化。在此实施例中使用的TALEN通过将编码TALEN的质粒引入源自茎尖的原生质体中靶向亚麻基因组中的epsps基因,产生双链断裂并且GRON用作模板以便以位点定向方式转化epsps基因。

方法

亚麻原生质体分离自从体外发芽的幼苗获得的茎尖。将所述TALEN质粒连同GRON通过PEG介导的递送分别以0.05μg/μl和0.5μM的最终浓度引入原生质体中。将原生质体在液体培养基中黑暗中在25℃下孵育达48小时,或包埋在藻酸盐珠粒(5x 105个细胞/ml)中,并且在液体培养基中培养以诱导细胞分裂和微小愈伤组织的形成。将在DNA递送之后第24小时或3周获得的原生质体或微小愈伤组织样品通过NGS进行分析以测定在给定处理内进行靶突变的细胞(DNA读数)的百分比。还估计了由不完美的NHEJ介导的DNA修复产生的插入缺失的百分比。

TALEN构建体包含两个臂(左和右),各自由连接至FokI的催化性DNA裂解结构域的TAL效应子样DNA结合结构域组成。所述TAL效应子样DNA结合结构域将TALEN臂引导至DNA的特异性位点,所述DNA允许每个臂的FokI核酸内切酶二聚化在一起且裂解双链DNA。所述TALEN编码的质粒包含MasP:LuEPSPS_(左臂)-T2A-LuEPSPS_(右臂)与rbcSE9终止子。LuEPSPS_(左臂)序列是5’TGGAACAGCTATGCGTCCG 3’并且LuEPSPS_(右臂)序列是5’TGAGTTGCCTCCAGCGGCT 3’。有或无摇摆碱基的靶向LuEPSPS的GRON(144聚体)用于测定其对转化速率的影响。

结果

24小时原生质体和3周龄微小愈伤组织分别具有0.067%和0.051%EPSPS转化,如通过下一代测序所测定(图14)。另外,这些数据表明TALEN是活性的并且能够裂解亚麻中的epsps靶基因,并且分别在原生质体中24小时和微小愈伤组织中达3周时形成2.60%和1.84%的插入缺失。此外,在引入TALEN质粒和GRON之后将EPSPS转化和插入缺失维持达3周。

实施例18:亚麻中的CRISPR和GRON

此实施例的目的是展示在递送Cas9质粒之后三周和六周亚麻微小愈伤组织中的Cas9的活性。在此实施例中使用的CRISPR通过将编码Cas9基因的质粒和sgRNA引入源自茎尖的原生质体中来靶向亚麻基因组中的epsps基因。sgRNA是CRISPR RNA(crRNA)与反式活化crRNA(tracrRNA)的融合。所述crRNA将Cas9引导至靶基因,其中Cas9以位点定向方式在epsps基因中产生双链断裂。当通过遍在NHEJ途径修复时,所述epsps基因中的双链断裂将引起在裂解位点周围形成插入缺失。

方法

亚麻原生质体分离自从体外发芽的幼苗获得的茎尖。所述CRISPR编码的质粒包含驱动Cas9编码序列的MAS启动子与rbcSE9终止子以及驱动sgRNA的拟南芥U6启动子与聚-T10终止子。将所述CRISPR质粒通过PEG介导的递送以0.05μg/μl的最终浓度引入原生质体中。将原生质体包埋在藻酸盐珠粒(5x 105个细胞/ml)中,在液体培养基中培养,并且在黑暗中在25℃下在旋转振荡器(30rpm)中孵育。在CRISPR质粒递送之后3和6周将从单独细胞形成的微小愈伤组织通过NGS进行分析以测定进行通过易错NHEJ介导的DNA修复途径产生的插入缺失的细胞(DNA读数)的百分比。

所述CRISPR由两种组分组成:植物密码子优化的酿脓链球菌Cas9(SpCas9)和sgRNA,所述两者均从同一质粒表达。sgRNA是CRISPR RNA(crRNA)与反式活化crRNA(tracrRNA)的融合。所述crRNA区包含用于将Cas9核酸酶引导至靶基因的间隔区序列。在此实施例中,CRISPR靶向epsps基因。

结果

3和6周龄微小愈伤组织分别具有46.5%和54.7%插入缺失形成,如通过下一代测序所测定(图15)。这些数据表明Cas9是活性的并且能够裂解亚麻中的EPSPS靶基因且形成插入缺失。此外,在引入CRISPR质粒之后,这些插入缺失被维持达6周。

实施例19:工程化核酸酶的构建

CRISPR-Cas

对于构建瞬时CRISPR-Cas9表达质粒,将在N和C末端两者上含有SV40NLS且在N末端上含有2x FLAG标签的高等植物密码子优化的SpCas9基因作为一系列StringsTM(Life Technology,Carlsbad,CA)合成,然后通过Gibson方法克隆甘露碱合酶(MAS)启动子的下游和豌豆核酮糖双磷酸羧化酶(rbcsE9)终止子的上游。接着,将由通过拟南芥U6启动子驱动表达的嵌合gRNA盒组成的sgRNA盒作为StringsTM合成,然后使用Gibson方法穿梭至含有Cas9的构建体中,从而形成pBCRISPR。为了指定相应靶序列的嵌合gRNA,将编码可变20-nt sgRNA靶向序列的DNA寡核苷酸对(扩展数据表2)退火以产生具有4-bp突出端的短双链片段。将所述片段连接至BbsI消化的pBCrispr以产生CRISPR-Cas构建体BC-1、BC-2和BC-3。

TALEN

TALEN表达构建体BT-1和LuET-1的设计和构建是基于如在Cermak等人,Nucleic Acids Res.39,e82(2011)中描述的规则。靶序列是基于基因编辑位点和重复可变的i残基(RVD)按照NG、HD、NI和NN分别识别T、C、A和G的规则进行选择的。连接至异二聚体FokI结构域的TAL效应子结构域的组装是通过商业服务(GeneArt;Life Technologies)完成的。使用Gibson方法将TALEN单体在MAS启动子的下游和rbcE9终止子的上游进行克隆且表达为2A偶联单元。

细胞培养和原生质体分离

使表面灭菌的拟南芥种子在28℃下在12小时光照/黑暗循环下在固体1/2MS培养基(根据XX的矿物质和维生素;1/2浓缩的;87.7mM蔗糖)上发芽。收集来自2至3周龄幼苗的根材料并且在28℃下在低光照条件下维持在1/2MS液体培养基中。在原生质体分离之前三周,将根培养物转移且维持在MSAR[0.22%1/2MS、87.7mM蔗糖、11.4μM IAA、2.3μM 2,4-D、1.5μM 2iP,pH 5.8]中。将根切割成大约6mm区段并且在含有细胞壁消化酶[1.25%纤维素醚RS、0.25%混合酶R-10、0.6M甘露醇、5mM MES、0.1%BSA]的MSAP溶液[0.22%1/2MS、87.7mM蔗糖、11.4μM IAA、2.3μM 2,4-D、1.5μM 2iP以及400mM甘露醇,pH 5.8]中在黑暗中在轻摇下孵育3-4小时。收集所释放的原生质体并且使其通过无菌100μm过滤器和35μm过滤器。将原生质体滤液与0.8倍体积的OptiprepTM密度梯度培养基(Sigma)混合且轻轻混合。将60%W5[154mM NaCl、5mM KCl、125mM CaCl2·2H2O、5mM葡萄糖、10mM MES,(pH 5.8)]/40%Optiprep溶液、接着90%W5/10%Optiprep溶液缓慢分层添加到滤液/Optiprep溶液上以制备梯度,将其在198RCF下离心10分钟。收集白色原生质体层且与2倍体积的W5混合。将原生质体在44RCF下离心10分钟且以1x107个细胞/ml的密度重新悬浮于TM溶液[14.8mMMgCl2·6H2O、5mM MES、572mM甘露醇,(pH 5.8)]中。对于使用ZeocinTM(Life Technologies,Carlsbad,CA)和腐草霉素(InvivoGen,San Diego,CA)的实验,在转染之前将原生质体在冰上保持在调整至pH 7.0的TM中持续90分钟。关于抗生素浓度,参见扩展数据图1。

亚麻原生质体分离自从体外发芽的3周龄幼苗获得的茎尖。将根茎用解剖刀精细切碎,在室温下在B-培养基[B5盐和维生素(Gamborg等人,1968)、4mM CaCl2、0.1M葡萄糖、0.3M甘露醇、0.1M甘氨酸、250mg/l酪蛋白水解物、10mg/l L-半胱氨酸-HCL、0.5%聚乙烯吡咯烷酮(MW 10,000)、0.1%BSA、1mg/l BAP、0.2mg/l NAA以及0.5mg/l 2,4-D]中质壁分离1小时,且在含有悬浮有0.66%纤维素酶YC和0.16%混合酶R-10的B-培养基的细胞壁消化酶溶液中在旋转振荡器上(50rpm)在25℃下孵育5小时。筛分所释放的原生质体并且使用Optiprep(Sigma)层通过密度梯度离心进行纯化,用血细胞计数器计数,并且在黑暗中以0.5x 106个原生质体/ml的密度在B培养基中保持静止过夜。

原生质体转染

在96孔平底板中,将2.5x105个细胞/孔用10pmol GRON、10pmol GRON加3.25μg CRISPR-Cas或TALEN表达构建体或模拟物使用PEG[270mM甘露醇、67.5mM Ca(NO3)2、38.4%PEG 1500,(pH 5.8)]进行转染。将细胞和DNA与PEG一起在冰上孵育30分钟,接着用200μl的W5溶液洗涤。最后,添加85μl的MSAP++[MSAP含有50nM植物磺肽素-α和20μM没食子酸正丙酯]并且在低光照条件下在28℃下培养细胞。

在培养约18小时之后,使用PEG介导的递送将原生质体用TALEN质粒连同GRON(20μg质粒和0.2nmol GRON/106原生质体)转染。将处理的原生质体在B培养基中在黑暗中在25℃下孵育达48小时,或在转染后第24小时包埋在藻酸盐珠粒中,并且在V-KM液体培养基中培养以诱导细胞分裂和微小愈伤组织的形成。对于抗生素实验,将1.25x105个细胞/孔用8μM GRON CG13使用以上描述的PEG溶液进行转染。

细胞计数

在转染后第七十二小时,使用Acoustic Focusing细胞计数器(Applied)在激发和如针对GFP而言适当的发射检测下通过细胞计数进行分析。背景水平是基于无DNA递送的PEG处理的原生质体。对于抗生素实验,将在转染之前用博莱霉素或腐草霉素处理的原生质体在转染后第48小时通过细胞计数进行分析。

测序分析

使用植物II试剂盒根据制造商的建议(Machery-Nagel,Bethlehem,PA)从CRISPR-Cas或TALEN处理的原生质体提取基因组DNA。对于拟南芥CRISPR和TALEN使用聚合酶与100ng的基因组DNA和引物BFPF-1(5’-GGACGACGGCAACTACAAGACC-3’)/BFPR-1(5’-TAAACGGCCACAAGTTCAGC-3’)或对于亚麻TALEN,使用LuEPF-1(5’-GCATAGCAGTGAGCAGAAGC-3’)/LuEPR-15’-AGAAGCTGAAAGGCTGGAAG-3’来产生在TALEN或CRISPR靶区域侧翼的扩增子。使用Qiaquick MinElute柱(Qiagen,Valencia,CA)纯化且浓缩所述扩增子。使用2x 250bp MiSeq运行(Illumina,SanDiego,CA)通过GeneWiz(South Plainfield,NJ)进行所述扩增子的深度测序。对于数据分析,将读数1和读数2的fastq文件输入至CLC基因组学工作台7.0.4(CLCBio,Boston,MA)中。将配对的读数合并至单一序列中,如果它们的序列重叠。如果扩增子或其反向和互补序列包含正向和反向引物序列,则鉴别所述扩增子的序列。样品中独特序列的出现被记录为其丰度。通过将具有编辑或插入缺失的读数的数目除以所测序的读数的总数且然后乘以100来计算插入缺失或基因编辑百分比。

CRISPR-Cas原型间隔区的序列

TALEN结合结构域序列

所使用的GRON序列

统计分析

使用学生t检验与双尾分配测定统计学显著性。P值<0.05被认为是显著的。数据作为平均值和SEM示出。

结果

拟南芥原生质体中的CRISPR-Cas核酸酶活性和基因编辑。

可将工程化的核酸酶如TAL效应子核酸酶(TALEN)和成簇规律间隔的短回文重复序列(CRISPR)相关的核酸内切酶Cas9(CRISPR-Cas9)进行编程以便以高特异性靶向且裂解双链DNA。TALEN由两个臂组成,各自具有连接至FokI的催化性DNA核酸酶结构域的TAL效应子样DNA结合结构域(TALE)。所述TALE结构域将TALEN臂引导至DNA的特异性位点,从而允许FokI核酸内切酶的二聚化以及双链断裂(DSB)的随后产生。所述CRISPR-Cas9系统由两种组分组成;酿脓链球菌Cas9核酸酶(SpCas9)和两种RNA(crRNA和tracrRNA)的嵌合融合,其被称为工程化的单引导(sgRNA)。所述sgRNA通过其前二十个5’碱基与DNA靶标的碱基配对支持Cas9的靶向核酸特异性,随后产生位点特异性DSB。

在植物中,DSB通常通过易错非同源末端连接(NHEJ)DNA修复途径进行修复,从而产生在修复位点处的随机缺失和/或插入(插入缺失)。相比之下,精确基因组编辑依赖于待通过同源导向修复(HDR)进行修复的靶向变化附近的核酸酶诱导的DSB,所述同源导向修复时比NHEJ更精确的修复途径,这是由于同源模板DNA的要求—在大多数情况下姊妹染色半体。通过利用HDR途径,有可能使用工程化的寡核苷酸作为修复模板来特异性地编辑DNA,当通过核酸酶裂解或当与双链断裂诱导抗生素组合使用时非特异性地裂解。

图16描绘源自BFP转基因模型系统的拟南芥原生质体中的CRISPR-Cas9核酸酶活性,其中稳定整合的BFP基因可通过编辑编码H66的密码子(CAC→TAC H66Y)而转化成GFP。当用CRISPR-Cas9(BC-1)处理细胞时,通过深度测序在BFP基因的H66基因座附近以0.79%的频率产生NHEJ诱导的插入缺失(图16a)。大多数插入缺失是单个bp且都不长于9bp。相反,用仅GRON处理或模拟物处理的细胞未展示插入缺失(数据未示出)。这些结果表明CRISPR-Cas9核酸酶能够主动靶向此转基因模型系统中的BFP基因。

关于CRISPR-Cas9与GRON的组合介导源自转基因模型系统的原生质体中的BFP至GFP基因编辑的有效性,当相较于单独GRON或单独CRISPR-Cas9处理时,当CRISPR-Cas9和硫代磷酸酯(PS)修饰的GRON(CG6)两者被同时引入时观察到BFP至GFP编辑的7.4倍提高(图16b)。这些结果证明将具有PS修饰的GRON的CRISPR-Cas9引入拟南芥原生质体中显著提高BFP至GFP基因编辑的频率。

当相较于未修饰的GRON时,在5’和3’端两者处含有三个邻近的PS修饰(本文称为3PS)的GRON积极实现BFP至GFP编辑。当相较于未修饰的GRON模板(CG1;图17a)时,当与CRISPR-Cas9(BC-1)组合时,3PS修饰的GRON(CG2)在BFP至GFP编辑方面更有效。此外,观察到编辑与GRON长度之间的正相关(图17b)。总之,这些结果表明在CRISPR-Cas9存在下,GRON修饰和长度两者能够极大地提高植物如拟南芥中的基因编辑的频率。

当201核酸酶(nb)3PS修饰的GRON(CG6)或201nb 2’-O-甲基修饰的GRONs(CG9)或(CG10)(由作为RNA的前十个5’碱基与用2’-O-甲基修饰的第一RNA碱基或前9个RNA碱基组成)连同CRISPR-Cas9(BC-1)被引入拟南芥原生质体中时,未观察到它们之间的BFP至GFP编辑的显著差异(图17c)。类似地,当201nb 3PS修饰的GRON(CG3)或201nb Cy3修饰的GRON(CG4)(包含5’Cy3和3’idC反向碱基)连同CRISPR-Cas9(BC-3)引入拟南芥原生质体中时,未观察到编辑频率的显著差异(图17d)。总之,这些数据表明在CRISPR-Cas9存在下,不同GRON修饰能够极大地提高拟南芥中的基因编辑的频率。

基于CRISPR-Cas9和修饰的GRON的这些结果,确定与靶向BFP基因的TALEN对偶联的修饰的GRON也产生提高的BFP至GFP基因编辑。为了首先显示在BFP基因座处的有效核酸酶活性,将拟南芥原生质体用TALEN(BT-1)进行处理并且通过深度测序在预期裂解位点处或附近发现0.51%插入缺失—从而指示在此模型系统中TALEN与CRISPR-Cas9一样有活性(图18a)。大多数缺失是>10bp但小于50bp,而插入(比缺失的丰度显著更低)是三个bp或更少。接下来,检查与修饰的GRON偶联的TALEN编辑BFP至GFP的有效性。当相较于单独3PS GRON时(图18b)时,当引入BFP TALEN(BT-1)和3PS GRON(CG7)两者时,观察到BFP至GFP编辑的频率的9.2倍提高。与上述CRISPR-Cas实验类似,这些结果证明将具有3PS修饰的GRON的TALEN引入拟南芥原生质体中也显著提高BFP至GFP基因编辑的频率。

亚麻(普通亚麻)中的EPSPS(5’-烯醇丙酮莽草酸-3-磷酸合酶)基因座也用作此系统中的靶标。所述EPSPS基因编码莽草酸酯途径中的参与芳香族氨基酸苯丙氨酸、酪氨酸和色氨酸的生物合成的酶。在植物中,EPSPS是除草剂草甘膦的靶标,其中它充当磷酸烯醇丙酮酸的结合位点的竞争性抑制剂。

选择了靶向亚麻中的在编辑时将使EPSPS对草甘膦耐受的两个基因座(T97I和P101A)附近的位点的TALEN(扩展数据图18b)。将TALEN(LuET-1)与含有在T97I和P101A处的靶向变化的144nb 5’Cy3修饰的GRON(CG11)一起递送至原生质体中,观察到在引入之后七天在两个基因座处0.19%的基因编辑频率以及0.5%的插入缺失频率(图18c、18d)。大多数插入缺失是10bp或更少(图18c)。这些结果证明将具有Cy3修饰的GRON的TALEN引入亚麻原生质体中显著提高EPSPS基因编辑的频率并且进一步证明多个核苷酸编辑可用单个GRON实现。

实施例20:博来霉素抗生素家族的两个成员对转化的作用

此系列实施例的目的是评价抗生素对转化效率的作用。

方法

将来自具有蓝色荧光蛋白基因的多个拷贝的拟南芥品系的原生质体如实施例1中所描述用GRON进行处理,使用以下修饰:在添加GRON之前,将所述原生质体在冰上在补充有0、250或1000μg/ml ZeocinTM或腐草霉素的TM(14.8mM MgCl2x 6H2O、5mM 2-(N-吗啉代)乙磺酸、572mM甘露醇)中保持90分钟。将所述溶液的pH调整至7.0。通过如实施例1中描述的流式细胞术评价从BFP至GFP转化产生的发绿色荧光的细胞的百分比。

结果

在所使用的两种浓度(250和1000μg/ml)下的博莱霉素和腐草霉素均产生BFP至GFP基因编辑的增加(参见图19)。在GRON递送之后五天观察到由BFP至GFP基因编辑产生的发绿色荧光的细胞(图20)。

参考文献

1.LeCong等人2013Science:第339卷第6121期第819-823页.

2.Jinek等人2012Science.337:816-21

3.Wang等人2008RNA 14:903-913

4.Zhang等人2013.Plant Physiol.161:20-27

实施例21:水稻中的CRISPR和GRON

此实验的目的是展示在将CRISPR-Cas质粒和GRON PEG递送至原生质体中之后120小时时水稻中的ACC酶转化。在此实验中使用的CRISPR-Cas通过将编码Cas9基因的质粒和sgRNA引入原生质体中来靶向水稻基因组中的acc酶基因。sgRNA是CRISPR RNA(crRNA)与反式活化crRNA(tracrRNA)的融合。所述crRNA将Cas9引导至靶基因,其中Cas9产生acc酶基因中的双链断裂并且GRON用作模板以便以位点定向方式转化acc酶基因。

方法

水稻原生质体分离自愈伤组织。所述CRISPR-Cas编码的质粒包含驱动Cas9编码序列的玉米泛素蛋白启动子与rbcSE9终止子以及驱动sgRNA的水稻U6启动子与聚-T10终止子。将所述CRISPR-Cas质粒通过PEG介导的递送以0.05μg/μl的最终浓度引入原生质体中。具有以下序列5’V C TGA CCT GAA CTT GAT CTC AAT TAA CCC TTG CGG TTC CAG AAC ATT GCC TTT TGC AGT CCT CTC AGC ATA GCA CTC AAT GCG GTC TGG GTT TAT CTT GCT TCC AAC GAC AAC CCA AGC CCC TCC TCG TAG CTC TGC AGC CAT GGG AAT GTA GAC AAA GGC AGG CTG ATT GTA TGT CCT AAG GTT CTC AAC AAT AGT CGA GCC H 3’的GRON以0.8μM的最终浓度使用。将原生质体包埋在琼脂糖(2.5x 106个细胞/ml)中,在液体培养基中培养,并且在黑暗中在28℃下在旋转振荡器(60rpm)中孵育。在CRISPR-Cas质粒和/或GRON递送之后120小时将单独样品通过NGS进行分析以便测定携带ACC酶转化且具有acc酶基因中的插入缺失的细胞(DNA读数)的百分比。

所述CRISPR由两种组分组成:植物密码子优化的酿脓链球菌Cas9(SpCas9)和sgRNA,所述两者均从同一质粒表达。sgRNA是CRISPR RNA(crRNA)与反式活化crRNA(tracrRNA)的融合。所述crRNA区包含用于将Cas9核酸酶引导至靶基因的间隔区序列(5’-ACGAGGAGGGGCTTGGGTTGTGG-3)。在此实验中,CRISPR靶向acc酶基因。

结果

在第120小时时,水稻原生质体具有0.026%ACC酶转化,如通过下一代测序所测定。无CRISPR-Cas的仅GRON对照显示在120小时时0.002%的最小Acc酶转化并且未处理的对照未显示转化。另外,这些数据表明CRISPR-Cas是活性的且能够裂解ACC酶靶基因且形成8.0%的插入缺失。

参考文献

5.LeCong等人2013Science:第339卷第6121期第819-823页.

6.Jinek等人2012Science.337:816-21

7.Wang等人2008RNA 14:903-913

8.Zhang等人2013.Plant Physiol.161:20-27

实施例22:水稻中的CRISPR和GRON

总结:已通过PCR和DNA测序分析在十九周龄愈伤组织中鉴别了靶向ACC酶突变。

引言

此实验的目的是展示在将CRISPR-Cas质粒和GRON PEG递送至原生质体中之后水稻中的ACC酶转化。在此实验中使用的CRISPR-Cas通过将编码Cas9基因的质粒和sgRNA引入原生质体中来靶向水稻基因组中的ACC酶基因。sgRNA是CRISPR RNA(crRNA)与反式活化crRNA(tracrRNA)的融合。所述crRNA将Cas9引导至靶基因,其中Cas9在ACC酶基因中的靶向位置处产生双链断裂或缺口并且GRON用作模板以便以位点定向方式转化ACC酶基因。

结果

已通过PCR和DNA测序分析在十九周龄愈伤组织中鉴别了在以下表中描述的靶向OsACC酶突变。

方法

水稻原生质体分离自从成熟种子来源的胚性愈伤组织引发的悬浮培养物。通过PEG介导的递送方法将分别0.05μg/μl和0.8μM最终浓度的CRISPR-Cas质粒与GRON引入原生质体中。最终浓度下的CRISPR-Cas质粒的示例性范围包括但不限于0.01至0.2μg/μl。最终浓度下的GRON的示例性范围包括但不限于0.01至4μM。所述CRISPR-Cas编码的质粒包含驱动Cas9编码序列的玉米泛素蛋白启动子与rbcSE9终止子以及驱动sgRNA的水稻U6启动子与聚-T10终止子。GRON的序列信息在表3中进行了描述。在PEG处理之后,将原生质体包埋在琼脂糖(1.25x 106个细胞/ml)中,在液体培养基中培养,并且在黑暗中在28℃下在旋转振荡器(60rpm)中孵育。用于将原生质体包埋在琼脂糖中的示例性范围包括但不限于0.625x 106至2.5x 106个细胞/ml。在CRISPR-Cas质粒和/或GRON处理之后4周通过下一代测序对来自每种处理的样品进行分析以测定携带ACC酶转化的细胞(DNA读数)的比例。将来自转化处理的微小愈伤组织释放到含有烯草酮(0.25-0.5μM)或稀禾定(2.5μM)的固体选择培养基上。在培养19周之后将在此选择培养基上生长的单独愈伤组织品系通过内部筛选方法以及DNA测序进行分析以便鉴别含有靶向ACC酶转化的单独愈伤组织。

所述CRISPR由两种组分组成:Cas9如植物密码子优化的酿脓链球菌Cas9(SpCas9)和sgRNA,所述两者均从质粒表达。Cas9和sgRNA还可分别通过mRNA/RNA或蛋白质/RNA递送。sgRNA是CRISPR RNA(crRNA)与反式活化crRNA(tracrRNA)的融合。所述crRNA区包含具有在表2中描述的序列的间隔区,其用于将Cas9核酸酶引导至靶基因。在此实验中,CRISPR靶向水稻ACC酶基因。

在所述基因内的两个不同位置处(位点1和位点2)OsACC酶的转化的列表。对于每个位点,所有转化事件的组合是可能的。

在此实验中使用的CRISPR-Cas gRNA间隔区序列的列表。间隔区长度可变化达±20bp。在所述间隔区序列内错配的可容许达10bp。

适合在此实验中使用的GRON序列的列表提供于以下表中(V=CY3;H=3'DMT dC CPG)。

实施例23:亚麻中的CRISPR和GRON

总结:已通过PCR和DNA测序分析在四周龄愈伤组织中鉴别了靶向LuEPSPS突变。

引言

此实验的目的是展示通过CRISPR-Cas质粒和GRON的PEG介导的递送,茎尖来源的原生质体中的亚麻基因组中的EPSPS基因的转化。在此实验中使用的CRISPR-Cas和GRON靶向亚麻基因组中的EPSPS基因。所述CRISPR由两种组分组成:Cas9,如植物密码子优化的酿脓链球菌Cas9(SpCas9)和sgRNA,所述两者均从质粒表达。Cas9和sgRNA还可分别通过mRNA/RNA或蛋白质/RNA递送。sgRNA是CRISPR RNA(crRNA)与反式活化crRNA(tracrRNA)的融合。所述crRNA将Cas9引导至靶向基因,其中Cas9产生EPSPS基因中的双链断裂或缺口并且GRON用作模板以便以位点定向方式转化EPSPS基因。

结果

已通过PCR和DNA测序分析在四周龄愈伤组织中鉴别了靶向LuEPSPS(T97I和/或P101A、P101T或P101S和/或G96A)突变。已经从这些转化的愈伤组织再生了根。

方法

亚麻原生质体分离自从体外发芽的幼苗获得的茎尖。所述CRISPR-Cas编码的质粒包含驱动Cas9编码序列的MAS启动子与rbcSE9终止子以及驱动sgRNA的拟南芥U6启动子与聚-T10终止子。将所述CRISPR-Cas质粒通过PEG介导的递送以0.05μg/μl的最终浓度引入原生质体中。靶向两种亚麻LuEPSPS基因中的每种的GRON(表2)以4.0μM的最终浓度使用。最终浓度下的CRISPR-Cas质粒的示例性范围包括但不限于0.01至0.2μg/μl。最终浓度下的GRON的示例性范围包括但不限于0.01至4μM。将原生质体包埋在藻酸盐珠粒(5x 105个细胞/ml)中,在液体培养基中培养,并且在黑暗中在25℃下在旋转振荡器(30rpm)中孵育。用于将原生质体包埋在藻酸盐珠粒中的示例性范围包括但不限于3.0x 105至7.5x 105个细胞/ml。在CRISPR-Cas质粒和/或GRON递送之后3周和7周通过下一代测序对从单独细胞发育的微小愈伤组织进行分析以测定携带LuEPSPS基因中的靶向突变的细胞(DNA读数)的比例。从在固体再生培养基上接种的8周龄转化的微小愈伤组织生长较大愈伤组织,并且在约4-8周之后根开始从再生的愈伤组织分化。通过PCR和DNA测序分析来鉴别具有靶向EPSPS基因突变的转化的愈伤组织和根。

所述CRISPR由两种组分组成:植物密码子优化的酿脓链球菌Cas9(SpCas9)和sgRNA,所述两者均从质粒表达。sgRNA是CRISPR RNA(crRNA)与反式活化crRNA(tracrRNA)的融合。所述crRNA区包含具有在下表中描述的序列的间隔区,其用于将Cas9核酸酶引导至EPSPS靶向基因。

在此实验中使用的CRISPR-Cas gRNA间隔区序列的列表间隔区长度可变化达±20bp。在所述间隔区序列内错配的可容许达10bp。

适合在此实验中使用的GRON序列的列表提供于以下表中(V=CY3;H=3'DMT dC CPG)。

本领域技术人员易于了解,本公开充分适于执行目标并且获得所提到的以及其中固有的结果和优点。本文中提供的实施例代表优选实施方案,为示例性的,并且并非意图作为本公开的范围的限制。

本领域技术人员将易于显而易见的是,在不脱离本公开的范围和精神的情况下可对本文中所公开的公开内容进行可变的替换和修改。

本文中适当地说明性地描述的公开内容可在缺少在本文中并未具体公开的任何一个或多个元件、一个或多个限制的情况下实践。因此,例如,在本文中的每一个例子中,术语“包括”、“主要由……组成”和“由……组成”中的任何术语可由其他两个术语中的任何一个代替。已使用的术语和措辞是用作描述而非限制的术语,并且在使用这类术语和措辞时并非旨在排除所示出和描述的特征或其部分的任何等同物,但是应认识到,各种修改在公开要求的范围内是可能的。因此,应理解,尽管本公开已由优选实施方案和任选特征具体公开,但是本领域技术人员可采用本文中公开的概念的修改和变化,并且应理解,所述修改和变化被视为在如由所附权利要求书定义的本公开的范围内。

因此,应理解,尽管本公开已由优选实施方案和任选特征具体公开,但是本领域技术人员可采用所公开的公开内容的修改、改进和变化,并且应理解,所述修改、改进和变化被视为在本公开的范围内。本文中提供的材料、方法和实施例代表优选实施方案,为示例性的,并且并非意图作为本公开的范围的限制。

本公开已在本文中进行了广泛性和一般性的描述。落在一般性公开范围内的每个较狭义的物种和亚属群也构成本公开的一部分。这包括具有附带条件或否定限制的本公开的一般性描述,以从类属中除去任何主题而不管所删除的材料在本文中是否进行了具体叙述。

此外,根据Markush组描述了本公开的特征或方面,本领域技术人员将认识到本公开还因此根据Markush组的任何个别成员或成员亚组进行了描述。

所有出版物、专利申请、专利和其他本文提到的参考文献均以引用的方式明确地整体并入本文,引用程度就如同每个参考文献分别以引用的方式单独并入一样。如有冲突,将以本说明书(包括定义)为准。

在以下权利要求书内阐述其他实施方案。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1