脂质修饰载体构建的微针阵列疫苗佐剂传递系统的制作方法

文档序号:1312501阅读:216来源:国知局
脂质修饰载体构建的微针阵列疫苗佐剂传递系统的制作方法
【专利摘要】本发明公开了一种包含脂质修饰载体的微针阵列,用于疫苗佐剂传递系统。微针阵列包括基底和若干固定于所述基底的微针;所述基底由糖类、聚维酮类、纤维素类、或淀粉类辅助材料组成;每一微针包含脂质A修饰载体、上述辅助材料(赋型剂)和疫苗成分;所述脂质A修饰载体为脂质体、类脂体、微囊、或纳米粒等;疫苗成分主要为病原体抗原蛋白。本发明相比已有疫苗制剂具有以下优点:脂质A修饰脂质体微针阵列疫苗佐剂传递系统能够包含不同疫苗成分形成针对不同病原体的疫苗,适用范围广;选用可生物降解材料,安全性高;且微针阵列疫苗佐剂系统为固体制剂,稳定性高;接种方便,能够自行完成接种,且通过口腔粘膜接种,能够避免疫苗随唾液流失,能够诱导机体建立粘膜免疫。
【专利说明】脂质修饰载体构建的微针阵列疫苗佐剂传递系统

【技术领域】
[0001] 本发明涉及预防感染性疾病的疫苗佐剂领域,尤其涉及新型疫苗佐剂传递系统, 本质为采用功能载体构建微针阵列,用作疫苗佐剂传递系统。

【背景技术】
[0002] 疫苗是能够产生抗体的免疫原物质,是用于预防传染病的制剂。经过多年发展,目 前疫苗从来源上分主要包括如下类型:1)灭活疫苗选用免疫原性好的细菌、病毒、立克次 体、螺次体等,经人工培养,再用物理或化学方法将其杀灭制成。2)减毒活疫苗用人工定向 诱变方法,或从自然界筛选出毒力减弱或基本无毒的活微生物制成活疫苗。如卡介苗(BCG, 结核病)、麻疹疫苗、脊髓灰质炎疫苗(小儿麻痹症)等。3)RNA/DNA疫苗RNA/DNA疫苗是 将蛋白抗原的表达基因克隆在表达载体上,注入体内,使其抗原在体内表达后激发机体产 生免疫反应,其制备过程复杂,安全性较低。4)类毒素(外毒素)细胞外毒素经甲醛处理 后失去毒性,仍保留免疫原性,为类毒素。其中加适量磷酸铝和氢氧化铝即成吸附精制类毒 素。5)亚单位疫苗(组分疫苗)除去病原体中无免疫作用甚至有害的成分(尤其是遗传物 质),保留其有效的免疫原性成分制成的疫苗。
[0003] 目前疫苗多通过传统注射接种,系统免疫诱导效率高;但副作用多,生产成本高, 需专业接种人员,而无法诱导机体产生黏膜免疫应答降低了疫苗预防效率。
[0004] 可溶微针疫苗能高效传递Ag,无痛,作用时间较长,使用方便,最近备受瞩目;但 目前微针疫苗多为皮肤贴剂,也难以诱发粘膜免疫;缺乏免疫细胞特异性传递;佐剂功能 弱。
[0005] 相比较而言,粘膜疫苗具有一些明显优势:1)腔道含有大量粘膜相关淋巴组织 (MALT),粘膜接种既能产生系统免疫应答,也能产生广泛的(接种部位及远端)黏膜免疫 应答;由于粘膜是病原体入侵主要途径,因此粘膜免疫能够对病原体形成二道防线;2)无 机械损伤,使用方便,消除了注射等器材及其污染,节省了专业人员培训费用,易于推广;3) 生产成本较低。因此人们积极发展各种粘膜疫苗。
[0006] 口服疫苗使用方便,但需要较大剂量,既增加了成本也容易引起抗原耐受,而胃肠 道苛刻环境更成为难以逾越的障碍。肺部给药存在肺囊纤维化危险,辉瑞Exubera? (吸 入胰岛素)正因此而撤出市场[29]。鼻腔粘膜富含MALT却紧邻中枢神经系统(CNS),接种 风险较高,例如,NasalHu?致部分接种者面瘫(Bell's palsy),随后撤出市场。
[0007] 口腔环境缓和,利于保持Ag活性;舌下接种能够产生等同于鼻腔接种的预防效 果,但不会产生CNS毒性。然而,口腔粘膜被覆复层鳞状上皮,且MALT距离接种表面相对较 远;而唾液及吞咽也导致Ag大量流失,接种时需麻醉动物,对人来说完全不可行。
[0008] 此外,发展粘膜疫苗还存在着一些普遍障碍:1)亚单位疫苗Ag被抗原提呈细胞 (APC)摄取后,一般通过MHC II呈递,难以产生细胞毒性淋巴细胞(CTL),无法消除侵入细胞 的病原体;且部分Ag被非APC摄取也降低效率。2)Ag易于接种部位失活。3)不断分泌的 粘液不但阻碍APC摄取Ag而且流动、更新较快,往往导致疫苗未进入机体即大量流失。


【发明内容】

[0009] 本发明的目的在于克服现有疫苗的不足,提供一种脂质A修饰载体构建的微针阵 列疫苗佐剂传递系统。
[0010] 本发明是通过以下技术方案实现的:
[0011] 一种脂质A修饰载体构建的微针阵列疫苗佐剂传递系统,所述微针阵列包括基底 和若干固定于所述基底的微针;每一所述的微针其成分包括脂质A修饰载体、辅助材料和 疫苗成分,形成疫苗佐剂传递系统。
[0012] 微针阵列包括基底和若干固定于基底的微针;每一微针其成分包括脂质A修饰载 体(包含疫苗成分)及辅助材料(赋型剂)。
[0013] 脂质A修饰载体,脂质A包括单磷脂A,脂质A及脂多糖;载体包括单层、寡层、多 层及多囊脂质体,类脂体,微囊,或纳米粒;载体体荷正电、负电或中性。
[0014] 作为上述方案的进一步优化,所述微针阵列的基底横截面为方形(一般边长小于 3厘米)或圆形(一般直径小于3厘米),由糖类、聚维酮类(PVP)、淀粉类、纤维素类、或此 类可生物降解材料(赋型剂)组合构成。
[0015] 作为上述方案的进一步优化,所述固定于基底的微针,数目一般大于3 ;高度为 50-500 μ m ;间距为100-400 μ m ;为椎体或顶端为椎体的柱体,底面直径范围为50-500 μ m。
[0016] 作为上述方案的进一步优化,所述疫苗成分选自亚单位疫苗抗原物质、类毒素、灭 活或减毒病原体、包含抗原的疫苗载体及疫苗佐剂;所述包含抗原的疫苗载体为载抗原的 脂质体(包括单层、多层、多囊脂质体)、类脂体、纳米粒或微囊;所述疫苗佐剂为脂质A、单 磷脂A、LPS (脂多糖)、CpG-ODN、铝盐、或菌毛蛋白。
[0017] 作为上述方案的进一步优化,所述疫苗成分或包封于所述脂质A修饰载体内、或 吸附于所述脂质A修饰载体表面;或所述疫苗成分部分包封于所述脂质A修饰载体内、部 分吸附于所述脂质A修饰载体、或与载体简单混合。
[0018] 作为上述方案的进一步优化,所述的脂质A修饰脂质体微针阵列疫苗佐剂传递系 统通过口腔粘膜接种或皮肤接种。
[0019] 脂质A修饰脂质体微针阵列疫苗佐剂传递系统的制备过程主要通过聚二甲氧硅 烷微针阵列模具完成。
[0020] (1)先制备脂质A修饰载体(或载有疫苗成分);
[0021] (2)将分散或溶解于溶剂的脂质A修饰载体、辅助成分(或包括疫苗成分)填充于 微针阵列模具的针孔内,再覆以基底成分;
[0022] (3)将填充后的微针阵列模具在常温条件下置于干燥皿(含无水氯化钙、五氧化 二磷等干燥剂)干燥除去水分或通过冰冻干燥除去水分,剥落,得到所述一种脂质A修饰载 体微针阵列疫苗。
[0023] 与现有技术相比,本发明不同于传统粘膜疫苗,也不同于已有的微针疫苗(均通 过皮肤接种),本发明克服二者之短又兼具二者之长;适用于不同病原体抗原的新型微针 阵列疫苗系统,具有以下优点:
[0024] (1)适用范围广,本发明的脂质A修饰载体微针阵列疫苗佐剂传递系统能够包含 不同疫苗成分形成针对不同病原体的疫苗;疫苗成分可以是抗原,减毒或灭活病原体;
[0025] (2)稳定性高,本发明的脂质A修饰载体微针阵列疫苗佐剂传递系统为固体制剂, 稳定性高;MAV可以保护抗原免遭(接种)环境物质破坏,增强体内外稳定性;有望能够成 为脱冷链或控温链适用疫苗。
[0026] (3)安全性高,所用材料具有良好生物相容性,包封抗原物质获得亚单位疫苗,具 有较高安全性。
[0027] (4)免疫诱导效力强,脂质A修饰载体微针阵列疫苗通过皮肤接种,方便而无痛, 能够激活皮肤朗格汉斯细胞(Langerhans cell),诱导机体产生抗原特异性免疫应答,防御 病原体入侵;脂质A修饰载体微针阵列疫苗通过口腔粘膜接种,能够避免疫苗随唾液流失, 也能够消除口腔粘膜复层鳞状细胞及表面粘液对于疫苗摄取的阻碍作用,提高抗原提呈细 胞对于疫苗的摄取及利用效率,有效激活机体免疫系统。
[0028] (5)建立多重防御病原体,脂质A修饰载体微针阵列疫苗佐剂传递系统通过口腔 粘月旲接种能够激活机体免疫系统,既能够广生系统免疫应答,也能够广生粘I吴免疫应答,对 病原体入侵形成双重防御屏障。通过皮肤接种,方便而无痛,能够激活皮肤朗格汉斯细胞 (Langerhans cell),诱导机体产生抗原特异性免疫应答,防御病原体入侵。
[0029] 总之,本发明的脂质A修饰载体构建的微针阵列疫苗(Microneedle Array Vaccine,MAV),也是一种疫苗佐剂传递系统(VacDAS),通过荷载不同疫苗成分形成针对不 同病原体的安全、高效、稳定的疫苗。本发明的微针阵列疫苗通过皮肤或口腔粘膜方便、无 痛、顺从性良好。尤其是通过粘膜接种,微针阵列疫苗既克服了已有微针疫苗无法诱导粘膜 免疫应答的缺陷,又克服了粘膜接种存在的粘液阻碍、成分流失、抗原传递效率低等诸多不 足。本发明的微针阵列疫苗通过皮肤接种,方便而无痛,能够激活皮肤朗格汉斯细胞,诱导 机体产生抗原特异性免疫应答,防御病原体入侵。同时这两种接种形式均较为安全。此外, 由于脂质A修饰载体微针疫苗无水,稳定性高,有望适用于控温链,有利于普遍接种。本发 明为微针阵列疫苗探索接种新途径,为口腔接种探寻新疫苗,也为发展新型CTC-VacDAS奠 定基础,具有重要的科学研究意义和广泛的临床应用价值。

【专利附图】

【附图说明】
[0030] 图1是本发明的脂质A修饰载体(以脂质体为例)构建的微针的结构示意图。

【具体实施方式】
[0031] 下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行 实施,给出了【具体实施方式】和操作过程,但本发明的保护范围不限于下述的实施例。
[0032] 参见图1,为本发明的脂质A修饰载体(以脂质体为例)构建的微针的结构示意 图。先制备脂质A修饰载体用作抗原载体,再以所述载体及赋型剂构建微针阵列,形成疫苗 佐剂传递系统。
[0033] 【实施例1】
[0034] 〈脂质A修饰多层脂质体构建的微针阵列疫苗(MAV) >
[0035] 以 0VA 为抗原,以 SPC/LA (100:1,mole ratio)为膜材,总脂 /0VA (20:1,mass ratio),以10%海藻糖、20% PVPk30 (赋型剂)溶液为水相,以薄膜分散法制备脂质体,形 成平均粒径为250纳米、ζ电位6mV、包封率为10%的OVA/Lipid A-脂质体(0VA/LL)。之 后将LL与磷酸铝(平均粒径500纳米)混合(1 :5,W/W),通过减压填充入由聚二甲氧硅烷 制备的微针阵列模具的(5X5孔)针孔,再覆以10%海藻糖、20% PVPk30(赋型剂)溶液, 再冻干除水,剥脱,获得OVA/LL-MAV (6 X 6微针,基底0. 65 X 0. 65cm2,固定于基底上每微针: 250 X 250 X 500微米3四方锥针体)。OVA/LL-MAV储存2周后水化后恢复HIsAg-MLL,上述 指标无显著变化。OVA/LL-MAV储存2周后,通过口腔粘膜给小鼠接种,与空白对照相比较, 3周后产生高水平OVA特异性抗体及CTL ;较高的IgGl/IgG2a及高水平IFN-γ,表明接种 鼠产生Thl/Th2混合型免疫应答;同时在小鼠唾液、小肠冲洗液、产道冲洗液均检测到高 水平IgA,表明小鼠既产生了系统免疫应答,也产生了粘膜免疫应答。(0VA,卵清蛋白;LPS, 脂多糖;SPC,豆憐脂醜胆喊;LA,lipid A,脂质 A ;MPC,mannose-PEG2000-cholesterol ; DOTAP,1,2-dioleoyl-3-trimethylammonium-p;ropane,1,2-二油醜基-N, N, N-三甲基-丙 胺;PVPk30,聚维酮)。
[0036] 【实施例2】
[0037] 〈甘露糖基/脂质A双重修饰脂质体(荷正电)构建的微针阵列疫苗〉
[0038] 以甲型 H1N1 流感病毒(influenza A(H1N1) virus)表面抗原(hemagglutininl antigen, HlsAg)为抗原,以 SPC/MPC/MPLA/DOTAP(20:1:0. 05:1,mole ratio)为膜材,总脂 /HlsAg(20:l,maSS ratio),以10%海藻糖、20%PVPk30(赋型剂)溶液为水相,以逆向蒸发 法制备脂质体,形成平均粒径为320纳米、ζ电位13mV、包封率为59%的MPC/Lipid A双 重修饰脂质体(MLL)。之后将MLL通过减压填充入由聚二甲氧硅烷制备的微针阵列模具的 (6X6孔)针孔,再覆以10%海藻糖、20% PVPk30(赋型剂)溶液,再将模具置入无水氯化钙 干燥皿干燥8小时,剥脱,获得HIsAg-MLL-MAV (6 X 6微针,基底0. 65 X 0. 65cm2,固定于基底 上每微针:1〇〇Χ 100X3. 14X500/3微米3圆锥体微针)。HlsAg-MLL-MAV储存2周后水化 后恢复HI sAg-MLL,上述指标无显著变化。HI sAg-MLL-MAV储存2周后,通过口腔粘膜给小鼠 接种,与空白对照相比较,3周后产生高水平HlsAg特异性抗体及CTL ;较高的IgGl/IgG2a 及高水平IFN-γ,表明接种鼠产生Thl/Th2混合型免疫应答;同时在小鼠唾液、小肠冲洗 液、产道冲洗液均检测到高水平IgA,表明小鼠既产生了系统免疫应答,也产生了粘膜免疫 应答。(HlsAg,甲型H1N1流感病毒表面抗原;SPC,豆磷脂酰胆碱;MPLA,monophosphoryl 11卩1(1八,单憐脂质4;]\^:>〇,1]1&1111〇86^^62000-。11〇168七61'〇1;00丁八?,1,2-(1;[016071-3-1:1';[1116 thylammonium-propane,1,2-二油醜基-N, N, N-三甲基-丙胺;PVPk30,聚维酮)。
[0039] 【实施例3】
[0040]〈脂质A修饰多囊脂质体构建的微针阵列乙肝疫苗〉
[0041]以 HBsAg 为抗原,以 SPC/GM0/LPS(20:4:0. 05,mole ratio)为膜材,总脂 / HBsAg(20:l,maSS ratio),以10%蔗糖、30% PVPkl7(赋型剂)溶液为水相,以乳化-蒸 发法制备多囊脂质体,形成平均粒径为520纳米、ζ电位-12mV、包封率为72 %的LPS修 饰多囊脂质体(LML)。之后将MLL通过减压填充入由聚二甲氧硅烷制备的微针阵列模具 的(6X6孔)针孔,再覆以10%蔗糖、30%PVPkl7(赋型剂)溶液,再将模具置入无水氯化 钙干燥皿干燥8小时,剥脱,获得HBsAg-LML-MAV(8X8微针,基底0. 75X0. 75cm2,固定于 基底上每微针=250X250X 500微米3四方柱针体+250X250X 50/3微米3四方锥针尖)。 HBsAg-LML-MAV储存3天后水化后恢复HBsAg-LML,上述指标无显著变化。HBsAg-LML-MA 通过口腔粘膜给小鼠接种,与空白对照相比较,3周后产生高水平HBsAg特异性抗体及CTL ; 较高的IgGl/IgG2a及高水平IFN-γ,表明接种鼠产生Thl/Th2混合型免疫应答;同时在小 鼠唾液、小肠冲洗液、产道冲洗液均检测到高水平IgA,表明小鼠既产生了系统免疫应答,也 产生了粘膜免疫应答。(HBsAg,乙型肝炎病毒表面抗原;LPS,脂多糖;SPC,豆磷脂酰胆碱; GL, glycerin,甘油;GMO,glyceryl monooleate,单油酸甘油酯 LA,lipid A,脂质 A ;MPC, mannose-PEG2000_cholesterol ;D0TAP,1,2-dioleoyl-3-trimethylammonium-propane, 1,2-二油酰基-N,N,N-三甲基-丙胺;PVPk30,聚维酮)。
[0042] 【实施例4】
[0043] 〈HlsAg-脂质A修饰脂质体的微针阵列疫苗〉
[0044] 以 SPC/MPLA/D0TAP(20:0. 05:1,mole ratio)为膜材,以甲型 H1N1 流感病毒 (influenza A(HlNl)virus)表面抗原(HlsAg)、10%海藻糖、20%PVPk30(赋型剂)溶液 为水相,总脂/flu virus (20:1,mass ratio),以逆向蒸发法制备脂质体,形成平均粒径 为360、ζ电位13mV、包封率为53%的LL)。之后将flu-LL通过减压填充入由聚二甲氧 硅烷制备的微针阵列模具的(9X9孔)针孔,再覆以10%海藻糖、20% PVPk30(赋型剂) 溶液,再将模具置入无水氯化钙干燥皿干燥8小时,剥脱,获得flu-LL-MAV (9X9微针,基 底0.85X0. 85cm2,固定于基底上每微针:100X 100X3. 14X500/3微米3圆锥体微针)。 flu-LL-MAV储存2周后水化后恢复flu-LL,上述指标无显著变化。flu-LL-MAV储存2周后, 通过贴皮肤给小鼠接种,与空白对照相比较,3周后产生高水平HlsAg特异性抗体及CTL ; 较高的IgGl/IgG2a及高水平IFN- γ,表明接种鼠产生Thl/Th2混合型免疫应答。(HlsAg, 甲型H1N1流感病毒表面抗原;SPC,豆磷脂酰胆碱;MPLA,monophosphoryl lipid A,单磷脂 质 A ;MPC, mannose-PEG2000-cholesterol ;D0TAP,1,2-dioleoyl-3-trimethylammonium-p ropane,1,2-二油酰基-N,N,N-三甲基-丙胺;PVPk30,聚维酮)。
[0045] 【实施例5】
[0046] 〈脂质A修饰微囊构建的的微针阵列疫苗〉
[0047] 以HlsAg为抗原成分,以明胶/阿拉伯胶/LPS为囊材,采用复凝聚法制备微囊, 分散于10%海藻糖、20% PVPk30(赋型剂)溶液。之后通过减压填充入由聚二甲氧硅烷制 备的微针阵列模具的^X6孔)针孔,再覆以10%蔗糖、20% PVPk30溶液,再将模具置入 无水氯化钙干燥皿干燥10小时;或通过冻干除去水分,剥脱,获得〇VA-MAW6X6微针,基 底0. 65 X 0. 65cm2,固定于基底上每微针:250 X 250 X 500微米3针体+250 X 250 X 50微米3 针尖)。随后通过口腔粘膜给予小鼠接种,显微观察表明,微针针体能够刺穿入粘膜。与空 白对照相比较,四周后小鼠产生高水平HlAg特异性抗体及CTL ;同时在小鼠唾液、小肠冲洗 液、产道冲洗液均检测到高水平IgA,表明小鼠既产生了系统免疫应答,也产生了粘膜免疫 应答。接种^1认8-10^的小鼠给予致死量甲型!11附流感病毒,1周后100%存活,而未接种 小鼠给予致死量甲型H1N1流感病毒仅存活10 %。
[0048] 【实施例6】
[0049] 〈类脂体佐剂构建的微针阵列疫苗〉
[0050] 类脂体(niosome)佐剂-传递系统构建的MAV :以0VA为抗原,MPLA,Span60/ LA (20:1:0.05:1, mole ratio)为膜材,总脂/HlsAg(20:l, mass ratio),以 10 %海藻糖、 20% PVPk30 (赋型剂)溶液为水相,以逆向蒸发法制备类脂体囊泡,形成平均粒径为300纳 米、ζ电位-25mV、包封率为63%的类脂体。之后将类脂体通过减压填充入由聚二甲氧硅 烷制备的微针阵列模具的(8X8孔)针孔,再覆以10%蔗糖、20% PVPk30(赋型剂)溶液, 再将微针阵列装置置入无水氯化钙干燥皿干燥8小时;或通过冷冻-干燥除水,剥脱,获得 HlsAg-niosome-MAV(8X8 微针,基底 0· 75X0. 75cm2,固定于基底上每微针:250X 250X500 微米3针体+250 X 250 X 50微米3针尖)。HIsAg-niosome-MAV储存2周后水化后恢复 HlsAg-niosomes,上述指标无显著变化。HlsAg-niosome-MAV储存2周后,通过口腔粘膜给 小鼠接种,显微观察表明,微针针体能够刺穿入粘膜。与空白对照相比较,四周后小鼠产生 高水平OVA特异性抗体及CTL ;较高的IgGl/IgG2a及高水平IFN-γ,表明接种鼠产生Thl/ Th2混合型免疫应答;同时在小鼠唾液、小肠冲洗液、产道冲洗液均检测到高水平OVA特异 性IgA,表明小鼠既产生了系统免疫应答,也产生了粘膜免疫应答。(Span60,司盘60 ;LA, lipid A,脂质 A)。
[0051] 【实施例7】
[0052] 〈固体脂质纳米粒佐剂构建的的微针阵列疫苗〉
[0053] 以0VA为抗原,以脂质A为佐剂,以SPC/GMS/LA为材料,采用乳化-旋转蒸发法 制备固体脂质纳米粒,总脂/HlsAg(20:1,mass ratio),分散于10%鹿糖、20% PVPk30 (赋 型剂)溶液,形成平均粒径为200纳米、ζ电位-31mV、包封率为42 %的固体脂质纳米粒 (SLNs)。之后将SLNs通过减压填充入由聚二甲氧硅烷制备的微针阵列模具的(10X10 孔)针孔,再覆以10%蔗糖、20% PVPk30(赋型剂)溶液,再将微针阵列模具置入无水氯化 钙干燥皿干燥8小时;或通过冷冻-干燥除水,剥脱,获得HlsAg-SLN-MAV (10 X 10微针,基 底0. 85 X 0. 85cm2,固定于基底上每微针:250 X 250 X 500微米3针体+250 X 250 X 50微米 3针尖)。HlsAg-SLN-MAV储存2周后水化后恢复HlsAg-niosomes,上述指标无显著变化。 HlsAg-SLN-MAV储存2周后,通过背部剃毛后皮肤给小鼠接种,显微观察表明,微针针体能 够刺穿入小鼠皮肤表皮。与空白对照相比较,四周后小鼠与空白对照相比较,3周后产生高 水平0VA特异性抗体及CTL ;较高的IgGl/IgG2a及高水平IFN- γ,表明接种鼠产生Thl型 免疫应答。(GMS,单硬脂酸甘油酯)。
[0054] 以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精 神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
【权利要求】
1. 脂质A修饰载体构建的微针阵列疫苗佐剂传递系统,其特征在于:微针阵列包括基 底和若干固定于基底的微针;每一所述微针其成分包括脂质A修饰载体、辅助材料和疫苗 成分,形成疫苗佐剂传递系统。
2. 根据权利要求1所述的脂质A修饰载体构建的微针阵列疫苗佐剂传递系统,其特征 在于:所述的基底由糖类、聚维酮类(PVP)、淀粉类、纤维素类或这些可生物降解材料组合 构成。
3. 根据权利要求1所述的脂质A修饰载体构建的微针阵列疫苗佐剂传递系统,其 特征在于:所述的若干固定于基底的微针,数目一般大于3 ;高度为50-500μπι ;间距为 100-400 μ m ;为椎体或顶端为椎体的柱体,直径范围为50-500 μ m。
4. 根据权利要求1所述的脂质A修饰载体构建的微针阵列疫苗佐剂传递系统,其特征 在于:所述的脂质A修饰载体,脂质A包括单磷脂A,脂质A及脂多糖;所述的载体包括单层、 寡层、多层或多囊脂质体,类脂体,微囊,或纳米粒;载体荷正电、负电或中性。
5. 根据权利要求1所述的脂质A修饰载体构建的微针阵列疫苗佐剂传递系统,其特 征在于:所述的脂质A修饰载体,可以进一步采用功能分子修饰,例如以甘露糖基团修饰载 体,以达到提高抗原传递目的。
6. 根据权利要求1所述的脂质A修饰载体构建的微针阵列疫苗佐剂传递系统,其特征 在于:所述辅助材料为能够赋予所述微针强度、硬度、形状的的赋型剂,选用糖类(例如蔗 糖、海藻糖、乳糖等)、PVP类、淀粉类、纤维素类,或这些材料的组合;所述辅助材料也包括 其他疫苗佐剂(例如铝盐、CpG-〇DN、CpG-〇DN、皂角苷、角鲨烯、咪喹莫特等及菌毛蛋白等), 以提高疫苗佐剂功能。
7. 根据权利要求1所述的脂质A修饰载体构建的微针阵列疫苗佐剂传递系统,其特征 在于:所述疫苗成分选自亚单位疫苗抗原物质、类毒素、灭活或减毒病原体。
8. 根据权利要求1所述的脂质A修饰载体构建的微针阵列疫苗佐剂传递系统,其特征 在于:所述疫苗成分或包封于所述脂质A修饰载体内,或吸附于所述脂质A修饰载体表面, 或为与载体简单的机械混合。
9. 根据权利要求1所述的脂质A修饰载体构建的微针阵列疫苗佐剂传递系统,其特征 在于:所述的脂质A修饰脂质体微针阵列疫苗佐剂传递系统主要通过口腔粘膜接种或皮肤 接种。
10. 权利要求1所述的脂质A修饰载体构建的微针阵列疫苗佐剂传递系统,其特征在 于,其制备方法主要依靠采用聚二甲氧硅烷制备的微针阵列反模具实现,包括如下步骤: (1)先制备脂质A修饰载体(或载有疫苗成分); (2) 将分散或溶解于溶剂(水溶液)的脂质A修饰载体、辅助成分和疫苗成分填充于微 针阵列模具的针孔内,再覆以基底成分(上述辅助材料的水溶液); (3) 将填充后的微针阵列模具在常温条件下置于干燥皿(含无水氯化钙、五氧化二磷 等干燥剂)干燥除去水分或通过冰冻干燥除去水分,剥脱,得到所述脂质A修饰微针阵列疫 苗。
【文档编号】A61P37/04GK104083759SQ201410314283
【公开日】2014年10月8日 申请日期:2014年7月2日 优先权日:2014年7月2日
【发明者】王汀, 王宁 申请人:安徽医科大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1