一种钛酸铋钠粉体的制备方法与流程

文档序号:11454586阅读:1202来源:国知局
一种钛酸铋钠粉体的制备方法与流程

本发明涉及了一种钛酸铋钠粉体的制备方法,属于压电陶瓷领域。



背景技术:

现有的制备钛酸铋钠(以下简称bnt)粉体的方法主要有传统的固相反应法、熔盐法、溶胶-凝胶法和水热法。在这些化学合成方法中,水热法被认为是最好的方法之一,因为它价格低廉、设备简单、反应条件温和,能够合成高纯、结晶性良好的bnt粉体。

ranlu等人以bi(no3)3•5h2o、tio2、naoh为原料,用水热法在200℃,naoh浓度8-18m下反应37-60h成功制备出直径50-100nm、长度5μm的bnt纳米线[r.lu,j.yuan,h.shi,b.li,w.wang,d.wang,m.cao,morphology-controlledsynthesisandgrowthmechanismoflead-freebismuthsodiumtitanatenanostructuresviathehydrothermalroute,crystengcomm,15(2013)3984],但该制备方法存在反应温度高、反应时间过长、bnt纳米线纯度较低等技术问题。

xuefangzhou等人以bi(no3)3•5h2o、nano3、ti(oc4h9)4、ch3cooh和ch3ch2oh为起始原料,naoh为矿化剂,在水热温度为120-170℃,naoh浓度6-14m下反应48h成功制备出直径100nm、长度20μm的bnt纳米线,并且证明了bnt纳米线比纳米颗粒有更大的压电响应[x.zhou,c.jiang,c.chen,h.luo,k.zhou,d.zhang,morphologycontrolandpiezoelectricresponseofna0.5bi0.5tio3synthesizedviaahydrothermalmethod,crystengcomm,18(2016)1302-1310],但该制备方法存在合成温度较高、反应时间较长、bnt纳米线纯度较低等技术问题。

综上所述,目前的bnt粉体的制备方法依然存在合成温度高、反应时间长、bnt粉体中纳米线纯度较低且压电系数较小等技术问题。



技术实现要素:

本发明的目的是为了解决上述的合成温度高、反应时间长、bnt粉体中纳米线纯度较低且压电系数较小等技术问题而提供一种钛酸铋钠粉体的制备方法,该制备方法具有合成温度低、反应时间短等优点,制得的bnt粉体中纳米线含量极高。

本发明的技术方案

一种钛酸铋钠粉体的制备方法,具体包括如下步骤:

(1)、磁力搅拌条件下,将bi(no3)3•5h2o溶于蒸馏水,得到浓度为0.2mol/l的bi(no3)3水溶液;

将naoh溶于蒸馏水中,得到浓度为24mol/l的naoh水溶液;

(2)、磁力搅拌条件下,首先,控制0.5ml/min的速率将ti(oc4h9)4滴加到步骤(1)所得的bi(no3)3水溶液中,滴加完后继续搅拌25-35min,然后再将步骤(1)所得的naoh水溶液加入其中,然后再继续搅拌25-35min,得到混合溶液;

上述ti(oc4h9)4、bi(no3)3水溶液、naoh水溶液的用量,按naoh:、bi(no3)3:ti(oc4h9)4的摩尔比为1:1:2的比例计算;

(3)、步骤(2)所得的混合溶液转移至水热反应釜中,控制温度为120-680℃、转速为500-1000rpm的条件下进行水热反应1-12h,所得的反应液自然冷却至室温后,然后经8000rpm下离心5min,所得的沉淀再用去离子水清洗直至流出液的ph为7为止,然后控制温度为-50--40℃进行冷冻干燥,即得钛酸铋钠粉体。

本发明的有益效果

本发明的一种钛酸铋钠粉体的制备方法,由于水热反应温度、反应时间和搅拌速率对bnt晶体结构和微观形貌都有影响,并且水热反应过程中搅拌、温度和时间三者是协同作用,共同促进bnt晶体生长,在160℃,1000rpm条件下反应12h所得的bnt粉体中bnt纳米线含量最高,可达90%。

进一步,本发明的一种钛酸铋钠粉体的制备方法,由于水热反应过程中搅拌的作用使得晶体生长环境不断更新,加快反应进程,因此该制备方法具有合成温度低、反应时间短等优点。

附图说明

图1、实施例1所制得的bnt粉体的xrd图;

图2、实施例1所制得的bnt粉体的sem图;

图3、实施例2所制得的bnt粉体的xrd图;

图4、实施例2所制得的bnt粉体的sem图;

图5、实施例3所制得的bnt粉体的xrd图;

图6、实施例3所制得的bnt粉体的sem图;

图7、实施例4所制得的bnt粉体的xrd图;

图8、实施例4所制得的bnt粉体的sem图;

图9、实施例4所制得的bnt粉体中单根bnt纳米线的afm图;

图10a、实施例4所制得的bnt粉体中单根bnt纳米线的形貌图;

图10b、实施例4所制得的bnt粉体中单根bnt纳米线的相位图;

图10c、实施例4所制得的bnt粉体中单根bnt纳米线的振幅图;

图10d、实施例4所制得的bnt粉体中单根bnt纳米线的压电响应-电压蝶形曲线;

图10e、实施例4所制得的bnt粉体中单根bnt纳米线的相位-电压蝶形曲线。

具体实施方式

下面通过具体的实施例并结合附图对本发明进一步阐述,但并不限制本发明。

本发明的各实施例中所用的原料的规格及来源如下:

bi(no3)3•5h2o的纯度为99.0%,分析纯,国药生产;

ti(oc4h9)4的纯度为98.0%,化学纯,国药生产;

naoh浓度为12m,纯度为96.0%,分析纯,国药生产。

实施例1

一种钛酸铋钠粉体的制备方法,具体包括如下步骤:

(1)、磁力搅拌条件下,将bi(no3)3•5h2o溶于蒸馏水,得到浓度为0.2mol/l的bi(no3)3水溶液;将naoh溶于蒸馏水中,得到浓度为24mol/l的naoh水溶液;

(2)、磁力搅拌条件下,首先,控制0.5ml/min的速率将ti(oc4h9)4滴加到步骤(1)所得的bi(no3)3水溶液中,滴加完后继续搅拌25-35min,然后再将步骤(1)所得的naoh水溶液加入其中,然后再继续搅拌25-35min,得到混合溶液;

上述ti(oc4h9)4、bi(no3)3水溶液、naoh水溶液的用量,按naoh:、bi(no3)3:ti(oc4h9)4的摩尔比为1:1:2的比例计算;

(3)、取60ml步骤(2)所得的混合溶液转移至100ml聚四氟乙烯水热反应釜中,油浴条件下控制温度为120℃、转速为1000rpm进行水热反应1h,反应结束后从油浴中取出水热反应釜冷自然却至室温,然后经8000rpm下离心5min,所得的沉淀再用去离子水清洗直至流出液的ph为7为止,然后控制温度为-50--40℃进行冷冻干燥,即得钛酸铋钠粉体。

采用x射线衍射仪(xrd,d8advance,布鲁克,德国)对上述所得的bnt粉体进行测定,所得的xrd图如图1所示,从图1中可以看出并没有明显的bnt特征峰,由此表明了此时的产物是无定型态。

采用场发射电子扫描显微镜(sem,feiquantafeg)对上述所得的bnt粉体进行测定,所得的sem图如图2所示,从图2中可以看出大部分区域是无定型态,其中夹杂着少量纳米颗粒,由此表明了此时已经有bnt纳米颗粒生成。

实施例2

一种钛酸铋钠粉体的制备方法,具体包括如下步骤:

只是步骤(3)中水热反应的温度为160℃,其他与实施例1相同,最终得到bnt粉体。

采用x射线衍射仪(xrd,d8advance,布鲁克,德国)对上述所得的bnt粉体进行测定,所得的xrd图如图3所示,从图3中可以看出bnt的特征峰开始出现,只是此时的峰较弱且含有少量杂峰,由此表明了此时合成的bnt不纯。

采用场发射电子扫描显微镜(sem,feiquantafeg)对上述所得的bnt粉体进行测定,所得的sem图如图4所示,从图4中可以看出无定型态几乎消失,出现大量bnt纳米颗粒,由此表明了水热反应温度对bnt的微观形态有重要影响。

实施例3

一种钛酸铋钠粉体的制备方法,具体包括如下步骤:

只是步骤(3)中水热反应的时间为6h,其他与实施例2相同,最终得到bnt粉体。

采用x射线衍射仪(xrd,d8advance,布鲁克,德国)对上述所得的bnt粉体进行测定,所得的xrd图如图5所示,从图5中可以看出bnt的特征峰明显增强,且没有第二相的存在,由此表明了此时已经能合成纯的bnt。

采用场发射电子扫描显微镜(sem,feiquantafeg)对上述所得的bnt粉体进行测定,所得的sem图如图6所示,从图6中可以看出出现少量bnt纳米线,其余都为bnt纳米颗粒。由此表明了水热反应时间对bnt的微观形态有重要影响。

实施例4

一种钛酸铋钠粉体的制备方法,具体包括如下步骤:

只是步骤(3)中水热反应的时间为12h,其他与实施例2相同,最终得到bnt粉体。

采用x射线衍射仪(xrd,d8advance,布鲁克,德国)对上述所得的bnt粉体进行测定,所得的xrd图如图7所示,从图7中可以看出bnt的特征峰进一步增强,由此表明了此时的bnt结晶性更好。

采用场发射电子扫描显微镜(sem,feiquantafeg)对上述所得的bnt粉体进行测定,所得的sem图如图8所示,从图8中可以看出bnt纳米颗粒已经完全消失,形成了纯的bnt纳米线,由此表明了水热反应时间和搅拌对bnt纳米线的形成有促进作用。

取极少量上述所得的bnt粉体分散在乙醇溶液中,在sem下找到单根纳米线,然后用聚焦离子束(fib)固定,采用原子力显微镜(afm,oxfordcypheres),按照horaciod.espinosa等人的方法[h.d.espinosa,r.a.bernal,m.minary-jolandan,areviewofmechanicalandelectromechanicalpropertiesofpiezoelectricnanowires,advancedmaterials,24(2012)4656-4675]对单根纳米线进行测试,测试结果如图9所示,从图9中可以看出为一根较粗的bnt纳米线,其长度为200nm,宽度约20nm,厚度为12.6nm,且存在分叉结构,两端较细,对纳米线的左端形貌进行扫面,其为非规则的圆柱形纳米线。

采用压电响应力显微镜(pfm,oxfordcypheres)),按照horaciod.espinosa等人的方法[h.d.espinosa,r.a.bernal,m.minary-jolandan,areviewofmechanicalandelectromechanicalpropertiesofpiezoelectricnanowires,advancedmaterials,24(2012)4656-4675]对单根bnt纳米线进行测试结果分别如图10a、图10b、图10c、图10d、图10e所示;

图10a为实施例4所制得的bnt粉体中单根bnt纳米线的形貌图,从图10a中可以看出单根bnt纳米线有平坦的表面,直径约为20nm;

图10b为实施例4所制得的bnt粉体中单根bnt纳米线的相位图,从图10b中可以看出bnt纳米线产生了极化,内部有电畴和畴壁存在;

图10c实施例4所制得的bnt粉体中单根bnt纳米线的振幅图,从图10c中可以看出bnt纳米线具有压电响应;

图10d和图10e实施例4所制得的bnt粉体中单根bnt纳米线的压电响应-电压蝶形曲线和相位-电压蝶形曲线,从图10d、10e中180°的压电相位反转可以看出bnt纳米线具有铁电性。

综上所述,在温度为160℃、转速为1000rpm的条件下进行水热反应12h,所得的钛酸铋钠粉体中纳米线含量最高,可达90%,且单根纳米线的压电系数约为120pm/v,由此表明了此方法制备的bnt粉体具有压电性能。

实施例5

一种钛酸铋钠粉体的制备方法,具体包括如下步骤:

只是步骤(3)中水热反应过程的转速为800rpm,其他与实施例4相同,最终得到bnt粉体。

经检测得到bnt粉体的结晶性没有明显变化,但bnt纳米线的数量减少。

实施例6

一种钛酸铋钠粉体的制备方法,具体包括如下步骤:

只是步骤(3)中水热反应过程的转速为500rpm,其他与实施例4相同,最终得到bnt粉体。

经检测上述所得bnt粉体的结晶性没有明显变化,但bnt粉体中纳米线的数量进一步减少。表明转速对bnt纳米线的形成有重要影响。

综上所述,本发明提供的一种钛酸铋钠粉体的制备方法,水热反应温度、反应时间和搅拌速率对bnt晶体结构和微观形貌都有影响,并且水热反应过程中搅拌、温度和时间三者是协同作用,共同促进bnt纳米线的合成,并且在160℃,1000rpm条件下反应12h所得的bnt粉体中bnt纳米线含量最高,可达90%。

以上所述仅是本发明的实施方式的举例,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1