氧化还原液流二次电池的制作方法

文档序号:3793973阅读:198来源:国知局
氧化还原液流二次电池的制作方法
【专利摘要】本发明涉及氧化还原液流二次电池。本发明的氧化还原液流二次电池包括包含由多孔金属制成的一对电极的单元电池,其中所述多孔金属的表面涂覆有碳。根据本发明,提供了使用均匀涂覆有碳的多孔金属电极的氧化还原液流二次电,由此提高电极的电导率,并且所述电极具有均匀涂覆有具有宽比表面积的碳层的表面,由此提高反应性。因此,能提高氧化还原液流二次电池的容量和能效率并且能有效减小电池的电阻。此外,所述电极均匀涂覆有碳层,因此还提高耐腐蚀性。
【专利说明】氧化还原液流二次电池

【技术领域】
[0001] 本发明涉及二次电池,并且更特别地,涉及使用其中涂覆有碳的多孔金属的电极 的氧化还原液流二次电池。

【背景技术】
[0002] 电力储存用于有效最大化各个领域的性能的重要技术,所述领域例如有效使用电 力、提高供电系统的能力或可靠性、引入其中取决于时间的一系列巨大变化的可再生能源 的扩大、移动对象的能量恢复等,并且它们满足社会贡献的需求的发展可能性逐渐增加。
[0003] 为了调整诸如微网的半自治地方供电系统的供需平衡,适当分配诸如风力发电或 太阳能发电的可再生能源发展的不均匀输出和控制由来自传统电力系统的差别产生的电 压和频率变化的影响,正在积极进行对二次电池的研究,并且在这些领域中对使用二次电 池的期望正在不断增加。
[0004] 关于用于储存高容量电能的二次电池所需的特征,二次电池应具有高储能密度, 因此氧化还原液流二次电池备受关注,这是因为二次电池具有高容量和高效率,其最适合 于些特征。
[0005] 形成氧化还原液流二次电池使得电池架形成整个电池的轮廓,电池的中心被离子 交换层分开,并且阳极和阴极位于离子交换层的两侧。
[0006] 此外,形成氧化还原液流二次电池以包括双极板并且从所提供的各个电极外部导 电的集电器,储存电解质的阳极槽和阴极槽,其中电解质流进的进口和其中电解质流出的 出口。
[0007] 对这类氧化还原液流二次电池进行各种研究以开发从而提高输出和能效率二者。 近来,主要使用非水性电解质而不是水性电解质。
[0008] 如上所述,为了开发应用非水性电解质的氧化还原液流二次电池,需要使用非水 性电解质的高亲和力并且具有优异电导率的电极,因此亟需满足这些要求的电极的研究和 开发。
[0009] 在碳基材料用于商业氧化还原液流二次电池的能量电极材料的情况下,由于非水 性电解质的亲和力非常低以及与金属电极相比电导率显著降低,因此当应用于非水性氧化 还原液流二次电池时能效率的提高是有限的。
[0010] 正在进行用于开发金属电极的各项研究以改进非水性氧化还原液流二次电池的 电化学特征。然而,在制造过程中增加金属电极的比表面积是有限制的,因此这些研究没有 提出提高非水性氧化还原液流二次电池的能效率的根本性解决方案。
[0011] 公开内容
[0012] 技术问题
[0013] 本发明涉及提供能够使用具有优异电导率的多孔金属以确保电极的电导率的氧 化还原液流二次电池。
[0014] 本发明涉及提供使用均匀涂覆有大比表面积的碳以提高能效率的多孔金属电极 的氧化还原液流二次电池。
[0015] 本发明涉及提供其中多孔金属电极涂覆有大比表面积的碳并因此反应性提高的 氧化还原液流二次电池。
[0016] 技术方案
[0017] 本发明的一个方面提供了包括单元电池、一对集电器和一对电池架的氧化还原液 流二次电池。该单元电池由多孔金属形成,并且包括在涂覆有碳的多孔金属表面形成的一 对电极。该一对集电器与单兀电池的两个外表面连接。该一对电池架与集电器的各个外表 面连接。
[0018] 在本发明的氧化还原液流二次电池中,与多孔金属的重量相比,在多孔金属的表 面上涂覆的碳的量可为50wt %或更低。
[0019] 在本发明的氧化还原液流二次电池中,多孔金属可为选自镍(Ni)、铜(Cu)、铁 (Fe)、钥(Mo)、钛(Ti)、钼(Pt)和铱(Ir)中的任何一个。
[0020] 在本发明的氧化还原液流二次电池中,可使用选自浸渍涂覆方法和喷涂方法中的 任何一个进行涂覆。
[0021] 在本发明的氧化还原液流二次电池中,用于涂覆的涂覆浆液的碳含量可为50wt% 或更1?。
[0022] 在本发明的氧化还原液流二次电池中,单元电池包括离子交换层,各自与离子交 换层的两个表面连接并且包括阳极和阴极的一对电极,以及其中一个表面与该电极对的各 个电极的外表面连接并且另一表面与集电器连接的一对板。
[0023] 在本发明的氧化还原液流二次电池中,单元电池根据氧化还原反应通过电极之间 的离子交换层产生电。
[0024] 本发明的氧化还原液流二次电池还可包括阳极槽和阴极槽,泵,进口和出口。该阳 极和阴极槽分别设置在电池架的左侧和右侧,并且将其配置以储存电解质从而使电解质流 动。该泵各自与阳极槽和阴极槽连接并且提供电解质。该进口将泵与电池架连接以便该电 解质经由电池架流入单元电池。该出口与电池架连接以便从单元电池流出的电解质流入阳 极槽和阴极槽。
[0025] 本发明的另一方面提供了氧化还原液流二次电池包括至少一个具有至少一对由 涂覆有碳的多孔金属形成的电极的单元电池。
[0026] 本发明的另一方面提供了氧化还原液流二次电池,其包括相对形成并且彼此间隔 的一对电池架,各自与一对电池架的内表面连接的一对集电器以及至少两个在一对集电器 之间形成的单元电池,其中所述单元电池包括至少一对由涂覆有碳的多孔金属形成的电 极。
[0027] 有利效果
[0028] 根据本发明,提供了使用均匀涂覆有碳的多孔金属电极的氧化还原液流二次电 池,因此提高电极的电导率。
[0029] 此外,多孔金属电极的表面均匀涂覆有具有大比表面积的碳层,因此能提高反应 性。
[0030] 因此,能提高氧化还原液流二次电池的容量和能效率并且能有效降低电池的电 阻。此外,电极均匀涂覆有碳层,因此还能提高耐腐蚀性。
[0031] 附图描述
[0032] 图1和2是描述本发明实施方案的氧化还原液流二次电池的视图。
[0033] 图3是用于比较本发明的电极的形态与对比实施例的图。
[0034] 图4和5是用于比较本发明电极的实施方案与对比实施例的循环伏安法(CV)特 征的图表。
[0035] 图6是用于比较本发明电极的实施方案与对比实施例的能效率的图表。
[0036] 图7和8是用于描述本发明另一实施方案的氧化还原液流二次电池的视图。
[0037] 发明方式
[0038] 在本发明的实施方案的详细描述之前,本说明书和权利要求中使用的术语和词语 不应被解释为对通常使用的含义或词典中的含义的限制并且应基于发明人适当定义的术 语的概念的原则使用与本发明技术范围一致的含义和概念解释从而以最佳方式描述本发 明。因此,由于在本说明书中描述的实施方案和附图中例示的配置仅为示例性实施方案并 且不代表本发明的全部技术范围,因此应当理解本发明包括在提交本申请时的各个等效 物、修改和替代物。
[0039] 在下文,参考附图详细地描述本发明的示例性实施方案。遍及本说明书使用相同 的参考数字以指代相同或相似的部分。然而,在下列说明和所附的附图中将省略不必要地 模糊本发明的要点的熟知功能或配置的详细描述。基于相同原因,一些组件在附图中放大、 省略或示意性示出,并且各个部分的尺寸并不完全反映实际尺寸。
[0040] 在下文,参考所附的附图来对本发明概念的示例性实施方案进行详细描述。
[0041] 首先,描述本发明实施方案的氧化还原液流二次电池。图1和2是用于描述本发 明实施方案的氧化还原液流二次电池的视图。此处,图1是显示本发明实施方案的氧化还 原液流二次电池的拆卸的组件的分解图,且图2是显示本发明实施方案的氧化还原液流二 次电池的横截面的截面图。
[0042] 参考图1和2,本发明实施方案的氧化还原液流二次电池是使用其中化合价发生 变化的金属离子的氧化还原反应而充电或放电的二次电池。此外,可在〇至3. 0V的电压范 围内驱动本发明实施方案的氧化还原液流二次电池。
[0043] 可形成本发明实施方案的氧化还原液流二次电池以具有在板型中具有多层结构 的单元电池100、与单元电池100的两个外表面连接并在板型中形成的一对集电器40和分 别与集电器40的外表面连接并且在板型中形成的电池架50。
[0044] 此处,单元电池100包括离子交换层10、电极20和其各自具有板型的双极板 30(在下文,简写为"板"),并且在其所具有的结构中,在电极20中的阳极位于成对阴极的 对面,各个电极20基于离子交换层10的中心与离子交换层10的两个表面连接,并且所述 板30各自与电极20的阳极和阴极的外表面连接。同时,尽管未示出,可在电极20和离子 交换层10之间有选择地插入衬垫。
[0045] 如上所述,离子交换层10、电极20和其各自具有板型的板30形成多层结构形式的 单元电池100。
[0046] 在单元电池100中发生其中化合价发生变化的金属离子的氧化还原反应。在该情 况下,通过离子交换层10在电极20的阳极和阴极之间发生氧化还原反应,因此通过氧化还 原反应产生电。
[0047] 当在单元电池100的电极20的阳极和阴极处产生电时,板30和集电器40收集产 生的电。电池架50保持和支持上述离子交换层10、一对电极20、板对30和一对集电器40 的形状。
[0048] 此外,本发明实施方案的氧化还原液流二次电池还可包括阳极槽60、阴极槽70、 泵61和71、进口 63和73以及出口 65和75。
[0049] 阳极槽60和阴极槽70分别储存阳极电解质和阴极电解质以当需要时流动。优选 地,阳极槽60和阴极槽70分别使用非水性电解质作为阳极电解质和阴极电解质,然而,还 可使用水性电解质。如此,阳极槽60和阴极槽70各自放置在相应于上述单元电池100的 电极20的阳极和阴极的单元电池100的两个外表面上。
[0050] 此外,阳极槽60和阴极槽70分别通过进口 63和73以及出口 65和75与电池架 50连接。进口 63和73是阳极槽60和阴极槽70的电解质流入单元电池100所通过的通 道,并且出口 65和75是电解质流出单元电池100通过的通道。此外,提供泵61和71以使 电解质流出阳极槽60和阴极槽70并且向单元电池100供给电解质,并且泵61和71分别 设置于阳极槽60和进口 63之间以及阴极槽70和进口 73之间。
[0051] 因此,可分别通过泵61和71、进口 63和73、电池架50以及集电器40将从阳极槽 60和阴极槽70流出的电解质供给至单元电池100并且以相反顺序,流入和储存在阳极槽 60和阴极槽70中。
[0052] 在根据上述实施方案配置的氧化还原液流二次电池中,离子交换层10可由全氟 磺酸(Nafion)形成。此外,板30可由石墨形成。
[0053] 如上所述,电极20分别与板30的内表面连接。如此,电极20各自具有多孔金属 的表面均匀涂覆有碳层的特征。根据本发明实施方案的氧化还原液流二次电池,电极20在 其多孔金属均匀涂覆有碳处形成。
[0054] 此处,多孔金属可为选自镍(Ni)、铜(Cu)、铁(Fe)、钥(Mo)、钛(Ti)、钼(Pt)和铱 (Ir)中的任何一个。
[0055] 此外,优选地,与多孔金属的重量相比,涂覆多孔金属使得多孔金属表面上涂覆的 碳的量为50wt%或更低。此外,优选地,浸渍涂覆方法或喷涂方法可用作涂覆方法。当制备 用于涂覆的碳涂覆浆液时,制备涂覆浆液以具有5〇 Wt%的碳含量或更高。
[0056] 如上所述,在水性或非水性氧化还原液流二次电池和下文将要描述的堆叠类型电 池的表面上使用均匀涂覆有碳的多孔金属电极,因此可提高非水性氧化还原液流二次电池 的容量和能效率并且可提高腐蚀特性。
[0057] 然后,可将本发明电极实施方案的电极形态与对比实施例比较。图3是比较本发 明电极的形态和对比实施例的场发射扫描电子显微镜(FESEM)图像图示并且公开了本发 明电极的实施方案。
[0058] 参考图3,可以确定多孔金属的表面均匀涂覆有碳的实施方案的电极20。对比实 施例和实施方案的细节如下面[表1]。
[0059] [表 1]
[0060] I金属类型~pci |碳涂覆的量~ 对比实施例1 |Ni [800 |0wt% 对比实施例2 800 Owt% 实施方案1 ~Ν? 800 5wt% 实施方案2~ 800 5wt%
[0061] 使用喷涂方法涂覆本发明实施方案1和实施方案2的电极20,在制备具有导电炭 黑(Super-P):粘结剂:N-甲基吡咯烷酮(NMP) = 2. 5:2. 5:95的组合物的浆液之后,当多孔 金属的表面涂覆有碳时。以涂覆之前和涂覆之后以重量比来检测涂覆的碳(碳涂层的量) 的量。
[0062] 通过本发明电极的实施方案和对比实施例比较本发明电极的循环伏安法(CV)特 征。图4和图5是用于比较本发明电极的实施方案的CV特征与对比实施例的CV特征的图 示。此处,对上述[表1]的对比实施例1和对比实施例2以及使用基于碳酸丙烯酯(PC) 的有机电解质的喷涂方法涂覆有碳的多孔金属电极的实施方案进行CV特征评价。
[0063] 在图4和图5中,为了评价涂覆有碳的多孔金属电极的电化学特征,在各种非水性 电解质中进行CV检测。在该情况下,在与Ag/Ag+相比的-1. 8至0. 0V的电势范围内在lmV/ s的扫描速率条件下进行检测。图4是表明Co (bpy)+PC电解质中的对比实施例和实施方案 的CV特征的图表,并且图5是表明Ni (bpy)+PC电解质中的对比实施例和实施方案的CV特 征的图表。
[0064] 如图4和图5所示,参考对比实施例和实施方案的CV结果,当在各基于PC的非水 性电解质中应用涂覆有碳的铜(Cu)和镍(Ni)多孔金属电极时,可以确定与对比实施例相 t匕,实施方案的反应性显著增加。特就是说,可以确定用于离子氧化的电流值提高。电流值 的提高是由于使用多孔金属的电极电导率的提升,并且还因为在多孔金属表面上涂覆的碳 有效提供了氧化还原反应位点。
[0065] 然后,通过本发明电极实施方案和对比实施例来比较本发明电极的能效率特征。 图6是用于比较本发明电极的实施方案与对比实施例的能效率的图表。此处,对比实施例 1和对比实施例2的电池的能效率用作阳极和阴极,并且比较用作阳极和阴极的实施方案1 和实施方案2的电池的能效率。
[0066] 参考图6,可以确定根据实施方案1和实施方案2的应用涂覆有碳的电池显示增强 的库仑效率和能效率。在应用的实施方案的情况下,最初能效率为82%,其为比77%的应 用的对比实施例的能效率更好的特征。此外,通过在多孔金属电极的表面上的碳涂层库仑 效率从93 %提高至95%。
[0067] 图7和图8是用于描述本发明另一实施方案的氧化还原液流二次电池的视图。此 处,图7是表明本发明另一实施方案的氧化还原液流二次电池的拆分组件的分解图。图8 是表明本发明另一实施方案的氧化还原液流二次电池的截面的横截面图。
[0068] 参考图7和图8,本发明另一实施方案的氧化还原液流二次电池是使用化合价变 化的金属离子的氧化还原反应充电或放电的二次电池。此外,可在1. 5至3. 0V的电压范围 内驱动本发明另一实施方案的氧化还原液流二次电池。
[0069] 本发明另一实施方案的氧化还原液流二次电池包括一对电池架50、一对集电器 40和多个单元电池100。
[0070] -对电池架50彼此间隔预定距离并且彼此相对。如上所述,一对集电器40分别 与彼此相对的一对电池架50的内表面连接。多个单元电池100置入在该一对集电器40之 间。如上所述,多个单元电池100各自包括离子交换层10、包括阳极和阴极的电极20和板 30。如示出的,多个单元电池100以连续方式彼此连接并且共享连接彼此的板30。例如,其 中形成三个单元电池100的氧化还原液流二次电池在图7和图8中示出。如示出的,由于 三个单元电池100共享两个连接的板30,因此有四个板30。如此,本发明另一实施方案的 氧化还原液流二次电池是其中三个单元电池100以连续方式堆叠的堆叠类型电池。
[0071] 如上所述,在其中多个单元电池100以连续方式彼此连接的结构中,如在图3中公 开的电极20各自所具有的特征在于其多孔金属表面均匀涂覆有碳层。由于各个电极20具 有与本发明实施方案的氧化还原液流二次电池的电极相同的配置,因此省略详细描述。
[0072] 此外,尽管在图7和图8中未示出,但本发明另一实施方案的氧化还原液流二次电 池还包括与本发明实施方案的氧化还原液流二次电池相同的阳极槽60、阴极槽70、泵61和 71、进口 63和73以及出口 65和75。
[0073] 阳极槽60和阴极槽70分别储存当需要时流动的阳极电解质和阴极电解质并且使 用非水性电解质作为阳极电解质和阴极电解质。如此,阳极槽60和阴极槽70各自放置在 相应于上述单元电池100的电极20的阳极和阴极的单元电池100的左侧和右侧。此外,阳 极槽60和阴极槽70分别通过进口 63和73以及出口 65和75与电池架50连接。此外,提 供泵61和71以从阳极槽60和阴极槽70中使电解质流动并将电解质供给至单元电池100, 并且分别置入于阳极槽60和进口 63之间和阴极槽70和进口 73之间。也就是说,可分别 通过泵61和71、进口 63和73、电池架50和集电器40将从阳极槽60和阴极槽70流出的 电解质供给至单元电池1〇〇并且以相反的顺序流动并储存在阳极槽60和阴极槽70中。
[0074] 同时,在上述实施方案中,描述了仅使用浸渍涂覆方法或喷涂方法在多孔金属上 涂覆。然而,本发明的实施方案不受其限制。也就是说,如果需要,可选择性地或复合地使 用诸如气相沉积方法、溅射方法、化学气相沉积方法等的各个方法。
[0075] 此外,在上述实施方案中,在一个实施方案中描述了其中电极由多孔金属形成的 情况。然而,本发明的实施方案不受其限制,并且可以网格形式形成金属。此外,当使用碳 适当涂覆时,诸如常规类型的平板形状的类型也是可能的。
[0076] 此外,在上述实施方案中,在一个实施例中描述了其中在非水性氧化还原液流二 次电池的电极上形成涂覆层的情况。然而,本发明的实施方案不受其限制,并且还可应用于 水性氧化还原液流二次电池的电极。
[0077] 此外,在上述实施方案中,描述了在氧化还原液流二次电池中提供的电极的实例。 然而,本发明的实施方案不受其限制;电极可广泛应用于包括位于电解质中的电极的电池 并且特别地应用于堆叠类型电池。
[0078] 尽管已经参考示例性实施方案特别地描述本发明,但本领域技术人员理解在不背 离本发明的实质和范围的情况下可进行各种形式和细节的改变。因此,仅以描述性意义考 虑示例性实施方案并且不用于限制目的。本发明的范围不是通过本发明的详细描述而是通 过所附权利要求来定义,并且本发明的范围包括在附加权利要求范围内的所有修改和等效
【权利要求】
1. 氧化还原液流二次电池,其包括: 单元电池,其由多孔金属形成并且包含在涂覆有碳的所述多孔金属的表面形成的一对 电极; 一对集电器,其与所述单元电池的两个外表面连接;以及 一对电池架,其与所述集电器的各个外表面连接。
2. 如权利要求1所述的电池,其中与所述多孔金属的重量相比在所述多孔金属的表面 上涂覆的碳的量为50wt%或更低。
3. 如权利要求1所述的电池,其中所述多孔金属为选自镍(Ni)、铜(Cu)、铁(Fe)、钥 (Mo)、钛(Ti)、钼(Pt)和铱(Ir)中的任何一个。
4. 如权利要求1所述的电池,其中使用选自浸渍涂覆方法和喷涂方法中的任何一个进 行所述涂覆。
5. 如权利要求1所述的电池,其中用于涂覆的涂覆浆液的碳含量为50wt%或更高。
6. 如权利要求1所述的电池,其中所述单元电池包括: 离子交换层; 一对电极,各自与所述离子交换层的两个表面连接并且包括阳极和阴极;以及 一对板,其中一个表面与所述电极对的各个电极的外表面连接并且另一表面与所述集 电器连接。
7. 如权利要求6所述的电池,其中所述单元电池根据氧化还原反应通过所述电极之间 的离子交换层产生电。
8. 如权利要求1所述的电池,其还包括: 阳极槽和阴极槽,其分别设置在所述电池架的左侧和右侧并且其被配置以储存电解质 从而使所述电解质流动; 泵,其与所述阳极槽和阴极槽连接并且其被配置以提供所述电解质; 进口,其被配置以将所述泵与所述电池架连接以便所述电解质经由所述电池架流入所 述单元电池;以及 出口,其与所述电池架连接以便从所述单元电池流出的电解质流入所述阳极槽和阴极 槽。
9. 氧化还原液流二次电池,其包括: 至少一个单元电池,所述单元电池具有至少一对由涂覆有碳的多孔金属形成的电极。
10. 如权利要求9所述的电池,其中与所述多孔金属的重量相比,在所述多孔金属的表 面涂覆的碳的量为50wt%或更低。
11. 如权利要求9所述的电池,其中所述多孔金属为选自镍(Ni)、铜(Cu)、铁(Fe)、钥 (Mo)、钛(Ti)、钼(Pt)和铱(Ir)中的任何一个。
12. 如权利要求9所述的电池,其中使用选自浸渍涂覆方法和喷涂方法中的任何一个 进行所述涂覆。
13. 如权利要求9所述的电池,其中用于涂覆的涂覆浆液的碳含量为50wt%或更高。
14. 氧化还原液流二次电池,其包括: 一对电池架,其相对形成并且彼此间隔; 一对集电器,其各自与所述一对电池架的内表面连接;以及 至少两个单元电池,其在所述一对集电器之间形成, 其中所述单元电池包括至少一对由涂覆有碳的多孔金属形成的电极。
【文档编号】B05D1/00GK104094462SQ201380008195
【公开日】2014年10月8日 申请日期:2013年1月31日 优先权日:2012年2月9日
【发明者】金映俊, 金起载, 朴珉拭, 金载宪 申请人:电子部品研究院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1