自修复聚合物组合物的制作方法

文档序号:7115862阅读:311来源:国知局
专利名称:自修复聚合物组合物的制作方法
技术领域
本发明一般涉及自修复聚合物组合物。这种自修复聚合物组合物包括微胶囊化的可聚合组合物,其在聚合物组合物断裂后可被活化,并可有效地使聚合物组合物中的断裂愈合。
背景技术
使用材料如聚合材料时在应用产品中常出现的问题是它们易于因机械疲劳、机械冲击、辐射或杂质引起的氧化老化、热疲劳、化学降解或这些过程组合的原因而断裂或降解。降解会引起聚合物脆化,而有其他不利因素。脆化和相关的破裂会使产品断裂,从而使成本重置。例如通过使物体下降而导致的机械疲劳和机械压力也会引起最终产生断裂的破裂。产品中所用的热塑性和热固性聚合物体系尤其易受这些断裂形态的影响。
由于在产品元件中聚合物在现代社会中广泛和深入的应用,这种问题受到极大的关注。例如,在电子工业中聚合物具有显著的重要性。其应用实例包括印刷电路板(PCB)薄片、壳体、包装、粘合剂、芯片粘接、元件包装和有机半导体。除了上述断裂形式外,在有机半导体和导电聚合物中还会预料到其他降解过程如氧化还原反应或化学扩散(这会降低其性能)。
提高聚合物基元件和产品可靠性的常规方法包括在设计上的适合增强及使用增强改进的塑料。近来,所谓的“智能”材料的适用性得到了显著提高,其涉及到可以感测即将发生的断裂并促进产生适合的补救措施以防止损害扩大的材料。可选择地,如果损害已经发生,那么某些新材料体系据称可以自修复这种受损的结构。例如参见Chen等人,“A Thermally Re-Mendable Cross-Linked Polymeric Material,”Science,Vol.295,March 2002,pp.1698-1702。
近来为使聚合物具有自修复能力而发展的方法包括在聚合物基质中混合进含有修补剂的微胶囊。White,S.R.等人,Nature,“AutonomicHealing of Polymer Composites,”409,794-797(2001)。微胶囊中所含的修补剂是双环戊二烯(DCPD)。CAS号为172222-30-9的钌聚合剂分散在聚合物基质中。当聚合物基质中的裂痕在微胶囊的极接近处扩展时,裂痕所引起的相关应力使微胶囊裂开。因此,修补剂从裂开的微胶囊中释放出来并与裂痕表面接触。其也与分散在聚合物基质中的聚合剂接触至分散的聚合剂位于接近裂痕和释放的修补剂的程度。聚合剂在水分和空气(氧源)存在下具有功能活性。当聚合剂与自修复剂接触时,其可促进修补剂的聚合,从而填充裂痕的裂纹面。这种填充可限制裂痕扩展,并可降低破裂后的基质材料的柔顺性。
附图简要说明本发明可由实施例及附图来阐明,但不限于此,附图中相同的标号代表相似的元件,其中

图1是根据本发明一个实施方案的用于含有聚合物材料的自修复体系的示意图;图2是作为比较的用于含有聚合物材料的现有自修复体系的示意图;图3是图1所示的一个微胶囊14的部分放大图;图4表明根据本发明另一实施方案的微胶囊表面,其被用作表面的薄膜所涂覆,在该表面上聚合剂与微胶囊连接;图5、图6和图7示意性地表明使用本发明一个实施方案的体系时用于含有聚合物产品的自修复过程的三个阶段;图8表明根据本发明另一实施方案从部分聚合的DCPD混合物(其中n较小)和部分聚合的三乙氧基甲硅烷基降冰片烯(TESNB)(m是低聚物中单元的数目)来制备修补剂;
图9表明降冰片烯修补剂(结构I)及其衍生物(结构II),根据本发明另一实施方案任何一个或二者都可用作修补剂;图10表明与图1所示的本发明聚合物组合物相关的聚合物愈合机理的流程图;图11表明与图2所示的对比聚合物组合物相关的不同聚合物愈合机理的流程图;及图12表明根据本发明另一实施方案包括自修复体系的电子仪器组件和印刷电路板薄片。
本领域所属技术人员可以理解,附图中的元件仅是简明地做出,并未按比例作图。例如,附图中某些元件的尺寸相对于其他元件而言被放大,以有助于理解本发明的实施方案。此外,公知特征和方法的说明和细节在附图中被省略,以避免使本发明不必要地难以理解。
详细说明本发明涉及微胶囊化的可聚合组合物,制备微胶囊化的组合物的方法,自修复聚合物组合物及制备自修复组合物的方法。微胶囊化的组合物包括微胶囊、微胶囊内的易流动聚合材料及连接在微胶囊外表面的聚合剂。本发明的自修复聚合物组合物包括分散在聚合物介质中的多个易流动聚合材料的微胶囊。一旦聚合物组合物断裂且微胶囊裂开,那么易流动聚合材料就与连接在微胶囊表面的聚合剂以例如本文所述的方式接触,并发生反应以愈合聚合物介质中的断裂。聚合剂与微胶囊的连接可确保与可聚合材料相关的聚合剂在全部聚合物介质中均匀分散,从而使得当和如果断裂或裂痕发生时,聚合剂将与微胶囊接近以促进微胶囊内的材料聚合,并″自修复″微胶囊分散于其中的聚合物介质。
本文所用的术语″断裂″或″聚合物介质中的断裂″指在聚合物介质中产生的裂缝或因介质中凝聚力损失而产生的功能损失。当裂缝产生停止或某些新的凝聚力或粘合力取代了介质中的凝聚力损失时,聚合物介质被愈合。在本发明的这一方面中,通常愈合通过终止裂缝产生及因粘合或部分凝聚取代了凝聚力损失而发生,这取决于所用的聚合物体系。因为微胶囊可使能量耗散并终止裂缝发生,因而混合进微胶囊也伴随有机械优点。取决于所用的愈合体系,愈合机械的反应时间也从数分钟至数小时。在一个方面中,反应时间是几分钟(即约2-4分钟)。在任何特定反应中,温度都可能起重要作用,温度越高,愈合时间越短。需要时,在约24小时后可对本文所述的愈合体系中加入的聚合成分进行强度测试。在愈合的聚合成分中,强度与交联密度的比通常随温度增大,也随时间增大。
在一个方面中,本发明涉及制备微胶囊化的可聚合组合物及与其连接的聚合剂。在一个示例性的方面中,微胶囊化的组合物通过如上步骤来制备使聚合剂经分子桥单元与微胶囊的表面连接,其中双功能线性分子与金涂覆的功能化的微胶囊表面连接,从而使得线性桥单元明显突出于表面,然后在突出的线性分子上的一个位置结合聚合剂,其后引发开环易位聚合(ROMP)而提供微胶囊化的组合物。在一个方面中,″聚合剂″被用于在突出的线性分子上形成活性部位,该部位用作可聚合材料的聚合引发剂和/或促进剂。
在另一方面中,本发明提供制备自修复组合物的方法。在该方法中,所述的微胶囊分散在聚合物介质中。如果得到的改性聚合基质具有所述的自修复功能,那么分散就是足够的。这可很容易地通过对基于给定一组制备步骤和材料、再现性或其中将应用微胶囊化的组合物的预期环境条件下的加速再现性进行原型研究工作来证实。在聚合基质中微胶囊均匀分散或基本上均匀分散通常是优选的,但并不是所有的应用都需要这样。
在另一方面中,本发明包括从自修复组合物制得的制品。
微胶囊微胶囊也称为空心微球、微气泡或微气球,其是具有被制造成包封材料的固体壁的小球体,该材料在所述的聚合剂存在下是可聚合的。制成的微胶囊其直径可为几百微米或更少。给定样品或许多使用的微胶囊的外径也可有一定的尺寸分布范围。通常,微胶囊的平均外径小于约250微米,平均尺寸可约为10~约250微米,这取决于所预期的应用。例如当使用小于约100微米的微胶囊尺寸时,粘合剂应用和用于纤维增强复合结构的树脂中的微胶囊用途可被增强。选择微胶囊外壳或壁的厚度,使其在功能上足够愈合应用,从而在通常所遇到的小于产生微裂纹所需的压力或张力下基本上使微胶囊不会过早破裂,而在填充的塑料基质中会出现微裂纹。在许多商业上可得到的产品中微胶囊的厚度例如可以是约1.5微米。在一个实施方案中,微胶囊通常是球形,但不要求是几何球形。微胶囊的最外壁例如可由水合金属氧化物、二氧化硅、硼硅酸盐等;公开于美国专利第5,196,267号(在此引入其内容作为参考)中的硅酸盐型溶胶-凝胶前体;碳;或聚合物如脲醛树脂、酚醛塑料等来形成。在本发明一个示例性的实施方案中,微胶囊由脲醛树脂形成,并是平均外径约为10~约200微米的球形。这种理解也包括小于10微米的微胶囊,其壁厚度通常随微胶囊直径增大而增大,微胶囊的裂痕强度通常随壁厚度增大而增大。可以调节这些参数以适应利用含有所述表面改性的微胶囊的自修复体系的预期应用。
易流动的可聚合材料本发明微胶囊中包封的可聚合材料可由适合的单体、低聚物或其组合构成。此外,可以包括少量的溶剂以促进材料流动,尤其是当低聚单元用作修补剂时。在主要的实施方案中,修补剂其粘度允许其在含有自修复复合物的产品的预定使用条件下流出微胶囊而与连接在微胶囊上的聚合剂充分接触的材料。在本发明的这一方面中,易流动的可聚合材料通常其粘度和流变特性允许其在预定的操作温度下流动,其中使用了聚合基质。溶剂可以与可聚合材料一起包括在微胶囊内部(例如物理混合),微胶囊裂开后其量可有效地促进可聚合材料的流动。使用时,通常选择的溶剂在自修复聚合物组合物被预定或设计使用的温度下是液体或易流动材料。使用时优选的溶剂对可聚合材料、聚合剂和聚合剂连接体系是化学惰性的。
可有效地用于本发明中的易流动的可聚合材料其实例包括含有降冰片烯(双环[2.2.1]庚-5-烯)(例如参见CAS号498-66-8)的单体材料,其有时简写为″NB″;三甲氧基甲硅烷基降冰片烯(TESNB),其中功能基是-Si-(OC2H5)3;烷基取代的降冰片烯衍生物,如乙基降冰片烯(EthNB),其中功能基是-CH2CH3,丁基降冰片烯(BuNB),其中功能基是-(CH2)3CH3,己基降冰片烯(HexNB),其中功能基是-(CH2)5CH3);及其混合物。在本发明一个重要的方面中,易流动的可聚合材料是三甲氧基甲硅烷基降冰片烯。
可选择地,修补剂可由部分聚合的物质(低聚物)构成,如DCPDn的一种或多种低聚物、降冰片烯衍生物如TESNBm和降冰片烯的简单烷基衍生物的低聚物如HexNBq,其中系数n、m和q代表与小规模聚合相关的正数。含有上面NB和NB-衍生物中任一种的部分共聚的DCPD也可用作修补剂。例如如图8所示,修补剂可通过混合部分聚合的DCPD(其中n是相对较小数字)和部分聚合的TESNB(m是低聚物中单元的数目)来制备。
图9表明由结构I所示的NB构成的修补剂的实例和由结构II所示的NB-衍生物构成的修补剂的实例,其中″R1″代表烷基。相应于图9中结构I或II的化合物可以单独或彼此混合或与或其他适合的化合物一起用作修补剂。可以用作这里所述的可聚合材料的NB-衍生物包括NB-衍生物化合物,如Grove等人在″Functionalized PolynorborneneDielectric PolymersAdhesion and Mechanical Properties,J.of PolymerSciencePart BPolymer Physics,Vol.37,3003-3010,1999中所述的那些,在此引入作为参考。
可利用当前公知的适合方法或为此目的而将公知的方法将可聚合修补剂材料包封在微胶囊内。可用于包封可聚合材料的方法的一个实例如White,S.R.等人在Nature,V0l.409,pp.794-797(2001)中所述的,在此引入作为参考。通常包封可通过在间苯二酚和氯化铵中来进行。加入亚乙基马来酸酐(约5wt.%),使用氢氧化钠来控制pH。搅拌下向反应混合物中加入DCPD,然后加入甲醛,然后加入水。真空过滤微胶囊。
聚合剂与微胶囊表面连接的聚合剂是当自修复剂与聚合剂接触时,例如当因聚合介质中的破裂使微胶囊裂开时可引发和/或促进微胶囊内所含的特定自修复剂或试剂聚合的材料。
在一个实施方案中,聚合剂化合物在微胶囊表面上形成用于开环易位聚合(ROMP)的活性部位。特别地,在一个实施方案中它们可引发从微胶囊释放的环烯烃材料通过开环易位而聚合。在一个方面中,具有这种功能的钌、锇或铟盐及其衍生物可用作聚合剂。非限制性实例包括具有易位活性的钌、铟或锇化合物或配合物。在一个方面中,具有所需要的易位活性的聚合剂衍生于RuCl3、Ru(H2O)6-(tos)2(其中″tos″是甲苯磺酸盐)、K2RuCl5等。在另一方面中,聚合剂是过渡金属配合物。在一个优选的方面中,聚合剂可以是具有易位活性的有机金属配合物,其选自钌卡宾配合物、铟卡宾配合物或锇卡宾配合物或其组合。
具有易位活性的钌、铟或锇卡宾配合物包括下面通式的那些 其中M是金属,如钌、铟或锇;Y1和Y2独立地是阴离子配体;Q1和Q2每一个是中性电子供体配体;R1和R2每一个是氢或取代基,如取代或未取代的C2-C20烯基、C2-C20炔基、C2-C20烷基、芳基、C2-C20羧酸根、C2-C20烷氧基、C2-C20烯氧基、C2-C20炔氧基、芳氧基、C2-C20烷氧基羰基、C2-C20烷基硫、C2-C20烷基磺酰基、C2-C20烷基亚硫酰基等。如果使用,这些基团上的可选择的取代基可以是低级烷基、卤素、低级烷氧基和芳基,如苯基。具有易位活性的钌或锇卡宾配合物的非限制性实例包括例如RuCl2(PCy3)2(=CH2)、RuCl2(PCy3)2(=CHPh)、RuCl2(PCy3)2(=CHCO2Me)、RuCl2(PCy3)2(=CH-CH=CMe2)、Ru(H)(Cl)(PCY3)2(=CH-CH=CMe2)等,其中″Cy″是环己基或环戊基,″Ph″是苯基,″Me″是甲基。适合或可用来合成这种聚合剂化合物本身的方法包括本领域中通常公知或可用的那些。尽管此实施方案的实施不需要,但是制备钌、铟或锇卡宾配合物的非限制性说明包括美国专利第6,310,121和6,313,332号中公开的那些,在此引入作为参考。
不限于上面的聚合剂实例,可与微胶囊相连的其他类型聚合剂也能达到类似的结果。例如RBF2(其中R是分子桥单元)可作为双环戊二烯自修复剂的聚合剂。其他可按与RBF2相似的方式用作聚合剂的Lewis酸包括铝(III)、钛(IV)和锡(IV)的衍生物。阴离子聚合可利用Lewis碱按相似的方式进行。然而,这些聚合剂聚合烯烃所需的反应性通常限制了这些材料在自修复应用中的使用。聚合剂的其他实例包括使用与微胶囊连接的胺、酸或醇功能基。生成的聚酰胺或聚酯是由自修复剂形成的聚合物。例如,在微胶囊上连接酸基作为聚合剂可用来与乙醇酸自修复剂形成聚乙醇酸。由于消去水,而水必须充分吸收或在聚合物介质中渗透,因而这些反应受到某些限制。这些反应通常需要缓慢加热,例如在夏季这可在密封的容器中容易地实现。给出的这些实例不用于作限制,而是用来表明本发明广泛的实用性,不限于任何具体的应用或一般的使用。
聚合剂的连接在本发明一个重要的方面中,聚合剂与微胶囊的外(外部)表面连接。本文中使用的″连接″指聚合剂通过插入的分子连接结构与微胶囊的外表面直接连接或间接连接。在一个优选的方面中,聚合剂与分子连接结构通过化学反应而连接。
本文中使用的微胶囊的″外表面″微胶囊本身的裸表面,或可选择地指已涂覆在微胶囊裸表面上的结成一体薄膜涂层的表面。
在本发明一个方面中,适合的功能基可与用来制备微胶囊的单体以有效地促进聚合剂与微胶囊的外表面连接的方式连接。例如,较小的醇功能基可与脲的氮(H2NCONHROH)连接,从而制成由脲醛树脂构成的微胶囊。醇基团可提供通过使用例如氯硅烷偶联剂或其羧酸衍生物而连接聚合剂的部位。
在另一方面中,玻璃或陶瓷微胶囊的表面可用表面特效粘合剂处理,并用聚合剂溶液处理,从而使聚合剂与陶瓷或玻璃微胶囊的表面直接粘合。表面特效粘合剂的一个实例是硅烷化剂,如通式为R-Si(OR′)3的硅烷化剂,其中R′是低级烷基,如甲基、乙基、丙基、异丙基、乙烯基或丁基。表面特效粘合剂可与微胶囊表面上的表面羟基反应,从而形成R-Si-O-表面型键,并形成醇(R′OH)副产物。在一个实施方案中,表面特效粘合剂上的R是含有烯烃的烃基部分,其能够与聚合剂金属中心配合。
在一个非限制性方面中,微胶囊表面用具有含有降冰片烯或降冰片烯衍生物的基团的硅烷偶联剂进行处理。这些硅烷偶联剂的实例是5-(双环庚烯基)三氯硅烷、5-(双环庚烯基)三乙氧基硅烷、除了经改性使得三氯硅烷通过亚乙基(-CH2-CH2-)与降冰片烯上的碳连接外与降冰片烯-三氯硅烷(5-(双环庚烯基)三氯硅烷)相似的偶联剂、或5-(双环庚烯基)甲基二氯硅烷。在一个可选择的方面中,DCPD可与硅烷偶联剂连接。在硅烷偶联剂与微胶囊的外表面连接后,硅烷偶联剂露出的降冰片烯基团或降冰片烯衍生物基团的环与欲与微胶囊连接的聚合剂反应。该反应打开应变环,使得聚合剂与余下的断裂的降冰片烯基团连接。随后与降冰片烯或其他相似的应变烯烃聚合。
其他表面连接化学可能要求微胶囊具有涂覆在外表面上的金属薄膜(如金),以有助于使用表面特效粘合剂使聚合剂与微胶囊表面连接。在本发明的这一方面中,可以使用电子工业中常用的无电镀层方面涂覆金属,以防止金属表面被氧化。通常与金一起使用的偶联剂是如Weck等人在JACS,121,4089-4089(1999)中所公开的硫醇化合物,其中没有特殊的基底或形状。
在一个示例性的方面中,微胶囊表面用金薄膜涂覆,然后首先将它们用十二硫醇功能化,从而形成烷硫醇盐自组装的单层(SAM)基质。然后将各双功能线性分子嵌进SAM的结构域边界,以有效地支撑并将其分离成刚毛状结构。涉及这种双功能线性分子的分子自组装化学的实例通常公开于Weck等人的JACS,121,4089-4089(1999)中,在此引入作为参考。
在本发明的一个方面中,分子自组装反应机理被成功使用,并用来将具有易位活性的聚合剂与含有可聚合修补剂的易碎微胶囊的三维(例如凸起的)外表面连接。在本发明中,形成的″刚毛状″微胶囊结构每一个均具有从微胶囊的金涂覆表面向外突出的分子″刚毛″(即桥单元),其适于经活性聚合与Ru基ROMP引发剂等反应。″刚毛″或桥单元由分子间力有效地分开,这有助于推动自组装过程。分子内力也影响SAM的性质。例如,在所述的Weck等人的论文中所述的线性双功能化合物是一种相对刚性的分子,该分子从其以一端连接的微胶囊的表面直线伸出。所述的线性双功能化合物具有下面的一般结构HS-Z-CH=CH-Z-CH=CH-Z-O-CH2-X其中每个Z代表对亚苯基,X代表降冰片烯基。连接的方式可有利地使降冰片烯基的双键暴露,该双键接近随后与聚合剂发生聚合反应的分子的相反未端。
按这种方式,利用化学反应有效地经线性多功能分子桥单元使聚合剂与微胶囊的外表面连接,从而连接聚合剂。聚合剂的多个部分通过提供多个与相同微胶囊的外表面连接的线性桥单元以分开排列的方式连接到普通微胶囊的外部周围。
聚合物介质没有特别限制通过本发明的自修复体系进行保护的聚合基质材料。在大多数产品和元件中聚合物用作主要的结构材料,其中原位裂痕愈合能力是需要的且是有价值的性质。可因本发明而具有自修复能力的聚合物包括热固性树脂、热塑性材料和弹性体。热固性树脂包括温度活化体系、聚合剂活化体系和混合活化体系。热固性树脂的实例包括例如环氧体系、甲醛体系、聚氨酯/脲体系、甲醛体系、呋喃体系、烯丙基体系、醇酸树脂体系、不饱和的聚酯体系、乙烯基酯体系等。环氧体系包括环脂肪族环氧树脂、双酚-A的二缩水甘油醚或其溴化衍生物、四缩水甘油基亚甲基二苯胺、多核酚环氧树脂、环氧酚醛树脂、环氧甲酚醛型树脂、乙内酰脲环氧树脂等。可以理解可按各种方式处理环氧树脂体系,其可在低温或高温下固化。低粘度树脂可被铸型或被用来浸渍增强。成型化合物可被注射成型、压缩成型或转移成型。环氧树脂具有多种电学应用,包括半导体元件的封装(填充)或层压印刷电路板或集成电路的制造等。经本发明改性的环氧树脂也可用于纤维-增强的复合物中及用作其他结构元件。甲醛体系包括脲醛、酚醛和三聚氰胺甲醛。热塑性材料可以是非晶热塑性材料和结晶热塑性材料。可加到本发明自修复体系中的热塑性材料的实例包括烯烃类、乙烯类、苯乙烯类、丙烯腈类、丙烯酸类、聚碳酸酯类、多元合金类、纤维质类、聚酰胺、热塑性聚酯和共聚酯类、砜、酰亚胺类聚合物、醚-氧化物聚合物、酮聚合物、氟聚合物和杂链聚合物等。可用本发明增强的弹性体包括可硫化的弹性体、反应体系弹性体和热塑性弹性体。这种弹性体的实例包括二烯和相关的聚合物、弹性共聚合物、亚乙基相关的弹性体、氟弹性体、硅树脂聚合物和热塑性弹性体。
在一个优选的方面中,制得的聚合化合物应使因其产生的对可聚合材料和聚合剂间的聚合反应的任何可能的抑制活性最小。
自修复聚合物组合物的形成可用所述的自修复成分增强的热固性、热塑性和弹性材料可用于各种一般应用中,如用作成型材料(例如,成型聚合物品)、粘合剂、涂层、密封剂等。例如,可用本发明增强的粘合剂包括例如丙烯酸酯、甲基丙烯酸酯、氰基丙烯酸酯树脂、环氧树脂、酚醛塑料如酚树脂、氨基塑料如三聚氰胺-甲醛、不饱和的聚酯树脂、乙烯基酯树脂、聚氨酯等。粘合剂涂覆材料也包括在本发明中。
所述的微胶囊粒子可在聚合基质材料硬化之前的任何适当时间与聚合基质材料混合。实际上,聚合剂通常在微胶囊和聚合剂加到聚合物或聚合物成形混合物中之前与微胶囊的表面连接。例如,微胶囊粒子可在加入聚合基质树脂过程中加入。如果聚合基质材料在利用高剪切力等与其相关的技术硬化之前制成所需的几何形状,如利用注射成型或挤压,那么必须小心地设计微胶囊,使其可承受成型条件,而不会过早裂开。
另外,本发明的聚合复合物可通过任何方便的方法成型成所需的形状,包括例如层压(如制备纤维-增强塑料和使用纤维预成形体或纤维预浸料等制备结构复合物)、注射成型(如制备微电子元件、手表元件、定位销、套管、肋材、凸缘、仪表板、户外家具等)、挤压(如制备薄片、管道、纤维、小球等)、挤压包覆(如制备电线或电缆的外壳)、薄膜吹制(如制备单层或多层盖子和包装用品,如包装纸、罐头内壁纸、包等)、压制(如制备平薄膜或薄片)、薄片热成型(如制备硬质包装、容器、结构面板和衬垫、窗户、天窗等)、吹模(如制备包装和保存容器)、在基底上涂覆(如制备薄膜、胶带、结构外层、地板、壁纸等)、旋转成型(如制备开口容器、无缝漂浮装置、玩具、结构元件)、铸型(如制备包封、嵌入或密封的电子元件)、压模(如制备电学及电子工具、把手、按钮、隔板、餐具、轮胎零件等)、移模(如制备复杂或易碎的聚合产品)。
尽管不作为本发明必须的部分,需要时在本发明的聚合复合物中除了所述的带有聚合剂的微胶囊粒子外还可包括其他可选择的添加剂,其加入程度是对微胶囊粒子的功能没有相反(降低)作用。这些可选择的添加剂可以包括例如u.v.稳定剂、热稳定剂、抗氧化剂、着色剂、阻燃剂、抗菌剂、加味剂、表面改性添加剂、加工助剂、增塑剂、块体改性剂、填充剂和增强剂。这些可选择的添加剂适合实例包括在现有聚合材料加工和设计中公知和可用的那些。例如填充剂和增强剂可包括需要时常用的材料,如二氧化硅纤维、碳纤维、金属纤维、金属粉末、玻璃片、云母、铝片、高岭土、三水合氧化铝、碳酸钙、炭黑、固体玻璃微球、空心微球。不可选择的添加剂通常形成复合物的不连续相的一部分。与微胶囊粒子相同,这些可选择的添加剂也在其硬化之前的某一时间加到聚合基质中。在热固性树脂的情况下,如环氧树脂,添加剂通常在固化树脂前加到聚合物成型混合物中。
通过使用微胶囊作为聚合剂和自修复剂的载体相继放置聚合剂和修补剂,自修复复合物的结块降低。由于聚合剂与含有自修复剂的微胶囊连接且聚合剂分散在聚合基质中,因而也显著提高了自修复可能性。本发明允许更有效地使用自修复复合物中的材料。例如,代替分别加入聚合剂和微胶囊,仅有一种材料需要混合进聚合基质中以使其具有自修复功能。本发明使聚合剂具有更大的选择性,并能更均匀地分散。在某些应用中,即使单个微胶囊也适于愈合,因此能分布在单薄层中。此外,通过使聚合剂置于特定表面上,相对于均匀聚合剂的分散的第二相,这种技术允许自修复反应直接在被设计用来变钝或转向裂缝增长的增强材料及填充剂的表面上进行反应。聚合剂向受损区域的扩散不需要发生本发明的自修复反应。此外,自修复剂的新型混合物允许设计材料的性能。此外,使用柔顺性愈合材料的优点在于其能分散所施加的压力。本发明的自修复体系可改变局部压力状态,从而降低裂痕再出现的机会。此外,通过将自修复聚合剂直接放置在微胶囊表面上,在聚合基质和微胶囊增强材料间的界面上可实现裂缝修补。本发明也不需要均匀混合聚合基质树脂、聚合剂,不需要从基质树脂中的单独相修补材料,不需要关心全部材料均匀性。
图1是根据本发明一个实施方案的新的自修复体系10的示意图,其中聚合基质12中的裂痕或裂缝11通过微胶囊粒子16的内含物的裂开和释放而愈合。微胶囊粒子16包括微胶囊14,其是空心微球或微气球。微胶囊14其内包括可聚合修补剂15。修补剂通过微胶囊引入。聚合剂13一体连接在微胶囊14的外表面142上的多个不同部位。与扩展裂缝11相关的应力使微胶囊粒子在其接近处裂开,从而释放它们的修补剂内含物,经流动与裂缝及与微球连接的聚合剂接触,从而修补剂在裂缝处愈合,这样有效地填充了裂缝并防止进一步扩展。微胶囊粒子16用作聚合基质内容易使用的原位微反应器,从而可停止或修补聚合基质内的裂痕损害。
作为比较,图2是现有自修复体系100的示意图,其中聚合基质102中的裂痕或裂缝101通过分散在聚合基质102中的均匀聚合剂103而修复。用可聚合修补剂105填充的微胶囊104单独地分散在聚合基质102中。在强度测试中,用放大镜目测压实的样品。样品使用在含有钌盐聚合剂的聚合基质中的单独分散体及脲醛树脂微胶囊(尺寸100~200微米,且在微胶囊中含有DCPD修补剂)。这些检测表明聚合剂结块,而没有极好地分散在基质材料中,从而浪费了聚合剂。此外,均匀聚合剂方法使得聚合剂会分散在聚合基质没有需要愈合的微胶囊的区域(体积)中。因此,尽管使用均匀聚合剂可实现自修复作用,但是已发现这种自修复体系存在会降低或限制这种方法的性能及功能的问题。
在其他优点和好处中,本发明提供如图1所示的自修复聚合的复合材料,其中引入待保护的聚合物中的自修复成分明显降低。使用本文的说明,可以设计微胶囊成分的分子结构,可选择并调节其性能如反应速率等以更好地适应预期的应用。在需要时,也可以设计用于微胶囊成分的分子实体,从而改变其对周围聚合物基质的反应性和敏感性。
图3是图1所示的一个微胶囊14的放大图。微胶囊14包封修补剂15,其被微胶囊壁141限定的内部空间所包围。聚合剂13与微胶囊14的外表面142连接。为简化讨论,在图3中一个聚合剂13分子与微胶囊14的表面142连接。在实际使用时,聚合剂材料在外表面周围的极多分离部位处与微胶囊的外部或外表面连接。可以理解如图2所示在表面改性的微胶囊引进聚合基质12中之前,聚合剂材料13的多个分散分子将与每个微胶囊14的表面连接。在图4所示的另一实施方案中,微胶囊14的原始表面142用金属薄膜143涂覆(如金),其作为表面144,其上聚合剂13与含有自修复剂15的微胶囊14连接。在金属薄膜143和微胶囊14的外表面142的界面处,涂覆有下面将详细说明的表面特效粘合剂145。
图5、图6和图7示意性地表明使用如图1所示的本发明一个实施方案的体系时自修复过程的三个阶段。可以理解,这代表可释放并随后聚合修补剂的多种方案之一,但不意于限制所教导的范围。在图5中,第一阶段1代表裂痕的出现。此过程从接近于一个微胶囊145的扩展裂缝111在聚合基质120中开始,微胶囊145含有修补剂151和与其外表面146连接的聚合剂130。在图6中,第二阶段2代表微胶囊145裂开,同时裂缝111进一步通过聚合基质120扩展,自修复剂151从微胶囊145和147释放。释放的修补剂与裂缝111的裂痕表面接触,并与微胶囊145和147外部连接的聚合剂130接触。如图所示,微胶囊145首先与裂缝111接近,在此阶段比微胶囊147更多的修补剂从其释放(该实例不代表所有可能的情况)。在图7中,第三阶段3表明愈合聚合过程的进行,另一微胶囊149裂开,从其中释放修补剂152并与聚合剂130接触。同时,微胶囊145和147上的聚合剂更充分接触从那些已裂开的微胶囊释放的修补剂150。因此,聚合剂130引发修补剂150聚合,从而填充这两个裂纹面,限制裂缝111的扩展,并可降低破裂后的基质材料的柔顺性,从而愈合裂开的聚合基质。
参考图10和图11,图10中的流程图反映出与上面讨论的图1所示的聚合物组合物相关的聚合物愈合机理,图11中的流程图反映出与上面讨论的图2所示的对比聚合物组合物相关的不同聚合物愈合机理。在图10中,微胶囊的裂开及其内容物的漏出(记为″A″)、漏出的内容物与连接在微胶囊外表面上的聚合剂的接触(记为″B″)从时间的观点来看同时或基本上同时发生,从而愈合立即开始并快速进行,直到聚合(记为″C″)进行至足以愈合裂缝。然而,与图11所示的流程图相比,与图2的比较组合物相关的愈合过程比图1更慢。参考图11,在微胶囊裂开A和微胶囊漏出的内容物最终与以单独粒子分散在聚合基质材料中的任何聚合剂B接触的稍后时间之间有明显的时间延迟,从而与图1相比愈合过程的出现和速率及其程度更慢于图2的聚合物组合物。
本发明自修复体系的应用实例包括印刷电路板(PCB)薄片、聚合壳体、聚合封套、粘合剂、芯片粘接、元件包装和有机半导体。然而,除了上面提到的那些外,这里的技术也适用于其他聚合物品,这些也具有相似的聚合物降解过程,或有助于原位修补裂缝和裂痕能力。例如,本发明的自修复体系可用于塑料包装中的聚合物、运动物品、在机身结构、航行器、宇航飞船、汽车、货车中用的结构复合物、粘合剂、油漆、密封剂、浸渍树脂、涂饰剂、涂层等。
图12表明根据本发明的实施方案在电子仪器组件1000中实施自修复体系的实施方案。集成电路芯片或半导体装置1600印刷电路板(PCB)1100上的电导体1200电学和机械地连接。PCB 1100包括常用于层压结构中的电绝缘材料,如纤维玻璃-增强树脂。例如,层压材料1100可以是环氧玻璃,如FR4,其包括在环氧树脂中的多层玻璃编织层(例如约2-5层)。一旦环氧树脂固化,那么各层或所有层成为硬但柔韧的粒子。聚酰亚胺也可用于形成柔性电路板,但聚酰亚胺通常比环氧玻璃更贵。可以使用任何适合的方法例如光掩模和化学蚀刻在PCB上形成电导体1200。在PCB 1100的背面也可设有一列焊接衬垫(图未示),以有助于将PCB 1100与另一元件连接,如第二个PCB(图未示)。可使用例如适合的粘合剂1400(如含有银的导电粘合剂)将芯片1600与PCB 1100的某一区域粘接。通过金、镀锡铜或铝线1300将芯片1600与电导体1200电连接。可以理解,导线1300包括与任何适合的粘合剂连接的任何适合的电导体。例如,导线1300可以包括超声粘合的导线、带式自动粘合(TAB)或倒装芯片粘合。可以使用直接芯片粘合组装(也称为倒装芯片组装),其中芯片通过焊接球与基底1100上的金属衬垫连接。为提高热疲劳可靠性,硅树脂和基底间的空间利用毛细管力用粘合剂(底层填料),从而使树脂到达芯片的中心。底层填料也可混合进所述的自修复复合物结构中。
一团涂层或密封剂1500沉积在芯片1600、导线1300、电导体1200的一部分和PCB 1100的一部分之上。沉积的密封剂1500具有一定粘度,其可流动以覆盖受影响的区域。沉积密封剂1500之后,通过加热或其他硬化密封剂的交联方式将其固化成固体形式。
在一个实施方案中,至少一种树脂被用来制备PCB 1100、芯片粘接粘合剂1400和密封剂1500,其包括含有所述的自修复复合物的基本树脂。多种树脂可作为用于这种应用的聚合基质树脂的候选材料,例如环氧树脂、聚氨酯、硅树脂、聚酰亚胺、聚酯、有机硅树脂和共聚物及共混合物。这些树脂通常是可固化的树脂,其是电绝缘的、耐潮气的粘合剂,其热膨胀系数基本上与任何连接的元件匹配。在一个特定的实施方案中,含有自修复复合物的聚合基质树脂是用于PCB1100中的环氧树脂。尽管不限于此,但电子仪器组件1000在便携式通信应用及用于此目的的信息处理装置中具有特定的用途。
微胶囊化的粒子不需限于用在聚合基质中。例如,根据本发明的原理制备的含有聚合剂的微胶囊化的粒子也可在某些生物医学和药物应用中用作处理传输体系,其中生物相容的微胶囊可用在微胶囊内微胶囊化的治疗剂用的聚合剂进行表面改性。在治疗剂可以释放以给药至患者的条件下,其是易流动的形式。在生物医学应用中,微胶囊可由有机凝胶材料或适于微胶囊处理的其他生物可降解材料制成。
在上面的说明书中,结合具体实施方案阐明了本发明。然而,本领域所属技术人员可以理解,在未脱离下面的权利要求书所述的本发明的保护范围的情况下可以做出各种修改和变化。因此,说明书和附图应被认为是说明性的,而不是用来做限制,所有这些修改都包括在本发明的保护范围内。
上面结合具体实施方案说明了好处、其他优点及问题的解决方案。然而,好处、优点及问题的解决方案和可使任何好处、优点及解决方案更明显的任何元件不应被解释为任何或所有权利要求的关键、必须或实质的特征或元件。本文中使用的术语″包括(comprises)″、″包括(comprising)″或任何其他变体都指非排他性的包含,从而包括一系列元件的过程、方法、制品或装置不仅包括这些元件,而是可以包括没有明确列出或这种过程、方法、制品或装置的固有的其他元件。
权利要求
1.一种微胶囊化的可聚合组合物,其包括微胶囊;所述微胶囊内的易流动的可聚合材料;及与所述微胶囊的外表面相关的至少一种聚合剂,一旦所述微胶囊破裂,及所述聚合剂与所述易流动的可聚合材料接触,所述聚合剂有效地引发所述易流动的可聚合材料的聚合。
2.如权利要求1所述的微胶囊化的可聚合组合物,其中所述微胶囊包括外壳,其构成其中容纳所述易流动的可聚合材料的内部空间。
3.如权利要求2所述的微胶囊化的可聚合组合物,其中所述微胶囊外壳包括选自水合金属氧化物、二氧化硅、硅酸盐、碳、聚合物及其混合物的材料。
4.如权利要求1所述的微胶囊化的可聚合组合物,其中所述微胶囊的外表面用粘合剂处理,以有效地使所述聚合剂连接到所述微胶囊上。
5.如权利要求4所述的微胶囊化的可聚合组合物,其中所述粘合剂是硅烷化剂。
6.如权利要求1所述的微胶囊化的可聚合组合物,在所述微胶囊中还包括溶剂,一旦所述微胶囊破裂后其量可有效地促进所述可聚合材料的流动。
7.如权利要求1所述的微胶囊化的可聚合组合物,其中所述微胶囊在其外表面上包括金属薄膜,所述金属薄膜有效地使聚合剂与连接到所述微胶囊上。
8.如权利要求7所述的微胶囊化的可聚合组合物,还包括在所述金属薄膜上且烷硫醇置于其上的基质层,具有主链和相对的第一和第二末端的线性分子,从所述第一末端与所述基质层连接,并沿所述主链包括碳碳双键,在所述第二末端具有选自降冰片烯基、降冰片烯基衍生物基团及其组合的基团,其包括所述聚合剂。
9.如权利要求1所述的微胶囊化的可聚合组合物,其中所述易流动的可聚合材料选自降冰片烯、烷基取代的降冰片烯衍生物、烷氧基甲硅烷基降冰片烯、双环戊二烯、双环戊二烯低聚物、双环戊二烯共聚物及其混合物。
10.如权利要求1所述的微胶囊化的可聚合组合物,其中所述易流动的可聚合材料选自三甲氧基甲硅烷基降冰片烯、降冰片烯、乙基降冰片烯、丙基降冰片烯、丁基降冰片烯、己基降冰片烯、双环戊二烯及其混合物。
11.如权利要求1所述的微胶囊化的可聚合组合物,其中所述聚合剂选自钌配合物、锇配合物、铟配合物及其混合物。
12.如权利要求1所述的微胶囊化的可聚合组合物,其中所述聚合剂包括衍生于RuCl3、K2RuCl5、Ru(H2O)6-(tos)2的钌配合物或其混合物,其中tos是甲苯磺酸盐。
13.如权利要求1所述的微胶囊化的可聚合组合物,还包括与所述微胶囊的外表面连接的线性分子,其中所述聚合剂包括与所述线性分子连接的BF3的衍生物。
14.如权利要求1所述的微胶囊化的可聚合组合物,其中所述聚合剂选自铝(III)、钛(IV)、锡(V)的衍生物及其混合物。
15.一种自修复聚合物组合物,其包括聚合物介质;及分散在所述聚合物介质中的多个易流动的可聚合材料的微胶囊,所述易流动的可聚合材料的微胶囊包括微胶囊、所述微胶囊内的易流动的可聚合材料及与所述微胶囊的至少某些外表面连接的至少一种聚合剂,所述微胶囊随所述聚合介质的破裂有效地裂开,且一旦所述微胶囊破裂后所述可聚合材料与所述聚合剂反应。
16.如权利要求15所述的自修复组合物,其中所述微胶囊包括外壳,其构成容纳所述易流动的可聚合材料的内部空间。
17.如权利要求15所述的自修复组合物,其中所述微胶囊外壳包括选自水合金属氧化物、二氧化硅、硅酸盐、碳、聚合物及其混合物的材料。
18.如权利要求15所述的自修复组合物,其中所述微胶囊的外表面用粘合剂处理,以有效地使所述聚合剂与所述微胶囊连接。
19.如权利要求18所述的自修复组合物,其中所述粘合剂是硅烷化剂。
20.如权利要求15所述的自修复组合物,其中所述微胶囊在其外表面上还包括金属薄膜,所述金属薄膜有效地使聚合剂与所述微胶囊连接。
21.如权利要求15所述的自修复组合物,其中所述易流动的可聚合材料选自降冰片烯、烷基取代的降冰片烯衍生物、烷氧基甲硅烷基降冰片烯、双环戊二烯、双环戊二烯低聚物、双环戊二烯共聚物及其混合物。
22.如权利要求15所述的自修复组合物,其中所述易流动的可聚合材料选自三甲氧基甲硅烷基降冰片烯、降冰片烯、乙基降冰片烯、丙基降冰片烯、丁基降冰片烯、己基降冰片烯、双环戊二烯及其混合物。
23.如权利要求15所述的自修复组合物,其中所述聚合剂选自钌配合物、锇配合物、铟配合物及其混合物。
24.如权利要求15所述的自修复组合物,其中所述聚合剂是选自衍生于RuCl3、K2RuCl5、Ru(H2O)6-(tos)2及其混合物的钌配合物,其中tos是甲苯磺酸盐。
25.如权利要求15所述的自修复组合物,其中所述聚合物介质选自热固性材料、热塑性材料、弹性材料及其混合物。
26.一种制备自修复组合物的方法,其包括在聚合物介质中分散多个易流动聚合材料的微胶囊,所述易流动聚合材料的微胶囊包括微胶囊、所述微胶囊内的易流动聚合材料及与所述微胶囊的至少某些外表面连接的至少一种聚合剂,所述微胶囊随所述聚合介质的破裂有效地破裂,且一旦所述微胶囊破裂后,所述可聚合材料与所述聚合剂反应。
27.如权利要求26所述的方法,其中所述微胶囊聚合剂包括外壳,其构成容纳所述易流动聚合材料的内部空间。
28.如权利要求27所述的方法,其中所述微胶囊外壳包括选自水合金属氧化物、二氧化硅、硅酸盐、碳、聚合物及其混合物的材料。
29.如权利要求26所述的方法,其中所述微胶囊的外表面用粘合剂处理,以有效地使所述聚合剂与所述微胶囊连接。
30.如权利要求29所述的方法,其中所述粘合剂是硅烷化剂。
31.如权利要求26所述的方法,其中金属薄膜结合在所述微胶囊的外表面,所述金属薄膜有效地使聚合剂与所述微胶囊连接。
32.如权利要求31所述的方法,其中所述聚合剂通过功能化所述金属薄膜进行连接,包括通过使所述金属薄膜与烷硫醇接触、然后接触包括具有降冰片烯基团、降冰片烯衍生物基团或其组合的偶联剂进行功能化,其中所述偶联剂选自5-(双环庚烯基)三氯硅烷或5-(双环庚烯基)三乙氧基硅烷中的至少一种,其中表面处理的微胶囊已与所述聚合剂反应,因此降冰片烯基团或所述降冰片烯衍生物基团的应变环与所述聚合剂反应,从而聚合剂打开所述环,并通过余下的断裂的降冰片烯基团或降冰片烯衍生物基团与所述偶联剂连接。
33.如权利要求26所述的方法,其中所述易流动的可聚合材料选自降冰片烯、烷基取代的降冰片烯衍生物、烷氧基甲硅烷基降冰片烯、双环戊二烯、双环戊二烯低聚物、双环戊二烯共聚物及其混合物。
34.如权利要求26所述的方法,其中所述易流动的可聚合材料选自三甲氧基甲硅烷基降冰片烯、降冰片烯、乙基降冰片烯、丙基降冰片烯、丁基降冰片烯、己基降冰片烯、双环戊二烯及其混合物。
35.如权利要求26所述的方法,其中所述聚合剂选自钌配合物、锇配合物、铟配合物及其混合物。
36.如权利要求26所述的方法,其中所述聚合剂是衍生于RuCl3、K2RuCl5、Ru(H2O)6-(tos)2的钌配合物或其混合物,其中tos是甲苯磺酸盐。
37.如权利要求26所述的方法,其中所述聚合物选自热固性材料、热塑性材料、弹性材料及其混合物。
38.一种包括自修复组合物的制品,所述自修复组合物包括聚合物介质;及分散在聚合物介质中的多个易流动的可聚合材料的微胶囊,所述易流动的可聚合材料的微胶囊包括微胶囊、所述微胶囊内的易流动的可聚合材料及与所述微胶囊的至少某些外表面连接的至少一种聚合剂,所述微胶囊随所述聚合物介质的断裂有效地破裂,且一旦所述微胶囊裂开后,所述可聚合材料与所述聚合剂反应。
39.如权利要求38所述的制品,其中所述制品选自电子仪器组件、电子仪器密封剂、电子芯片结合、塑料包装、结构复合物、窗户、漂浮装置、气胎零件、粘合剂、油漆、密封剂、浸渍树脂、涂饰剂、涂层及其混合物。
40.一种电子仪器组件,其包括印刷电路板;通过粘合剂连接到所述印刷电路板上的半导体器件;及覆盖所述半导体器件和至少部分所述印刷电路板的密封剂,所述粘合剂或密封剂中的至少一个包括微胶囊化的可聚合组合物,所述微胶囊化的可聚合组合物包括微胶囊;所述微胶囊内的易流动的可聚合材料;及与所述微胶囊的外表面连接的至少一种聚合剂,一旦所述微胶囊破裂,所述聚合剂与所述易流动的可聚合材料接触后,所述聚合剂有效地引发所述易流动的可聚合材料的聚合。
41.一种印刷电路板,其包括分布在板上的金属电路图案,所述板包括多层纤维增强树脂,其中所述树脂包括微胶囊化的可聚合组合物,所述微胶囊化的可聚合组合物包括微胶囊;所述微胶囊内的易流动的可聚合材料;及与所述微胶囊的外表面连接的至少一种聚合剂,一旦所述微胶囊破裂,所述聚合剂与所述易流动的可聚合材料接触后,所述聚合剂有效地引发所述易流动的可聚合材料的聚合。
42.一种微胶囊化的可聚合组合物,其包括微胶囊;所述微胶囊内的易流动的可聚合材料,所述易流动的可聚合材料选自降冰片烯、烷基取代的降冰片烯衍生物、烷氧基甲硅烷基降冰片烯、双环戊二烯、双环戊二烯低聚物、双环戊二烯共聚物及其混合物;及与微胶囊的外表面连接的至少一种聚合剂,所述聚合剂选自钌配合物、锇配合物、铟配合物及其混合物,一旦所述微胶囊破裂及所述聚合剂与所述易流动的可聚合材料接触后,所述聚合剂有效地引发所述易流动的可聚合材料的聚合。
全文摘要
一种自修复聚合物组合物10,其含有聚合物介质12和多个分散在聚合物介质12中的易流动的可聚合材料的微胶囊16,其中易流动的可聚合材料的微胶囊16含有易流动的可聚合材料15,并具有外表面142,其上连接至少一种聚合剂13。微胶囊16随聚合介质12的坡断有效地断裂,微胶囊14一旦破裂开后,当可聚合材料15与聚合剂13接触时易流动的可聚合材料15与聚合剂13发生反应。也提供使用自修复聚合组合物10修补聚合物中断裂的方法,也提供含有自修复体系的制品及微胶囊化的可聚合粒子16本身。
文档编号H01L23/29GK1669132SQ03817067
公开日2005年9月14日 申请日期2003年6月26日 优先权日2002年7月15日
发明者安德鲁·斯基波, 斯特夫·沙伊弗, 比尔·奥尔松 申请人:摩托罗拉公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1