高性能应变源极-漏极结构及其制造方法

文档序号:7155860阅读:172来源:国知局
专利名称:高性能应变源极-漏极结构及其制造方法
技术领域
本发明涉及半导体领域,更具体地,涉及一种应变源极-漏极结构。
背景技术
在一些半导体器件中,只能通过干式蚀刻形成注入区域。注入区域会由于形成在栅极结构侧面上的隔离件的厚度而造成接近限制(proximity limitation)。该接近限制减小了注入区域的总体尺寸。这样,由于这种接近限制,半导体器件的改善(boosting)会变差。这样,就需要降低干式蚀刻的接近限制效应。

发明内容
本发明针对工艺方法和半导体器件。在一个实施例中,本发明描述了一种用于形成高性能应变源极-漏极结构的方法。该方法包括在基板上形成栅极结构,以及在接近该栅极结构的位置上形成袋状注入区域;在邻近该栅极结构的位置上形成隔离件;实施干式蚀刻,形成具有第一轮廓的凹部;实施湿式蚀刻,将凹部扩大成第二轮廓;以及实施热蚀亥|J,将凹部扩大成第三轮廓;然后,在具有第三轮廓的凹部中形成源极-漏极结构。在另一实施例中,该方法包括提供基板,该基板具有限定的栅极结构,在接近该栅极结构的位置上形成袋状注入区域;在栅极结构的每一侧上形成邻近该栅极结构的隔离件,从而覆盖该袋状注入区域;在基板上实施干式蚀刻,从而在袋状注入区域中形成具有第一轮廓的凹部;在凹部上实施湿式蚀刻,从而将该凹部扩大成第二轮廓;以及实施热蚀刻, 将扩大的凹部进一步扩大成第三轮廓;通过沉积半导体材料,比如硅锗(SiGe),在具有第三轮廓的扩大的凹部中形成源极-漏极结构。在一个实施例中,本发明描述了一种具有高性能应变源极-漏极区域的半导体器件。该器件包括基板,该基板具有限定的栅极结构和形成在接近该栅极结构的位置上的袋状注入区域,该栅极结构具有隔离件和袋状注入区域。该器件还包括通过干式蚀刻、湿式蚀刻、以及热蚀刻在基板的袋状注入区域中形成的凹部。该器件进一步包括通过沉积包括硅锗(SiGe)的半导体材料,在凹部中形成的源极-漏极结构。在一个实施例中,本发明描述了一种半导体器件,该器件具有基板,该基板上具有栅极结构。该器件包括覆盖该栅极结构的相对侧壁的隔离件。该器件包括在基板中且在栅极结构的每一侧的源极-漏极部件。该源极-漏极部件具有上侧壁和下侧壁,该上侧壁具有第一面,该下侧壁具有第二面,其中,第一面与第二面不同。在一个方面,基板包含硅(Si), 源极-漏极部件包含硅锗(SiGe)。在另一方面,第一面是<110>,第二面是<111>。


根据以下结合附图的详细描述可以最好地理解本发明。需要强调的是,根据工业中的标准实践,各种不同元件没有按比例绘制,并且只是用于图示的目的。实际上,为了使论述清晰,可以任意增加或减小各种元件的尺寸。应该理解,在所示出的一个或者多个附图中,相似的参考标号用于表示相似的元件。图1示出了根据本发明的实施例的用于形成源极-漏极结构的方法。图2A-图2E示出了根据本发明实施例的用于形成源极-漏极结构的工艺流程。
具体实施例方式可以理解,本发明提供了许多不同的形式和实施例,并且特定实施例仅仅作为示例提供。另外,本发明的范围将只通过所附权利要求进行限定。在附图中,为了更加清晰, 层和区域的尺寸和相对尺寸可以放大。可以理解,当元件或者层称为在另一元件或者层“之上”或者“连接到”另一元件或者层时,既可以是直接处于其他元件或者层之上,或者直接连接到其他元件或者层,也可以存在插入的元件或者层。为了便于说明,在此可能使用诸如“在…之下”、“在…下面”、“下面的”、“在…上面”、以及“上面的”等的空间关系术语,以描述如图中所示的一个元件或机构与另一元件或机构的关系。应当理解,除图中所示的方位之外,空间关系术语将包括使用或操作中的装置的各种不同的方位。例如,如果翻转图中所示的装置,则被描述为在其他元件或机构“下面” 或“之下”的元件将被定位为在其他元件或机构的“上面”。因此,示例性术语“在…下面” 包括在上面和在下面的方位。装置可以以其它方式定位(旋转90度或在其他方位),并且通过在此使用的空间关系描述符进行相应地解释。在下文中,将通过参考附图详细解释本发明的实施例。本发明的实施例涉及源极_漏极结构,其包括高性能应变源极_漏极结构及其制造方法。本发明的实施例提供了由新式应变源极漏极(SSD)外形成形控制的器件改善和漏极引致势垒降低效应(DIBL)。在一个方面,由于应变接近沟道,因此器件改善由SSD外形决定。本发明的实施例利用对外延层(EPI)的预先烘烤沉积工艺以及蚀刻自对准的轻掺杂漏极(LDD)区域,以形成SSD外形。图1示出了根据本发明的实施例的用于形成源极-漏极结构的方法100。图2A-图 2E示出了根据本发明实施例的用于形成源极-漏极结构的工艺流程。在一个实施例中,图 1的方法100和对应的图2A-图2E的工艺流程可以用于制造高性能应变源极_漏极结构。参考图1,提供了基板(方框101),并且在基板上形成栅极结构(方框114)。在一个实施例中,如图2A中所示,形成基板200,该基板200包含半导体材料,比如硅(Si),并且,在基板200上形成一个或者多个栅极结构210。栅极结构210包括栅极氧化层212、多晶硅(poly-Si)层214、以及掩模层216 (比如用于光刻工艺的硬掩模层)。在一个方面,栅极层214、214、216形成在基板200上,并且实施多晶硅蚀刻,从而限定出栅极结构210。在不超出本发明的范围的情况下,在其他实施例中,基板200包括蓝宝石基板、碳化硅(SiC) 基板、氮化镓(GaN)基板、或者各种其他复合基板。参考图1,在基板中,在接近栅极结构的位置上形成袋状注入区域(pocket implant region)(方框118)。在一个实施例中,如图2A所示,在基板200中,接近栅极结构210的位置上形成一个或者多个袋状注入区域220。袋状注入区域220包含半导体掺杂材料,比如砷(As)、磷(P)、或者一些As和P的化合(AsP)。在一个方面,袋状注入环境可以包括20KeV 80KeV、le12atoms/cm2 le14atoms/cm2、以及15倾斜角 45倾斜角。在另一个方面,袋状注入区域220可以不包含硼(B)或者氟化硼(BF2)的LDD(轻掺杂漏极)。在一个实施例中,在基板200中形成有一个或者多个浅沟槽隔离(STI)结构224,用于电绝缘。参考图1,在邻近栅极结构的位置上形成隔离件(方框122)。在一个实施例中,在图2B中示出,在栅极结构210的每一侧上形成邻近该栅极结构210的每一侧的一个或者多个隔离件230。隔离件230包含介电材料,比如氮化硅(SiN)、各种氧化材料、或者一些SiN 和氧化材料的组合。在一个方面,SiN或者OX/SiN的隔离件沉积适合于控制接近度。SiN 可以包括熔炉(furnace) SiN、ALD SiN、或者PE SiN0氧化物通常包括热氧化物、ALD氧化物、或者PEALD氧化物。在各个方面,SiN的厚度可以处于大约50入到大约200A的范围内, 氧化物的厚度可以处于大约15 A到大约50A的范围内。参考图1,实施干式蚀刻,从而在基板的注入区域中形成凹部(recess)(方框 126) 0在一个实施例中,如图2B所示,实施干式隔离(ISO)蚀刻M0,从而在基板200的一个或者多个袋状注入区域220中形成具有第一轮廓或者形状的一个或者多个凹部M2。在一个方面,实施干式ISO蚀刻,从而限定接近度。ISO蚀刻气体可以包含CF4/C12/NF3/SF6/ He,凹部242的深度可以在从大约200A到大约500A的范围内。在一个实施例中,干式ISO 蚀刻240可以形成一个或者多个袋状注入区域M4,用于抗击穿控制。参考图1,实施湿式蚀刻,以扩大在基板中形成的干式蚀刻凹部(方框130)。在一个实施例中,如图2C所示,通过氢氧化四甲基铵(TMAH)实施湿式蚀刻250,以扩大干式蚀刻凹部,从而在基板200的袋状注入区域220中形成具有第二轮廓或者形状的扩大凹部252。 通过TMAH实施湿式蚀刻,以形成(111)面。在一个方面,TMAH环境可以包括20°C 100°C 以及1 % 30 %的浓度,并且在TMAH蚀刻之后,扩大凹部252的深度可以处于大约400A到大约800A的范围内。参考图1,实施热蚀刻,以扩大形成在基板中的湿式蚀刻凹部(方框134)。在一个实施例中,如图2D所示,通过HCl (盐酸)或者其他热蚀刻气体实施热蚀刻沈0,以扩大湿式蚀刻凹部252,从而在基板200的袋状注入区域220中形成具有第三轮廓或者形状的扩大凹部沈2。在一个方面,如图2D所示,热蚀刻适合于底切(undercut)邻近栅极结构210形成的一个或者多个隔离件230。在另一方面,通过HCl或者其他蚀刻气体进行热蚀刻,作为预先烘烤,从而蚀刻LDD区域,并且与(110)面自对准。在另一方面,HCl或者其他热蚀刻气体的工艺参数可以包括30SCCm 300SCCm,500°C 900°C的温度、H2或者队载气、以及 5Torr 500Torr。参考图1,通过沉积半导体材料,在基板的凹部中形成源极-漏极结构(方框 138)。在一个实施例中,如图2E所示,通过沉积半导体材料(比如硅锗(SiGe))在基板200 的扩大凹部262中形成源极-漏极结构270。如图2E所示,源极-漏极结构270包括具有第三轮廓或者形状的扩大凹部262。在一个方面,通过SiGe生长形成源极-漏极结构270。 在另一方面,通过隔离件230的厚度和干式ISO蚀刻控制接近度。在另一方面,通过TMAH 蚀刻控制角度(α )(比如)以及(111)面。在另一方面,通过袋状注入和热蚀刻控制 LDD区域蚀刻。在一个方面,凹部源极漏极形状包括三种面,两个(110)面垂直于沟道,一个 (100)面平行于沟道,两个(111)面与(100)面和(110)面相连接。在另一方面,由于应变接近沟道,因此,通过新式SSD外形实现器件改善。本发明的实施例利用外延层(EPI)沉积工艺预先烘烤以及蚀刻自对准的轻掺杂漏极(LDD)区域,以形成SSD外形。在一个方面,本发明的实施例使用LDD区域蚀刻。由此,不使用LDD注入。LDD注入(比如BF2)抑制了 HCl热蚀刻率。这样,如果不实施LDD注入,则LDD区域附近的Si蚀刻率增加。根据本发明的实施例的一种方法包括提供基板;在基板上形成栅极结构;在接近栅极结构的位置上形成袋状注入区域;在邻近栅极结构的位置上形成隔离件;实施干式蚀刻,以形成具有第一轮廓的凹部;实施湿式蚀刻,以将凹部扩大成第二轮廓;实施热蚀亥IJ,以将凹部扩大成第三轮廓;以及在具有第三轮廓的凹部中形成源极-漏极结构。在各个实施例中,基板包含硅(Si),基板包括至少一个浅沟槽隔离(STI)结构,栅极结构包括栅极氧化层、多晶硅(poly-Si)层、以及掩模层。袋状注入区域包含掺杂材料, 该掺杂材料包括砷(As)和磷(P)中的至少一种。在栅极结构的每一侧上形成邻近该栅极结构的每一侧的隔离件,隔离件包含介电材料,该介电材料包括氮化硅(SiN)和氧化材料中的至少一种。干式蚀刻包括干式隔离(ISO)蚀刻,实施该干式隔离(ISO)蚀刻以在基板的袋状注入区域中形成具有第一轮廓的凹部,该具有第一轮廓的凹部的深度处于大约200A 到大约500A的范围内。湿式蚀刻包括通过氢氧化四甲基铵(TMAH)的湿式蚀刻,实施该通过氢氧化四甲基铵(TMAH)的湿式蚀刻以扩大通过干式蚀刻形成的凹部,从而在基板的袋状注入区域中形成具有第二轮廓的扩大凹部,并且在实施TMAH蚀刻之后,具有第二轮廓的扩大凹部的深度处于大约400A到大约800A的范围内。热蚀刻包括通过HCl (盐酸)的热蚀刻,实施该通过HCl的热蚀刻以扩大湿式蚀刻凹部,从而在基板的袋状注入区域中形成具有第三轮廓的扩大凹部,并且该热蚀刻适合于底切邻近隔离件的基板。通过沉积包含硅锗(SiGe)的半导体材料,在具有第三轮廓的凹部中形成源极-漏极结构。根据本发明的实施例的一种方法包括提供具有限定的栅极结构的基板;在接近栅极区域的位置上形成袋状注入区域;在栅极结构的每一侧上形成邻近该栅极结构的每一侧的隔离件,以覆盖袋状注入区域;在基板上实施干式蚀刻,从而在袋状注入区域中形成具有第一轮廓的凹部;在凹部中实施湿式蚀刻,从而将该凹部扩大成第二轮廓;在扩大凹部上实施热蚀刻,从而将扩大凹部扩大成第三轮廓;并且在通过沉积半导体材料(包括,例如硅锗(SiGe))在具有第三轮廓的扩大凹部中形成源极-漏极结构。根据本发明的实施例的一种半导体器件包括基板,在该基板上形成有栅极结构。 该器件包括隔离件,该隔离件覆盖栅极结构的相对侧壁。该器件在基板中且在栅极结构的每一侧包括源极_漏极部件。源极_漏极部件具有上侧壁和下侧壁,该上侧壁具有第一面, 该下侧壁具有第二面,其中,第一面与第二面不同。在一个方面,基板包含硅(Si),源极_漏极部件包含硅锗(SiGe)。在另一方面,第一面是<110>,第二面是<111>。应该理解,在一个或者多个附图中,相似的参考标号用于表示相似的部件,其中所显示的内容目的在于示出本发明的实施例,并不旨在对其进行限定。上述公开并不旨在将本发明限定在所公开的使用方式的确切形式或者特定范围。 由此,可以预期,根据本发明,无论在这里是明确描述还是有所暗示,各种可选实施例和/ 或修改都是可能的。这样,通过本发明所描述的实施例,本领域普通技术人员将会了解,在形式上以及细节上所做的改变都不超出本发明的范围。因此,本发明仅仅通过权利要求进行限制。
权利要求
1.一种方法,包括 提供基板;在所述基板上形成栅极结构; 在接近所述栅极结构的位置上形成袋状注入区域; 在邻近所述栅极结构的位置上形成隔离件; 实施干式蚀刻,以形成具有第一轮廓的凹部; 实施湿式蚀刻,以将所述凹部扩大成第二轮廓; 实施热蚀刻,以将所述凹部扩大成第三轮廓;以及在具有第三轮廓的所述凹部中形成源极-漏极结构。
2.根据权利要求1所述的方法,其中 所述基板包含硅(Si),所述基板包括至少一个浅沟槽隔离(STI)结构,以及所述栅极结构包括栅极氧化层、多晶硅(poly-Si)层、以及掩模层;或者其中,所述袋状注入区域包含掺杂材料,所述掺杂材料包含砷(As)和磷(P)中的至少一种。
3.根据权利要求1所述的方法,其中所述隔离件形成在邻近所述栅极结构的每一侧,并且形成在所述栅极结构的每一侧上,以及所述隔离件包含介电材料,所述介电材料包含氮化硅(SiN)和氧化材料中的至少一种;或者其中所述干式蚀刻包括干式隔离(ISO)蚀刻,实施所述干式隔离(ISO)蚀刻,以在所述基板的所述袋状注入区域中形成具有所述第一轮廓的凹部,以及具有第一轮廓的所述凹部的深度处于大约200A到大约500A的范围内。
4.根据权利要求1所述的方法,其中所述湿式蚀刻包括通过氢氧化四甲基铵(TMAH)的湿式蚀刻,实施所述通过氢氧化四甲基铵(TMAH)的湿式蚀刻,以扩大通过干式蚀刻形成的所述凹部,从而在所述基板的所述袋状注入区域中形成具有所述第二轮廓的扩大凹部,以及在实施所述TMAH蚀刻之后,具有第二轮廓的所述扩大凹部的深度处于大约400A到大约800A的范围内;或者其中所述热蚀刻包括通过HCl (盐酸)的热蚀刻,实施所述通过HCl (盐酸)的热蚀刻,以扩大所述湿式蚀刻的凹部,从而在所述基板的袋状注入区域中形成具有所述第三轮廓的扩大凹部,以及所述热蚀刻适合于底切邻近所述隔离件的所述基板;或者其中通过沉积半导体材料在所述具有第三轮廓的凹部中形成所述源极_漏极结构,所述半导体材料包括硅锗(SiGe)。
5.一种方法,包括提供具有限定的栅极结构的基板;在接近所述栅极结构的位置上形成袋状注入区域;在所述栅极结构的每一侧上形成邻近所述栅极结构的每一侧的隔离件,以覆盖所述袋状注入区域;在所述基板上实施干式蚀刻,以在所述袋状注入区域中形成具有第一轮廓的凹部; 在所述凹部上实施湿式蚀刻,以将所述凹部扩大成第二轮廓; 在所述扩大凹部上实施热蚀刻,以将所述扩大凹部扩大成第三轮廓;以及通过沉积半导体材料,在具有第三轮廓的所述扩大凹部中形成源极-漏极结构,所述半导体材料包括硅锗(SiGe)。
6.根据权利要求5所述的方法,其中 所述基板包含硅(Si),所述基板包括至少一个浅沟槽隔离(STI)结构,以及所述栅极结构包括栅极氧化层、多晶硅(poly-Si)层、以及掩模层;或者其中,所述袋状注入区域包含掺杂材料,所述掺杂材料包含砷(As)和磷(P)中的至少一种;或者其中,所述隔离件包含介电材料,所述介电材料包含氮化硅(SiN)和氧化材料中的至少一种。
7.根据权利要求5所述的方法,其中所述干式蚀刻包括干式隔离(ISO)蚀刻,实施所述干式隔离(ISO)蚀刻,以在所述基板的所述袋状注入区域中形成具有所述第一轮廓的凹部,以及具有第一轮廓的所述凹部的深度处于大约200A到大约500A的范围内;或者其中所述湿式蚀刻包括通过氢氧化四甲基铵(TMAH)的湿式蚀刻,实施所述通过氢氧化四甲基铵(TMAH)的湿式蚀刻,以扩大通过干式蚀刻形成的所述凹部,从而在所述基板的所述袋状注入区域中形成具有所述第二轮廓的扩大凹部,以及在实施所述TMAH蚀刻之后,具有第二轮廓的所述扩大凹部的深度处于大约400人到大约800A的范围内。
8.根据权利要求5所述的方法,其中所述热蚀刻包括通过HCl (盐酸)的热蚀刻,实施所述通过HCl (盐酸)的热蚀刻,以扩大所述湿式蚀刻的凹部,从而在所述基板的袋状注入区域中形成具有所述第三轮廓的扩大凹部,以及所述热蚀刻适合于底切邻近所述隔离件的所述基板。
9.一种半导体器件,包括基板,在所述基板上具有栅极结构; 隔离件,覆盖所述栅极结构的相对侧壁;以及源极-漏极部件,位于所述基板中且在所述栅极结构的每一侧,所述栅极-漏极部件具有上侧壁和下侧壁,所述上侧壁具有第一面,所述下侧壁具有第二面,所述第一面与所述第二面不同。
10.根据权利要求9所述的器件,其中,所述源极-漏极部件包含硅锗(SiGe),所述第一面是<110>,所述第二面是<111>,以及所述基板包含硅(Si)。
全文摘要
一种用于制造高性能应变源极-漏极结构的方法,包括在基板上形成栅极结构,在接近栅极结构的位置上形成袋状注入区域;在邻近栅极结构的位置上形成隔离件;实施干式蚀刻,以形成具有第一轮廓的凹部;实施湿式蚀刻,以将凹部扩大成第二轮廓;以及实施热蚀刻,以将凹部扩大成第三轮廓;然后,在具有第三轮廓的凹部中形成源极-漏极结构。本发明还提供了一种高性能应变源极-漏极结构。
文档编号H01L27/088GK102479753SQ20111022072
公开日2012年5月30日 申请日期2011年8月2日 优先权日2010年11月30日
发明者宋学昌, 林宪信, 范玮寒, 蔡明桓, 郑振辉 申请人:台湾积体电路制造股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1