通过部分熔化升高的源极-漏极的晶体管的脉冲激光退火工艺的制作方法

文档序号:7242302阅读:193来源:国知局
通过部分熔化升高的源极-漏极的晶体管的脉冲激光退火工艺的制作方法
【专利摘要】一种包括部分熔化的提高半导体源极/漏极的非平面晶体管,所述提高半导体源极/漏极被设置在半导体鳍状物的相对端上,其中,栅极堆叠设置于所述相对端之间。所述的升高的半导体源极/漏极包括处于熔化深度以上的超活化掺杂剂区以及处于熔化深度以下的活化掺杂剂区。超活化掺杂剂区具有比活化掺杂剂区更高的活化掺杂剂浓度和/或具有在整个熔化区域内恒定的活化掺杂剂浓度。在衬底上形成鳍状物,并且在所述鳍状物的设置在沟道区的相对侧的区域上沉积半导体材料或半导体材料堆叠,以形成升高的源极/漏极。执行脉冲激光退火,以仅熔化所沉积的半导体材料的处于熔化深度以上的部分。
【专利说明】通过部分熔化升高的源极-漏极的晶体管的脉冲激光退火工艺
【技术领域】
[0001]本发明的实施例涉及晶体管,更具体而言,涉及对晶体管的升高的源极和/或升高的漏极的激光退火。
【背景技术】
[0002]尽管用于晶体管源极和/或漏极(即源极/漏极)的形成的激光“熔化”退火工艺是已知的,但是它们在大体积逻辑器件制造中并不典型。脉冲激光退火工艺的一种可预见的应用是使源极/漏极内的半导体材料熔化。相对于其他形式的不使半导体熔化的退火,熔化物有利地提高了掺杂剂的活化,由此改善了晶体管的参数,例如,外电阻(Rext)、t匕接触电阻(R。)等。之所以有可能在平面架构内存在熔化物,部分原因在于晶体半导体衬底或者有可能是绝缘场电介质包围了所述源极/漏极的侧面,从而形成了能够容纳熔化物的“碗”。
[0003]对于(例如)其中形成了半导体鳍状物结构的非平面架构而言,通常使源极/漏极较周围提高,因而激光熔化退火能够使得升高的源极/漏极发生流动,从而失去其预期形状、与晶体管沟道区的结构关系和/或与晶体管沟道区的电连续性。
[0004]因此,能够通过激光退火得益于较高的源极/漏极掺杂剂活化的非平面架构以及用于执行这样的激光退火的技术是有利的。
【专利附图】

【附图说明】
[0005]本发明的实施例是通过举例的方式而非限制的方式进行例示的,并在结合附图考虑时,能够参考下述详细说明被更加充分地理解。
[0006]图1A是根据实施例的具有升高的源极和漏极的非平面晶体管的截面等角图例;
[0007]图1B是根据实施例的具有升高的源极和漏极的非平面晶体管的截面等角图例;
[0008]图2A、2B和2C是根据实施例的升高的源极/漏极的截面图例;
[0009]图3是根据实施例的升高的源极/漏极的掺杂剂分布曲线;
[0010]图4是示出了根据实施例的制造具有升高的源极和漏极的非平面晶体管的方法的流程图;
[0011]图5是示出了根据实施例的仅对升高的源极/漏极的部分激光退火的方法的流程图;
[0012]图6A、6B、6C、6D、6E、6F是说明根据实施例的仅对半导体层的在升高的源极/漏极中的部分进行激光退火的方法的流程图;
[0013]图7A、7B和7C是示出了根据实施例的对半导体堆叠在升高的源极/漏极内中的所有半导体层中的部分半导体层进行激光退火的方法的流程图;以及
[0014]图8是根据实施例的采用文中所描述的非平面晶体管的移动计算系统的功能框图。【具体实施方式】
[0015]在下述说明中,阐述了很多细节,但是对于本领域技术人员而言可以在没有这些具体细节的情况下实践本发明是显而易见的。在一些情况下,以方框图的形式而非详细的形式示出了公知的方法和器件,以避免对本发明造成混淆。在整个本说明书中引用的“实施例”是指在本发明的至少一个实施例中包含了结合所述实施例描述的特定的特征、结构、功能或特点。因而,在贯穿本说明书的多出出现的术语“在实施例中”不必指本发明的同一实施例。此外,可以在一个或多个实施例中通过任何适当的方式结合所述特定的特征、结构、功能或特点。例如,只要是在与第一实施例和第二实施例不相互排斥的情况下,就可以使这两个实施例相结合。
[0016]文中可能采用术语“耦合”和“连接”连同其派生词描述部件之间的结构关系。应当理解,其并非旨在使这些词语作为彼此的同义词。相反,在具体的实施例中,可以采用“连接”指示两个或更多个元件相互直接物理或电接触。可以采用“耦合”指示两个或更多个元件相互直接或者间接(具有处于其间的其他居间元件)物理或电接触,和/或两个或更多元件相互协同工作或交互(例如,具有因果关系)。
[0017]文中采用的词语“在……之上”、“在……之下”、“在……之间”和“上面”是指一个
材料层相对于其他层的相对位置。因而,例如,设置在另一层之上或者之下的一个层可以与所述的另一层直接接触,或者可以具有一个或多个居间层。此外,设置在两个层之间的一个层可以与所述的两个层 直接接触,或者可以具有一个或多个居间层。相反,第二层“上面”的第一层与该第二层直接接触。
[0018]文中描述了非平面晶体管的实施例,其包括设置在半导体鳍状物的相对的端上的被部分熔化了的升高的半导体源极/漏极,其中,栅极堆叠设置于所述相对的端之间。所述升高的半导体源极/漏极包括处于熔化深度以上的超活化掺杂剂区以及处于熔化深度以下的活化掺杂剂区。超活化掺杂剂区具有比活化掺杂剂区更高的活化掺杂剂浓度和/或具有在整个熔化区域内恒定的活化掺杂剂浓度。制作方法包括在衬底上形成鳍状物,并在所述鳍状物的设置在沟道区的相对的侧的区域上沉积半导体材料或半导体材料堆叠,以形成升高的源极/漏极。执行脉冲激光退火,从而仅使所沉积的半导体材料的处于熔化深度以上的部分熔化。使超活化区域包含到对应的范围不足整个升高的源极/漏极的熔化深度限制了升高的源极/漏极的半导体材料完整性的损失。即使没有通过激光退火使升高的源极/漏极区域全部熔化,也已经发现在一些实施例中,形成于熔化深度以上的超活化区域相对于只具有常规掺杂剂活化的升高的源极/漏极改善了晶体管参数,例如R。。
[0019]可以将本发明的实施例应用于具有升高的源极/漏极的平面或非平面MOS-FET (即finFET)。例如,具有三维架构的器件,例如,三栅极或多栅极器件可以利用文中描述的属性和技术。图1A是根据实施例的具有升高的源极和漏极的非平面(三栅极)晶体管100的截面等角图例。晶体管100设置在体块衬底101上,所述衬底可以是任何常规材料,例如其可以是但不限于单晶硅、锗、II1-V化合物半导体(例如,GaAs, InP等)、III族氮化物化合物半导体(例如,GaN)或蓝宝石。在替代的实施例中,如本领域公知的,利用绝缘体上半导体(SOI)衬底。
[0020]非平面晶体管100包括半导体鳍状物103(例如,主要包括单晶硅),鳍状物103具有相对的侧壁103A、103B和顶表面103C。场隔离电介质102(例如,二氧化硅)与鳍状物侧壁103AU03B的一部分邻接。至少围绕鳍状物103的侧壁103AU03B形成栅极电极堆叠106,以形成半导电沟道区204(在图1B中示出)。
[0021]将源极/漏极IlOA设置到鳍状物103的相对的端处,其位于栅极电极堆叠106的任一侧上,通过栅极隔离间隔体114的居间对将所述栅极电极堆叠间隔开。通过沉积在鳍状物103的一个或多个表面上的至少一种半导体材料使源极/漏极IlOA从鳍状物103“提高”。在图1A中,升高的源极/漏极包括沉积在相对的鳍状物侧壁103AU03B的每者上以及顶部鳍状物表面103C上的掺杂剂活化半导体材料120A。图1B是根据另一个实施例的具有升高的源极/漏极IlOB的非平面晶体管200的等角图例,其中,升高的源极/漏极包括仅沉积在顶部鳍状物表面103C上的经活化的第一半导体材料140,因为半导体鳍状物103被凹陷到场隔离电介质102以下。
[0022]回到图1A,在实施例中,升高的源极/漏极IIOA主要包括匀质的半导体材料。在一个这样的实施例中,升高的源极/漏极IlOA基本上由硅构成(例如,与鳍状物103相同),或者基本上由硅锗(SiGe)合金或者任何其他已知的化合物半导体构成。升高的源极/漏极IlOA包括电性活化的掺杂剂(例如,对于NMOS器件是η型的,对于PMOS器件是ρ型的)。在示范性实施例中,鳍状物103的设置到升高的源极/漏极IlOA以下的部分也包括电性活化掺杂剂。
[0023]对于图1A所示的实施例而言,尽管升高的源极/漏极IlOA具有匀质半导体材料,但是在被设置到熔化深度115Β以下的活化半导体材料120Α和被设置到熔化深度115Β以上的超活化半导体材料125之间存在活化掺杂剂浓度的区别。因此,熔化深度115Β表示升高的源极/漏极IlOA内的处于已经受到激光退火的所沉积的半导体材料和尚未受到激光退火因而只是活化而未超活化的所沉积的半导体材料之间的界面。熔化深度115Β可以发生变化,从而使升高的源极/漏极的包含超活化半导体材料125的相对比例可以发生变化。但是,在示范性实施例中,熔化深度115Β不与鳍状物103的表面上的任何点吻合。像这样,在熔化深度115Β不与鳍状物103发生接触的情况下,超活化半导体材料125完全包含在作为升高的源极/漏极IlOA的所沉积的半导体材料内。
[0024]图3是根据实施例的表示作为升高的源极/漏极内的深度的函数的升高的源极/漏极的活化掺杂剂分布(例如,cm—3)的曲线图。一般而言,图3代表在任何入射铣角(milling angle)上取得的进入升高的源极/漏极IlOA的深度的分布曲线,但是可以预计绝对深度和掺杂剂浓度能够在用于对升高的源极/漏极IlOA进行掺杂的技术和铣削路径等的基础上发生变化。如图所示,在与熔化深度115B对应的分界315B以上,存在陡峭的箱形掺杂剂分布曲线325,其基本上贯穿超活化半导体材料125的厚度恒定。所述活化掺杂剂浓度不是超活化半导体材料125内的深度的函数,因为通过激光熔化退火实现了均衡。在分界315B处,存在掺杂剂分布曲线的不连续性,在该处箱形掺杂剂分布曲线325满足活化半导体材料120A内的常规固态扩散受限掺杂剂分布曲线320A。如图所示,在活化半导体材料120A内,掺杂剂分布曲线是升高的源极/漏极内的深度的函数。在示范性实施例中,活化掺杂剂的浓度在超活化半导体材料125内也比在活化半导体材料120A内高。
[0025]在实施例中,升高的源极/漏极包括由两种或更多种截然不同的半导体材料构成的沉积半导体堆叠。在实施例中,至少部分地利用所述截然不同的半导体材料区分升高的源极/漏极内的熔化温度。一般而言,最低熔化温度半导体将是沉积半导体堆叠的顶层,最高熔化温度半导体将是沉积半导体堆叠的底层,以确保通过所述最高熔化温度半导体将最低熔化温度半导体的熔化物包含在升高的源极/漏极IlOA内。
[0026]图1B示出了一个示范性实施例,其中,升高的源极/漏极IlOB包括活化的第一半导体材料140和超活化第二半导体材料150B,其中,第一和第二半导体材料是不同的,以使得第二半导体材料的熔化温度低于第一半导体材料的熔化温度。一般而言,选作第一和第二半导体材料的半导体材料可以是任何具有充分的熔化温度差异以适应将熔化深度限制到鳍状物表面(例如,图1B中的103C)以上的某处的目标的半导体材料。在一个示范性实施例中,活化的第一半导体材料140基本上由硅构成,而超活化的第二半导体材料150B基本上由GaAs构成。在另一个示范性实施例中,获得的第一半导体材料140基本上由InP构成,而超活化的第二半导体材料150B基本上由GaP构成。在另一个示范性实施例中,活化的第一半导体材料140主要包含娃,而超活化的第二半导体材料150B主要包含SiGe。
[0027]熔化深度115B具有取决于用于将激光熔化退火控制到升高的源极/漏极的某一部分的方法的形态。图2A、2B和2C是根据实施例的升高的源极/漏极的截面图例。在所述示范性图例中,所述截面基本上沿图1A和图1B所示的a-a’平面贯穿源极/漏极。在对应于图2A和2B的实施例中,预先无定形化的注入设定匀质沉积的半导体材料内的熔化深度 115B。
[0028]在将共形等离子体230B用于预先无定形化注入的图2A中,将无定形化物种(例如,硅、锗、氙等)共形注入到无定形化深度115A,该深度基本上与升高的源极/漏极区域的外表面共形。如图2A所示,无定形化区域120B形成了具有基本上恒定的厚度(B卩,10%以内)的壳。在示范性实施例中,预先无定形化注入条件使得无定形化深度115A不与半导体鳍状物103接触(即,并非所有的活化半导体材料120A都被无定形化)。值得注意的是,等离子体注入的保形性能够使无定形化的区域120B接触场隔离电介质102,其可以有利地降低接触电阻,其中,接触金属将因而裹覆升高的源极/漏极,并且也与场隔离电介质102接触。如图2A进一步所示的,在紧随脉冲激光退火(hv)之后,无定形化区域120B变为超活化半导体材料125,其中,熔化深度115B遵循无定形化深度115A。
[0029]在利用射束线预先无定形化注入230A的图2B中,非共形的无定形化区域120B形成了具有基本恒定的深度或厚度的帽,其中,注入相对于升高的源极/漏极的外表面对称。或者,在注入条件非对称(例如,具有高入射角)的情况下,无定形化区域120B可以具有变化的深度或厚度。值得注意的是,射束线注入的非保形性限定了离开场隔离电介质102的无定形化区域120B。如图2B进一步所示,在紧随脉冲激光退火(hv)之后,无定形化区域120B再次变为超活化半导体材料125,其具有遵循无定形化深度115A的熔化深度115B。
[0030]在对应于图2C的实施例中,在原沉积(as-d印osited)的半导体层中的不同成分设定了熔化深度115B。对于这样的实施例而言,利用外延生长工艺设定熔化深度115B,其中,采用生长条件定义第一半导体材料140和第二半导体材料150A之间的界面的形态,所述第二半导体材料150A在熔化时将变成超活化第二半导体材料150B。此外,在实施例中,在沉积第二半导体材料150A之前蚀刻第一半导体材料140可以提供对接下来的熔化物的进一步控制。
[0031]图4是示出了根据实施例的制作具有升高的源极和漏极的非平面晶体管的方法400的流程图。方法400开始于接收衬底,例如,硅或SOI衬底,如文中别处所述。在操作410中,在衬底上形成鳍状物。可以在操作410中利用本领域已知的任何常规方法形成所述鳍状物。例如,可以形成两个浅的沟槽隔离(STI)区域,之后使所述STI区域凹陷,以露出设置于其间的鳍状物。在另一个示范性实施例中,对SOI晶片中的硅层的部分进行掩模操作,以形成所述鳍状物。而且在操作410中,可以在鳍状物的沟道区之上形成栅极堆叠(牺牲的或者永久的)(例如,图1A、1B中的栅极堆叠106)。
[0032]在操作415,将半导体材料沉积到所述鳍状物上,从而在所述鳍状物内的沟道区的相对侧形成升高的源极/漏极区域。可以在操作415中利用适于形成升高的源极/漏极的目的的任何已知的半导体材料沉积技术。在一个示范性实施例中,利用选择性化学气相沉积(CVD)或分子束外延工艺在露出的鳍状物表面之上沉积多晶半导体材料。在另一个示范性实施例中,所述CVD或MBE工艺采用与所述鳍状物具有相同结晶度(例如,单晶并且具有相同的结晶取向)的半导体材料在露出的鳍状物表面上形成了晶体半导体材料。
[0033]在操作430,执行激光退火,以仅熔化升高的源极/漏极的所沉积的半导体材料的处于熔化深度以上的部分。可以采用任何已知的适于源极/漏极活化的激光退火工艺。在一个实施例中,采用具有常规波长、能流和脉冲频率的脉冲激光。在操作430之后,在操作450中通过本领域的标准实践完成所述晶体管。
[0034]图5是示出了根据实施例的仅对升高的源极/漏极的一部分激光退火的方法500的流程图。所述方法500开始于运算401和410,如文中别处所述。紧随操作410之后,在一个实施例中,方法500进行至操作415A,其中,在所述鳍状物上沉积单一半导体材料,以形成升高的S/D区域(或者至少在沉积多种半导体材料的情况下,其成分差异不会提供显著的熔化温度差异)。对于这一实施例而言,在操作540中,执行预先无定形化注入,从而使所沉积的半导体材料的部分无定形化直到注入深度(例如,如图2A、2B所示)。根据所述实施例,所述预先无定形化注入可以是射束线离子注入、成角度的注入或者共形等离子体注入中的任何一者。在紧随预先无定形化注入之后,基本上如文中别处所述执行激光熔化操作542,从而仅使在操作415A中沉积的半导体材料的预先无定形化部分熔化。
[0035]在另一实施例中,方法500从操作410进行至操作415B,其中,在所述鳍状物上沉积半导体材料堆叠,以形成升高的源极/漏极。在操作415B的一个实施例中,在所述鳍状物上沉积第一半导体材料,在第一半导体材料之上沉积具有不同成分的第二半导体材料。第一半导体材料的熔化温度高于第二半导体材料的熔化温度(例如,至少高100°C,优选高200°C或更高)。在操作415B之后,在操作543中执行激光退火,从而熔化顶部所沉积的半导体材料,而不熔化下层第一半导体材料。之后,方法500在操作450中结束,如前所述。
[0036]图6A、6B、6C、6D、6E、6F是说明根据实施例的仅对半导体层的在升高的源极/漏极中的部分进行激光退火的方法的流程图,其中,所述的升高的源极/漏极包括具有基本上均匀的熔化温度的单一半导体材料
[0037]图6A示出了第一实施例,其中,方法601开始于操作415A,其在鳍状物上沉积单一半导体材料(例如,硅、锗、SiGe、GaAs, GaP等)以形成升高的源极/漏极。在操作660中,采用本领域的任何常规源极/漏极注入技术执行源极/漏极注入。例如,在NMOS晶体管中,可以在操作660中注入诸如磷或砷的N型掺杂剂。或者,在PMOS晶体管中,可以在操作660中注入诸如硼的P型掺杂剂。在操作665中,执行活化退火,从而将升高的源极/漏极区域内的掺杂剂(例如,在操作660中注入的那些掺杂剂)电性活化。在实施例中,所述活化退火是熔炉热退火、快速热退火、微波退火、闪光退火(flash anneal)或亚熔化激光退火(sub-melt laser anneal)的至少其中之一,在亚熔化激光退火中,常规温度和退火时间不会使得升高的源极/漏极熔化。之后,在操作540中执行预先无定形化注入,其基本如文中别处所述。如文中别处所述,之后,在操作542中执行仅熔化所沉积的半导体材料的预先无定形化的部分的脉冲激光退火。紧随操作542之后,升高的源极/漏极包括设置在活化半导体层之上的超活化半导体材料。
[0038]图6B示出了第二实施例,其中,方法602开始于操作415A,其在鳍状物上沉积单一半导体材料(例如,硅、锗、SiGe、GaAs, GaP等)以形成升高的源极/漏极。在操作660中,采用本领域的任何常规源极/漏极注入技术执行源极/漏极注入。例如,在NMOS晶体管中,可以在操作660中注入诸如磷或砷的N型掺杂剂。或者,在PMOS晶体管中,可以在操作660中注入诸如硼的P型掺杂剂。在操作665中,执行活化退火,从而将升高的源极/漏极区域内的掺杂剂(例如,在操作660中注入的那些掺杂剂)电性活化。之后,在操作540中执行预先无定形化注入,其基本如文中别处所述。接下来,在操作667中执行补充注入。补充诸如或不足注入可以是与源极/漏极注入操作660过程中注入的物种相同或不同的物种。补充注入可以起到提高活化的提高源极/漏极的一部分内的掺杂剂浓度的作用。如文中别处所述的,在紧随补充注入操作667之后,在操作542中执行仅熔化所沉积的半导体材料的预先无定形化的部分的脉冲激光退火。紧随操作542之后,升高的源极/漏极包括设置在活化半导体层之上的超活化半导体材料。
[0039]图6C示出了第三实施例,其中,方法603开始于操作670,其在鳍状物上沉积原位掺杂的单一半导体材料(例如,娃、锗、SiGe、GaAs、GaP等),以形成升高的源极/漏极。可以在操作670中利用本领域已知的任何可在半导体CVD过程中用作掺杂剂来源的CVD原料气。在示范性实施例中,方法603进行至活化退火操作665。执行活化退火,从而使升高的源极/漏极内的原位沉积的掺杂剂电性活化。但是,根据沉积过程,原位沉积的掺杂剂可能已经受到了电性活化,在这种情况下,不采用活化退火操作665。在图6C中通过虚线框示出了活化退火操作665。之后,在操作540中执行预先无定形化注入,其基本如文中别处所述。如文中别处所述,之后,在操作542中执行仅熔化所沉积的半导体材料的预先无定形化的部分的脉冲激光退火。紧随操作542之后,升高的源极/漏极包括设置在活化半导体层之上的超活化半导体材料。
[0040]图6D示出了第四实施例,其中,方法604开始于操作670,其在鳍状物上沉积原位掺杂的单一半导体材料(例如,硅、锗、SiGe、GaAs、GaP等),以形成升高的源极/漏极。尽管经过了原位掺杂,但是方法604还是进行至操作660,在该操作660中执行源极/漏极注入,如文中别处所述。所述源极/漏极注入操作660补充源极/漏极掺杂剂,从而将掺杂剂浓度增强到超出原位掺杂中可能的程度。之后,方法604进行至活化退火操作665,其在所述示范性实施例中是有必要的,从而使在操作660中注入的源极/漏极掺杂剂活化。在紧随活化退火之后,在操作540中执行预先无定形化注入,其基本上如文中别处所述。如文中别处所述,之后,在操作542中执行仅熔化所沉积的半导体材料的预先无定形化的部分的脉冲激光退火。紧随操作542之后,升高的源极/漏极包括设置在活化半导体层之上的超活化半导体材料。[0041]图6E示出了第五实施例,其中,方法605开始于操作670,其在鳍状物上沉积原位掺杂的单一半导体材料(例如,硅、锗、SiGe、GaAs、GaP等),以形成升高的源极/漏极。在所述示范性实施例中,所述方法605进行至任选的活化退火操作665。在紧随活化退火之后,在操作540中执行预先无定形化注入,其基本上如文中别处所述,之后执行补充注入操作667。补充注入可以起到提高活化的提高源极/漏极的一部分内的掺杂剂浓度的作用。如文中别处所述,在紧随补充注入操作667之后,在操作542中执行仅熔化所沉积的半导体材料的预先无定形化的部分的脉冲激光退火。紧随操作542之后,升高的源极/漏极包括设置在活化半导体层之上的超活化半导体材料,并且将补充掺杂局限于熔化区域。
[0042]图6F示出了第六实施例,其中,方法606开始于操作670,其在鳍状物上沉积原位掺杂的单一半导体材料(例如,硅、锗、SiGe、GaAs、GaP等),以形成升高的源极/漏极。尽管经过了原位掺杂,但是方法606还是进行至操作660,在该操作660中执行源极/漏极注入,如文中别处所述。所述源极/漏极注入操作660补充源极/漏极掺杂剂,从而将掺杂剂浓度增强到超出原位掺杂中可能的程度。之后,方法606进行至活化退火操作665,其在所述示范性实施例目的在于使在操作660中注入的源极/漏极掺杂剂活化。在紧随活化退火之后,在操作540中执行预先无定形化注入,其基本上如文中别处所述。在操作667,执行补充注入,以进一步提高掺杂剂浓度和/或注入第二物种,所述第二物种与原位沉积的物种和在操作660中被注入的物种的至少其中之一不同。如文中别处所述,之后,在操作542中执行仅熔化所沉积的半导体材料的预先无定形化的部分的脉冲激光退火。紧随操作542之后,升高的源极/漏极包括设置在活化半导体层之上的超活化半导体材料,其再一次将补充掺杂局限于熔化区域。照此,可以认为方法606是方法604和方法605的结合。
[0043]图7A、7B和7C是示出了根据实施例的对半导体堆叠在升高的源极/漏极中的所有半导体层中的部分半导体层进行激光退火的方法的流程图。
[0044]在图7A中,方法701开始于在操作415B中在鳍状物上沉积半导体材料堆叠,以形成升高的源极/漏极,如文中别处所述。在一个示范性实施例中,首先沉积硅层,随后是GaAs层。在另一个示范性实施例中,首先沉积硅层,随后是SiGe层。在另一个示范性实施例中,首先沉积InP层,随后是GaP层。在所述示范性实施例中,方法701进行至任选的活化退火操作665。执行活化退火,从而使升高的源极/漏极内的任何原位沉积的掺杂剂电性活化。但是,根据操作415B中的沉积过程,原位沉积的掺杂剂可能已经受到了电性活化,在这种情况下,不采用活化退火操作665。在操作543中,执行脉冲激光退火,从而在不使堆叠的所有层熔化的情况下(例如,在不使底部半导体层熔化的情况下)使沉积半导体堆叠的(一个或多个)顶层熔化。在一个示范性实施例中,在使底层的硅层保持不熔化的同时使GaAs层熔化。在另一个示范性实施例中,在使底层的硅层保持不熔化的同时使SiGe层熔化。在另一个示范性实施例中,在使底层的InP层保持不熔化的同时使GaP层熔化。
[0045]在图7B中,方法702开始于在操作415B上在鳍状物上沉积半导体材料堆叠,以形成升高的源极/漏极,如针对方法701所述。方法702进行至操作660,在所述操作中执行源极/漏极注入,如文中别处所述。所述源极/漏极注入操作660补充源极/漏极掺杂剂,从而将掺杂剂浓度增强到超出在操作415B的堆叠沉积过程中可能的程度。之后,方法702进行至活化退火操作665,其在所述示范性实施例中目的在于使在操作660中注入的源极/漏极掺杂剂活化。在操作543中,执行脉冲激光退火,从而在不使堆叠的所有层熔化的情况下(例如,在不使底部半导体层熔化的情况下)使沉积半导体堆叠的(一个或多个)顶层熔化,如针对方法701所述。
[0046]在图7C中,方法703开始于在操作415B上在鳍状物上沉积半导体材料堆叠,以形成升高的源极/漏极,如针对方法701所述。在所述示范性实施例中,方法703进行至任选的活化退火操作665。执行活化退火,从而使升高的源极/漏极内的任何原位沉积的掺杂剂电性活化。但是,根据操作415B中的沉积过程,原位沉积的掺杂剂可能已经受到了电性活化,在这种情况下,不采用活化退火操作665。在操作667中,执行补充注入,从而进一步提高掺杂剂浓度和/或注入第二物种,所述第二物种与原位沉积的物种的至少其中之一不同。在操作543中,执行脉冲激光退火,从而在不使堆叠的所有层熔化的情况下(例如,在不使底部半导体层熔化的情况下)使沉积半导体堆叠的(一个或多个)顶层熔化,如针对方法701所述。
[0047]图8示出了根据本发明的一种实现的计算装置1000。计算装置1000容纳板1002。板1002可以包括若干部件,其包括但不限于处理器1004以及至少一个通信芯片1006。将处理器1004物理和电耦合至板1002。在一些实施方式中,还将至少一个通信芯片1006物理和电耦合至板1002。在其他的实施方式中,通信芯片1006是处理器1004的部分。
[0048]根据其应用,计算装置1000可以包括其他部件,这些部件可以物理和电耦合至板1002,也可以不存在这样的耦合。所述的其他部件包括但不限于易失性存储器(例如,DRAM)、非易失性存储器(例如,ROM)、闪速存储器、图形处理器、数字信号处理器、密码处理器、芯片组、天线、显示器、触摸屏显示器、触摸屏控制器、电池、音频编码译码器、视频编译码器、功率放大器、全球定位系统(GPS)装置、指南针、加速度计、陀螺仪、扬声器、摄像机和大容量存储装置(例如,硬盘驱动器、紧致磁盘(CD)、数字通用盘(DVD)等)。
[0049]通信芯片1006能够实现无线通信,从而完成往返于计算装置1000的数据传送。“无线”一词及其派生词可以用来描述利用调制电磁辐射通过非固态介质进行数据通信的电路、装置、系统、方法、技术、通信信道等。该词并非暗示相关装置不含有任何布线,但是在一些实施例中它们可能不含有。通信芯片1006可以实现若干无线标准或协议中的任何标准或协议,其包括但不限于W1-Fi (IEEE 802.11系列)、WiMAX (IEEE 802.16系列)、IEEE802.20、长期演进(LTE)、Ev-DO、HSPA+、HSDPA+、HSUPA+、EDGE、GSM、GPRS、CDMA、TDMA、DECT、蓝牙、它们的衍生物以及任何其他被称为3G、4G、5G和更高代的无线协议。计算装置1000可以包括多个通信芯片1006。例如,第一通信芯片1006可以专用于较短范围的无线通信,例如,W1-Fi,蓝牙和第二通信芯片1006可以专用于较长范围的无线通信,例如,GPS、EDGE、GPRS、CDMA、WiMAX、LTE、Ev-DO 及其他。
[0050]计算装置1000的处理器1004包括封装在处理器1004内的集成电路裸片。在本发明的一些实施方式中,处理器的集成电路裸片包括一个或多个器件,例如,采用升高的源极/漏极的局部熔化形成的非平面晶体管。“处理器”一词可以指任何对来自寄存器和/或存储器的电子数据进行处理从而将该电子数据变换为其他可以存储在寄存器和/或存储器内的其他电子数据的装置或装置的部分
[0051]通信芯片1006还包括封装在通信裸片1006内的集成电路裸片。根据本发明的另一种设施方式,通信芯片的集成电路裸片包括一个或多个器件,例如,采用升高的源极/漏极的局部熔化形成的非平面晶体管。[0052]在其他的实施方式中,容纳在计算装置1000内的另一部件可以包含集成电路裸片,所述集成电路裸片包括一个或多个器件,例如,采用升高的源极/漏极的局部熔化形成的非平面晶体管。
[0053]在各种实施方式中,计算装置1000可以是膝上型电脑、上网本、笔记本、超级本、智能电话、平板电脑、个人数字助理(PDA)、超级可移动PC、移动电话、台式计算机、服务器、打印机、扫描仪、监视器、机顶盒、娱乐控制单元、数字摄像机、便携式音乐播放器或数字视频记录仪。在其他实施方式中,计算装置1000可以是任何其他处理数据的电子装置。
[0054]上述描述是说明性的而非限制性的。例如,尽管附图中的流程图示出了通过本发明的某些实施例而执行的操作的具体顺序,但是应当理解不一定需要这样的顺序(例如,替代实施例可以按照不同的顺序执行操作,结合某些操作,叠加某些操作等)。此外,对于本领域技术人员而言在阅读并理解了上述说明的情况下很多其他实施例将是显而易见的。尽管已经参考具体的示范性实施例描述了本发明,但是应当认识到本发明不限于所描述的实施例,可以采用处于所附权利要求的精神和范围内的修改和变型来实施本发明。因此,应当参考所附权利要求连同该权利要求所覆盖的等同形式的全部范围来确定本发明的范围。
【权利要求】
1.一种形成非平面晶体管的方法,所述方法包括: 在衬底上形成包括沟道区的半导体鳍状物; 在所述鳍状物的设置于所述沟道区的相对侧的区域上沉积半导体材料,以形成升高的源极/漏极;以及 执行脉冲激光退火,以仅熔化所沉积的半导体材料的在熔化深度以上的部分。
2.根据权利要求1所述的方法,其中,执行所述脉冲激光退火以熔化所沉积的半导体材料的在熔化深度以上的部分还包括: 在执行所述脉冲激光退火之前对所沉积的半导体材料执行预先无定形化注入至所述熔化深度,并且在所述脉冲激光退火期间仅熔化所沉积的半导体材料的经预先无定形化的部分;或者 熔化所沉积的半导体材料的具有第一熔化温度的顶层,而不熔化所沉积的半导体材料的具有第二熔化温度的下层,所述第二熔化温度高于所述第一熔化温度。
3.根据权利要求1所述的方法,还包括: 使被设置在低于所述熔化深度的所沉积的半导体材料中的掺杂剂活化。
4.根据权利要求3所述的方法,其中,所述活化还包括以下方式的至少其中之一:熔炉热退火、快速热退火、微波退火、闪光退火或者亚熔化激光退火。
5.根据权利要求3所述的方法,其中,在执行所述激光退火之前执行所述活化。
6.根据权利要求3所述的方法,还包括:将所述掺杂剂注入到所沉积的半导体材料中。
7.根据权利要求6所述的方法,其中,注入还包括:射线束离子注入、成角度的注入或共形等离子体注入。
8.根据权利要求1所述的方法,还包括:在执行所述脉冲激光退火之前,将补充的掺杂剂注入到在所述熔化深度以上的所述半导体材料中。
9.根据权利要求8所述的方法,其中,在执行以下操作中的至少其中之一之后注入所述补充的掺杂剂:预先无定形化注入或活化退火。
10.根据权利要求1所述的方法,其中,所述沉积还包括:采用所述掺杂剂来对所述半导体材料进行原位掺杂。
11.根据权利要求10所述的方法,还包括:在执行所述脉冲激光退火之前,将补充的掺杂剂注入到经原位掺杂的半导体材料中,其中,在执行以下操作的至少其中之一之前注入所述补充的掺杂剂:预先无定形化注入、活化退火。
12.根据权利要求11所述的方法,还包括:在执行所述脉冲激光退火之前,执行将补充的掺杂剂第二次注入到所述半导体材料的在所述熔化深度以上的顶层中。
13.—种形成非平面晶体管的方法,所述方法包括: 在衬底上形成包括沟道区的非平面半导体鳍状物; 形成升高的源极/漏极,其中,所述形成还包括: 在所述鳍状物的设置于所述沟道区的相对侧的区域上沉积第一半导体层;以及 在所述第一半导体层上沉积第二半导体层;以及 执行对升高的源极/漏极的脉冲激光退火,以熔化所述第二半导体材料层而不熔化所述第一半导体层。
14.根据权利要求13所述的方法,其中,所述第一半导体层包括硅,且所述第二半导体层包括GaAs。
15.根据权利要求13所述的方法,还包括:在执行所述脉冲激光退火之前执行熔炉热退火、快速热退火、微波退火、闪光退火或亚熔化激光退火的至少其中之一,从而使设置在所述第一半导体层中的掺杂剂活化。
16.根据权利要求15所述的方法,还包括:在所述退火之前将补充的掺杂剂注入到所述第一半导体层和所述第二半导体层中,所述方法还包括:在执行所述脉冲激光退火之前而在所述退火之后执行将补充的掺杂剂第二次注入到在所述熔化深度以上的所述第二半导体层中。
17.根据权利要求13所述的方法,还包括:在执行所述脉冲激光退火之前将补充的掺杂剂注入到所述第一半导体层和所述第二半导体层中。
18.一种非平面晶体管,包括: 半导体鳍状物,所述半导体鳍状物包括设置在栅极堆叠之下的沟道区; 以及 升高的半导体源极/漏极,所述升高的半导体源极/漏极耦合至所述沟道区并被设置在所述鳍状物的相对端上,其中,所述栅极堆叠被设置于所述相对端之间,其中,所述升高的半导体源极/漏极包括熔化深度以上的超活化掺杂剂区和所述熔化深度以下的活化掺杂剂区,与活化掺杂 剂区的活化掺杂剂浓度相比,所述超活化掺杂剂区具有较高的活化掺杂剂浓度。
19.根据权利要求18所述的非平面晶体管,其中,所述较高的活化掺杂剂浓度在所述超活化掺杂剂区内是恒定的,而所述活化掺杂剂浓度在活化掺杂剂区内是非恒定的。
20.根据权利要求18所述的非平面晶体管,其中,所述熔化深度不接触所述半导体鳍状物。
【文档编号】H01L29/78GK103999199SQ201180075630
【公开日】2014年8月20日 申请日期:2011年12月19日 优先权日:2011年12月19日
【发明者】J·詹森, T·加尼, M·刘, H·肯内尔, R·詹姆斯 申请人:英特尔公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1