基于无碳Ag-Cu催化剂层的空气电极及其制备方法

文档序号:7060291阅读:284来源:国知局
基于无碳Ag-Cu催化剂层的空气电极及其制备方法
【专利摘要】一种基于无碳Ag-Cu催化剂层的空气电极及其制备方法。所述基于无碳Ag-Cu催化剂层的空气电极是在泡沫镍上沉积Ag-Cu合金得到;所述Ag-Cu合金的微观形貌是树枝晶或者球晶或者片晶;所述的Ag-Cu合金中存在Ag,Cu和Cu2O相,组成元素为零价态的Ag和Cu,并在该Ag-Cu合金表面有氧化铜层。所述Ag-Cu催化剂空气电极的一次锌空电池在100mA/cm2下的放电功率是79.9~85.8mW cm–2,二次锌空电池的充放电往复效率大于51.8%。本发明中,所述催化剂层具有非常好的氧气还原电催化性质,克服了现有技术中存在的碳腐蚀和电催化活性低的问题。
【专利说明】基于无碳Ag-Cu催化剂层的空气电极及其制备方法

【技术领域】
[0001]本发明属于碱性金属-空气电池和燃料电池领域,具体涉及到这些电池中空气电极上的催化剂层及其制备方法。

【背景技术】
[0002]典型的金属-空气电池,例如,锌空燃料电池,一般包含碱性电解液,可以替换锌供给的阳极和空气电极,锌空燃料电池要求经常地更换碱性电解液和锌原料,排除掉氧化锌和锌酸盐等反应产物.
[0003]常见的空气电极一般由催化层,泡沫镍或镍网集流体和微孔特氟龙防水透气层组成.催化层一般由乙炔黑和催化剂在乙醇中混合,加入特氟龙后,经过分散和抽滤,制成催化层膏体并碾压至一定厚度而得到.将催化层与防水透气层膏体分别贴在泡沫镍两侦牝在一定的压力下压制成型,烘干即可得到空气电极。
[0004]美国专利US8685575B2公开了一种燃料电池空气电极的催化剂层成分,活性成分为Ag和CoTMPP,含碳50-80 %,含特氟龙2_20 %,在循环碱性电解液和锌原料的操作条件下,单电池可以在280mA/cm2的条件下,达到I伏电压。
[0005]中国专利200620004676.9报道了一种热合工艺制作锌空金属燃料电池氧电极的方法,集流极为泡沫镍,催化剂为银,铜,锰等的硝酸盐分解而成,含碳为50-94%,含特氟龙10-30%,滚压成0.1-0.2毫米的膜。
[0006]现有的空气电极中,由于催化剂层中含有碳,含碳的催化剂层在二次电池进行充电的时候,由于较高的充电电位,催化剂层中的碳会被腐蚀,形成碳腐蚀产物。催化剂层中的碳腐蚀会引起催化剂层的结构与性能的变化,具体表现在,二次电池在经过几次充放电循环之后,催化剂层对氧气电催化还原作用明显减弱。因此含碳的催化剂层的耐久性和催化活性无法满足商业二次电池的要求。
[0007]综上所述,现有的氧还原空气电极不能用于二次电池的工业化生产,需要发明一种新的基于无碳催化剂层的空气电极来解决目前空气电极中存在的碳腐蚀问题,并进一步促进金属空气电池技术的绿色低成本发展,缓解当今世界面临的能源危机问题
[0008]中国专利CN201110051634报道了一种燃料电池用铜银纳米合金阴极及其制备方法,这种电化学合成方法在铜箔基体上制备了铜银纳米合金,在制备过程中以高分子聚合物聚乙二醇作为表面活性剂,采用恒压电沉积的方法合成。管此专利与本申请专利合成物质一致,但该方法存在着明显的缺点:首先,电解质中的聚乙二醇高分子聚合物回包覆在铜银表面,进而影响催化剂层对氧还原作用的性能。其次,铜箔的比表面积小,无法提供更多的电化学催化活性点,从而无法有效提高催化剂层的电催化活性。


【发明内容】

[0009]为解决现有技术中存在的碳腐蚀和电催化活性低等问题,本发明提出了一种基于无碳Ag-Cu催化剂层的空气电极及其制备方法。
[0010]本发明所述基于无碳Ag-Cu催化剂层的空气电极是在泡沫镍上沉积Ag-Cu合金得到;所述Ag-Cu合金的微观形貌是树枝晶或者球晶或者片晶;所述的Ag-Cu合金中存在Ag, Cu和Cu2O相,组成元素为零价态的Ag和Cu,并在该Ag-Cu合金表面有氧化铜层。所述Ag-Cu催化剂空气电极的一次锌空电池在100mA/cm2下的放电功率是79.9?85.8mWcnT2,二次锌空电池的充放电往复效率大于51.8%。
[0011]当Ag-Cu合金的微观形貌是树枝晶时,该枝晶在泡沫镍基体上均匀分布,生长形态完整,并且一次枝晶长约7?30 μ m,二次枝晶长度为0.5?9 μ m,所述二次枝晶的生长方向与一次枝晶呈75?90 °;当Ag-Cu合金的微观形貌是球晶时,该球晶的直径为0.1?I μ m ;当Ag-Cu合金的微观形貌是片晶时,该片晶的厚度是0.5?3 μ m。
[0012]一种制备所述基于无碳Ag-Cu催化剂层的空气电极的方法,其具体过程是:
[0013]步骤I,泡沫镍的处理。
[0014]步骤2,配置前驱溶液:所述前驱溶液包括硫酸铜溶液和硝酸银溶液。所述的硫酸铜溶液为I?5mol.L—1的硫酸铜溶液,由分析纯级别的五水合硫酸铜和去离子水组成;所述的硝酸银溶液为0.005?0.015mol -Γ1的硝酸银溶液,由分析纯级别的硝酸银和去离子水组成。
[0015]步骤3,制备泡沫镍上的铜纳米粒子。将处理好的泡沫镍垂直放入硫酸铜溶液中浸泡I?5h,取出后用去离子水轻轻冲洗以去除泡沫镍上的硫酸铜溶液,得到表面附着有铜纳米粒子的泡沫镍。
[0016]步骤4,制备Ag-Cu合金催化剂层。所述Ag-Cu合金催化剂层是通过在泡沫镍上制备Ag-Cu纳米粒子的枝晶得到。具体过程是,将表面附着有铜纳米粒子的泡沫镍浸入0.005?0.015mol.Γ1的硝酸银溶液中,置换60?180s。去离子水清洗以去除泡沫镍上的硝酸银溶液。在空气中晾干,得到Ag-Cu合金催化剂层。
[0017]步骤5,空气扩散层的制备。乙炔黑与PTFE按1:2?3的比例在无水乙醇中,常规方法混合均匀,得到粘稠状的乙炔黑与PTFE的混合物。将所述乙炔黑与PTFE的混合物置于80?90°C的恒温水浴锅中,保温至乙炔黑与P TFE混合物中的无水乙醇全部蒸发完毕,并形成膏体状乙炔黑与PTFE混合物。将到的膏体状乙炔黑与PTFE混合物取出,用滤纸吸掉表面水分,用棍压机压制成厚度为0.5?0.8mm的膜状空气扩散层。
[0018]步骤6,空气电极的制备。将上述步骤中得到的Ag-Cu合金催化剂层放置在空气扩散层表面,用棍压机将催化剂层与空气扩散层压制成厚度为0.4?0.6mm的膜状空气电极,用压片机将得到的空气电极在2?3MPa的压力下压制5?lOmin。将空气电极放入真空干燥箱中,50°C的温度下真空干燥30min,随炉冷却,即可得到基于无碳Ag-Cu枝晶催化层的空气电极。
[0019]本发明中,所述催化剂层具有非常好的氧气还原电催化性质,附图2表示了催化剂层在不同气氛中的线性伏安分析,从图中可以看出Ag-Cu枝晶对氧气有非常明显的还原电催化作用。Ag-Cu枝晶对氧还原的起始电位为-0.12V(VS SCE)左右,还原电流密度为3.27mA/cm2。图3表示了氧还原反应的旋转圆盘电极极化动力学曲线测试结果,通过分析测试结果可知,Ag-Cu枝晶对氧气的催化还原作用是通过4电子路径进行的。氧还原反应中转移电子数越多,催化剂对氧还原催化效率越高,电催化性质越好。因此从图3中我们可知Ag-Cu枝晶对氧气的电催化还原性质优于通过2电子路径转移的催化剂。图4表示了Ag-Cu合金催化剂在200次循环伏安前后,其对氧还原电催化作用的线性伏安曲线,循环伏安的电位区间是-0.8V?IV(VS SCE)。从极化曲线中可以看出Ag-Cu合金催化剂在200次循环伏安后,对氧气的还原作用仅有3.7%的衰减,表明Ag-Cu合金催化剂具有非常稳定的氧还原电催化性质。图5表示了基于Ag-Cu合金催化剂层的空气电极在单锌空电池中的放电性质,组装出的锌空电池的开路电压达到1.48V,功率密度最高可达为85.8mW/cm2。图6基于Ag-Cu枝晶的空气电极在单锌空电池中的充放循环曲线,充放电电流密度为20mA/cm2,循环次数为33次,每个循环周期为30分钟。通过分析可知,锌空电池的充放电往复效率为51.8%?53.4%。
[0020]Ag-Cu合金催化剂层对氧气有电催化还原作用的机理是:金属银单质对氧气具有良好的电催化活性,但是金属银具有相对较低的d轨道中心饱和度,可以使氧气及时解离,但是由于较低的d轨道中心饱和度无法使银表面吸附较多的氧气,且氧气在银表面的停留时间比较短,无法使氧气有足够的反应时间,造成银电催化还原氧气的效率较低。铜的d轨道中心饱和度较高,高的d轨道中心饱和度铜可以很容易的让金属铜的对氧气进行吸附,但是过高的吸附力使吸附在铜表面的氧气与铜形成化合物,以至于氧气无法解离,因此,通过将d轨道中心饱和度较低的银与d轨道中心饱和度较高的铜进行混合,形成枝晶物质,可以利用不同物质的d轨道中心饱和度,对氧气进行有效的吸附于脱附,从而提高了对氧气的电催化还原性质。

【专利附图】

【附图说明】
[0021]图1空气电极制备流程图。
[0022]图2Ag_Cu枝晶催化剂层在不同气氛中的线性伏安扫描曲线,图中曲线I是Ag-Cu枝晶催化剂层在氮气中的线性伏安曲线;曲线2是Ag-Cu枝晶催化剂层在空气中的线性伏安曲线;曲线3是Ag-Cu枝晶催化剂层在氧气中的线性伏安曲线。
[0023]图3Ag_Cu枝晶催化剂层在旋转圆盘电极上的极化动力学曲线,图中曲线I代表400rpm ;曲线2代表900rpm ;曲线3代表1600rpm ;曲线4代表2500rpm ;曲线5代表3600rpmo
[0024]图4Ag_Cu枝晶催化剂层200次循环伏安前后,在氧气中的线性伏安扫描曲线,曲线I代表200次循环伏安前的线性伏安曲线;曲线2代表200次循环伏安后的线性伏安曲线。
[0025]图5基于Ag-Cu枝晶的空气电极在单锌空电池中的放电性质曲线,曲线I表示在不同电流密度下的放电电压;曲线2表示单锌空电池的功率密度。
[0026]图6基于Ag-Cu枝晶的空气电极在单锌空电池中的充放循环曲线,充放电电流密度为20mA/cm2,循环次数为33次,每个循环周期为30分钟。

【具体实施方式】
[0027]实施例1
[0028]本实施例是一种基于无碳Ag-Cu催化剂层的空气电极。所述的基于无碳Ag-Cu催化剂层的空气电极其特征是:泡沫镍上沉积一层Ag-Cu合金,Ag-Cu合金的微观形貌是枝晶状。枝晶在泡沫镍基体上均匀分布,生长形态完整,一次枝晶长约10-20 μ m,二次枝晶长度为2-8 μ m, 二次枝晶的生长方向与一次晶呈90度。Ag-Cu枝晶中存在Ag、Cu和Cu2O相,组成元素为零价态的Ag和Cu,并在表面有氧化铜层。Ag-Cu催化剂空气电极的一次锌空电池在100mA/cm2下的放电功率是85.8mWcm_2,二次锌空电池的充放电往复效率大于51.8%。
[0029]本实施例的制备过程如下:
[0030]步骤1,泡沫镍的处理。将泡沫镍剪成条,依次浸入丙酮和质量分数为5%的稀硫酸中,并分别浸泡3h和15min,用去离子水冲洗干净。
[0031]步骤2,前驱溶液的配置:置换的前驱溶液为硫酸铜溶液和硝酸银溶液。其中:
[0032]硫酸铜溶液为0.3mol -Γ1的硫酸铜溶液,由分析纯级别的五水合硫酸铜和去离子水组成,配制时,在烧杯中加入50mL去离子水,将称量好的五水合硫酸铜加入去离子水中,用磁力转子在中等转速下搅拌,得到硫酸铜溶液。
[0033]硝酸银溶液为0.0lmol.Γ1的硝酸银溶液,由分析纯级别的硝酸银和去离子水组成。配制时,在烧杯中用量筒取50ml去离子水,将称好的硝酸银倒入去离子水中,超声分散15min,超声波功率为100瓦,得到硝酸银溶液。
[0034]步骤3,制备泡沫镍上的铜纳米粒子。将处理好的泡沫镍垂直放入硫酸铜溶液中浸泡3h,取出后用去离子水轻轻冲洗以去除泡沫镍上的硫酸铜溶液,得到表面附着有铜纳米粒子的泡沫镍。
[0035]步骤4,制备Ag-Cu合金催化剂层。所述Ag-Cu合金催化剂层是通过在泡沫镍上制备Ag-Cu纳米粒子的枝晶得到。具体过程是,将表面附着有铜纳米粒子的泡沫镍浸入0.0lmol.L-1的硝酸银溶液中,置换120秒。去离子水清洗以去除泡沫镍上的硝酸银溶液。在空气中晾干,得到Ag-Cu合金催化剂层。
[0036]步骤5,空气扩散层的制备。乙炔黑与PTFE按1:2.5的比例在无水乙醇中,超声分散15min,磁力转子搅拌30min,得到粘稠状的乙炔黑与PTFE的混合物。将所述乙炔黑与PTFE的混合物置于80°C的恒温水浴锅中,保温至乙炔黑与PTFE混合物中的无水乙醇全部蒸发完毕,并形成膏体状乙炔黑与PTFE混合物。将到的膏体状乙炔黑与PTFE混合物取出,用滤纸吸掉表面水分,用辊压机压制成厚度为0.5mm的膜状空气扩散层。
[0037]步骤6,空气电极的制备。将上述步骤中得到的Ag-Cu合金催化剂层放置在空气扩散层表面,用辊压机将催化剂层与空气扩散层压制成厚度为0.5mm的膜状空气电极,用压片机将得到的空气电极在2MPa的压力下压制5min。将空气电极放入真空干燥箱中,50°C的温度下真空干燥30min,随炉冷却,即可得到基于无碳Ag-Cu枝晶催化层的空气电极。
[0038]实施例2
[0039]本实施例是一种基于无碳Ag-Cu催化剂层的空气电极。所述的基于无碳Ag-Cu催化剂层的空气电极其特征是:泡沫镍上沉积一层Ag-Cu合金,Ag-Cu合金的微观形貌是枝晶和球状颗粒。枝晶在泡沫镍基体上均匀分布,生长形态完整,一次枝晶长约15?23μπι,球状颗粒随机分布在一次枝晶基体上,球状颗粒的直径为0.1?I μ m。Ag-Cu合金中存在Ag,Cu和Cu2O相,组成元素为零价态的Ag和Cu,并在表面有氧化铜层。Ag-Cu催化剂空气电极的一次锌空电池在100mA/cm2下的放电功率是84.1mWcnT2, 二次锌空电池的充放电往复效率大于51.8%。
[0040]本实施例的制备过程如下:
[0041]步骤1,泡沫镍的处理。将泡沫镍剪成条,依次浸入丙酮和质量分数为5%的稀硫酸中,并分别浸泡3h和15min,用去离子水冲洗干净。
[0042]步骤2,前驱溶液的配置:置换的前驱溶液为硫酸铜溶液和硝酸银溶液。其中:
[0043]硫酸铜溶液为0.3mol -Γ1的硫酸铜溶液,由分析纯级别的五水合硫酸铜和去离子水组成,配制时,在烧杯中加入50mL去离子水,将称量好的五水合硫酸铜加入去离子水中,用磁力转子在中等转速下搅拌,得到硫酸铜溶液。
[0044]硝酸银溶液为0.005mol -Γ1的硝酸银溶液,由分析纯级别的硝酸银和去离子水组成。配制时,在烧杯中用量筒取50ml去离子水,将称好的硝酸银倒入去离子水中,超声分散15min,超声波功率为100瓦,得到硝酸银溶液。
[0045]步骤3,制备泡沫镍上的铜纳米粒子。将处理好的泡沫镍垂直放入硫酸铜溶液中浸泡3h,取出后用去离子水轻轻冲洗以去除泡沫镍上的硫酸铜溶液,得到表面附着有铜纳米粒子的泡沫镍。
[0046]步骤4,制备Ag-Cu合金催化剂层。所述Ag-Cu合金催化剂层是通过在泡沫镍上制备Ag-Cu纳米粒子的枝晶得到。具体过程是,将表面附着有铜纳米粒子的泡沫镍浸入0.0lmol.L-1的硝酸银溶液中,置换120秒。去离子水清洗以去除泡沫镍上的硝酸银溶液。在空气中晾干,得到Ag-Cu合金催化剂层。
[0047]步骤5,空气扩散层的制备。乙炔黑与PTFE按1:3的比例在无水乙醇中,超声分散15min,磁力转子搅拌30min,得到粘稠状的乙炔黑与PTFE的混合物。将所述乙炔黑与PTFE的混合物置于90°C的恒温水浴锅中,保温至乙炔黑与PTFE混合物中的无水乙醇全部蒸发完毕,并形成膏体状乙炔黑与PTFE混合物。将到的膏体状乙炔黑与PTFE混合物取出,用滤纸吸掉表面水分,用辊压机压制成厚度为0.8mm的膜状空气扩散层。
[0048]步骤6,空气电极的制备。将上述步骤中得到的Ag-Cu合金催化剂层放置在空气扩散层表面,用辊压机将催化剂层与空气扩散层压制成厚度为0.4mm的膜状空气电极,用压片机将得到的空气电极在3MPa的压力下压制lOmin。将空气电极放入真空干燥箱中,50°C的温度下真空干燥30min,随炉冷却,即可得到基于无碳Ag-Cu枝晶催化层的空气电极。
[0049]实施例3
[0050]本实施例是一种基于无碳Ag-Cu催化剂层的空气电极。所述的基于无碳Ag-Cu催化剂层的空气电极其特征是:泡沫镍上沉积一层Ag-Cu合金,Ag-Cu合金的微观形貌是枝晶和薄片状。枝晶在泡沫镍基体上随机分布,一次枝晶长约10-15 μ m,薄片状物质随机分布在一次枝晶周围,大小不一,厚度为0.5?3μπι。Ag-Cu合金中存在Ag,Cu和Cu2O相,组成元素为零价态的Ag和Cu,并在表面有氧化铜层。Ag-Cu催化剂空气电极的一次锌空电池在100mA/cm2下的放电功率是83.2mWcm_2,二次锌空电池的充放电往复效率大于51.8%。
[0051]本实施例的制备过程如下:
[0052]步骤1,泡沫镍的处理。将泡沫镍剪成条,依次浸入丙酮和质量分数为5%的稀硫酸中,并分别浸泡3h和15min,用去离子水冲洗干净。
[0053]步骤2,前驱溶液的配置:置换的前驱溶液为硫酸铜溶液和硝酸银溶液。其中:
[0054]硫酸铜溶液为0.3mol *L_1的硫酸铜溶液,由分析纯级别的五水合硫酸铜和去离子水组成,配制时,在烧杯中加入50mL去离子水,将称量好的五水合硫酸铜加入去离子水中,用磁力转子在中等转速下搅拌,得到硫酸铜溶液。
[0055]硝酸银溶液为0.015mol -Γ1的硝酸银溶液,由分析纯级别的硝酸银和去离子水组成。配制时,在烧杯中用量筒取50ml去离子水,将称好的硝酸银倒入去离子水中,超声分散15min,超声波功率为100瓦,得到硝酸银溶液。
[0056]步骤3,制备泡沫镍上的铜纳米粒子。将处理好的泡沫镍垂直放入硫酸铜溶液中浸泡3h,取出后用去离子水轻轻冲洗以去除泡沫镍上的硫酸铜溶液,得到表面附着有铜纳米粒子的泡沫镍。
[0057]步骤4,制备Ag-Cu合金催化剂层。所述Ag-Cu合金催化剂层是通过在泡沫镍上制备Ag-Cu纳米粒子的枝晶得到。具体过程是,将表面附着有铜纳米粒子的泡沫镍浸入0.0lmol.L-1的硝酸银溶液中,置换120秒。去离子水清洗以去除泡沫镍上的硝酸银溶液。在空气中晾干,得到Ag-Cu合金催化剂层。
[0058]步骤5,空气扩散层的制备。乙炔黑与PTFE按1:2的比例在无水乙醇中,超声分散15min,磁力转子搅拌30min,得到粘稠状的乙炔黑与PTFE的混合物。将所述乙炔黑与PTFE的混合物置于80°C的恒温水浴锅中,保温至乙炔黑与PTFE混合物中的无水乙醇全部蒸发完毕,并形成膏体状乙炔黑与PTFE混合物。将到的膏体状乙炔黑与PTFE混合物取出,用滤纸吸掉表面水分,用辊压机压制成厚度为0.6mm的膜状空气扩散层。
[0059]步骤6,空气电极的制备。将上述步骤中得到的Ag-Cu合金催化剂层放置在空气扩散层表面,用辊压机将催化剂层与空气扩散层压制成厚度为0.5mm的膜状空气电极,用压片机将得到的空气电极在2MPa的压力下压制5min。将空气电极放入真空干燥箱中,50°C的温度下真空干燥30min,随炉冷却,即可得到基于无碳Ag-Cu枝晶催化层的空气电极。
[0060]实施例4
[0061]本实施例是一种基于无碳Ag-Cu催化剂层的空气电极。所述的基于无碳Ag-Cu催化剂层的空气电极其特征是:泡沫镍上沉积一层Ag-Cu合金,Ag-Cu合金的微观形貌是枝晶状。枝晶在泡沫镍基体上均匀分布,生长形态完整,一次枝晶长约7?18 μ m,二次枝晶长度为0.5?4μ m,二次枝晶的生长方向与一次晶呈75?80度。Ag-Cu枝晶中存在Ag,Cu和Cu2O相,组成元素为零价态的Ag和Cu,并在表面有氧化铜层。Ag-Cu催化剂空气电极的一次锌空电池在100mA/cm2下的放电功率是84.6mWcnT2,二次锌空电池的充放电往复效率大于 51.8%。
[0062]本实施例的制备过程如下:
[0063]步骤1,泡沫镍的处理。将泡沫镍剪成条,依次浸入丙酮和质量分数为5%的稀硫酸中,并分别浸泡3h和15min,用去离子水冲洗干净。
[0064]步骤2,前驱溶液的配置:置换的前驱溶液为硫酸铜溶液和硝酸银溶液。其中:
[0065]硫酸铜溶液为Imol -Γ1的硫酸铜溶液,由分析纯级别的五水合硫酸铜和去离子水组成,配制时,在烧杯中加入50mL去离子水,将称量好的五水合硫酸铜加入去离子水中,用磁力转子在中等转速下搅拌,得到硫酸铜溶液。
[0066]硝酸银溶液为0.0lmol.Γ1的硝酸银溶液,由分析纯级别的硝酸银和去离子水组成。配制时,在烧杯中用量筒取50ml去离子水,将称好的硝酸银倒入去离子水中,超声分散15min,超声波功率为100瓦,得到硝酸银溶液。
[0067]步骤3,制备泡沫镍上的铜纳米粒子。将处理好的泡沫镍垂直放入硫酸铜溶液中浸泡3h,取出后用去离子水轻轻冲洗以去除泡沫镍上的硫酸铜溶液,得到表面附着有铜纳米粒子的泡沫镍。
[0068]步骤4,制备Ag-Cu合金催化剂层。所述Ag-Cu合金催化剂层是通过在泡沫镍上制备Ag-Cu纳米粒子的枝晶得到。具体过程是,将表面附着有铜纳米粒子的泡沫镍浸入0.0lmol.L-1的硝酸银溶液中,置换120秒。去离子水清洗以去除泡沫镍上的硝酸银溶液。在空气中晾干,得到Ag-Cu合金催化剂层。
[0069]步骤5,空气扩散层的制备。乙炔黑与PTFE按1:2.5的比例在无水乙醇中,超声分散15min,磁力转子搅拌30min,得到粘稠状的乙炔黑与PTFE的混合物。将所述乙炔黑与PTFE的混合物置于80°C的恒温水浴锅中,保温至乙炔黑与PTFE混合物中的无水乙醇全部蒸发完毕,并形成膏体状乙炔黑与PTFE混合物。将到的膏体状乙炔黑与PTFE混合物取出,用滤纸吸掉表面水分,用辊压机压制成厚度为0.5mm的膜状空气扩散层。
[0070]步骤6,空气电极的制备。将上述步骤中得到的Ag-Cu合金催化剂层放置在空气扩散层表面,用辊压机将催化剂层与空气扩散层压制成厚度为0.6mm的膜状空气电极,用压片机将得到的空气电极在3MPa的压力下压制5min。将空气电极放入真空干燥箱中,50°C的温度下真空干燥30min,随炉冷却,即可得到基于无碳Ag-Cu枝晶催化层的空气电极。
[0071]实施例5
[0072]本实施例是一种基于无碳Ag-Cu催化剂层的空气电极。所述的基于无碳Ag-Cu催化剂层的空气电极其特征是:泡沫镍上沉积一层Ag-Cu合金,Ag-Cu合金的微观形貌是枝晶状。枝晶在泡沫镍基体上均匀分布,生长形态完整,一次枝晶长约13?30 μ m, 二次枝晶长度为I?6μπι,二次枝晶的生长方向与一次晶呈80?90度。Ag-Cu枝晶中存在Ag,Cu和Cu2O相,组成元素为零价态的Ag和Cu,并在表面有氧化铜层。催化剂空气电极的一次锌空电池在100mA/cm2下的放电功率是80mWcm_2,二次锌空电池的充放电往复效率大于51.8%。
[0073]本实施例的制备过程如下:
[0074]步骤1,泡沫镍的处理。将泡沫镍剪成条,依次浸入丙酮和质量分数为5%的稀硫酸中,并分别浸泡3h和15min,用去离子水冲洗干净。
[0075]步骤2,前驱溶液的配置:置换的前驱溶液为硫酸铜溶液和硝酸银溶液。其中:
[0076]硫酸铜溶液为5mol *L_1的硫酸铜溶液,由分析纯级别的五水合硫酸铜和去离子水组成,配制时,在烧杯中加入50mL去离子水,将称量好的五水合硫酸铜加入去离子水中,用磁力转子在中等转速下搅拌,得到硫酸铜溶液。
[0077]硝酸银溶液为0.0lmol.L—1的硝酸银溶液,由分析纯级别的硝酸银和去离子水组成。配制时,在烧杯中用量筒取50ml去离子水,将称好的硝酸银倒入去离子水中,超声分散15min,超声波功率为100瓦,得到硝酸银溶液。
[0078]步骤3,制备泡沫镍上的铜纳米粒子。将处理好的泡沫镍垂直放入硫酸铜溶液中浸泡3h,取出后用去离子水轻轻冲洗以去除泡沫镍上的硫酸铜溶液,得到表面附着有铜纳米粒子的泡沫镍。
[0079]步骤4,制备Ag-Cu合金催化剂层。所述Ag-Cu合金催化剂层是通过在泡沫镍上制备Ag-Cu纳米粒子的枝晶得到。具体过程是,将表面附着有铜纳米粒子的泡沫镍浸入
0.0lmol.L-1的硝酸银溶液中,置换120秒。去离子水清洗以去除泡沫镍上的硝酸银溶液。在空气中晾干,得到Ag-Cu合金催化剂层。
[0080]步骤5,空气扩散层的制备。乙炔黑与PTFE按1:2的比例在无水乙醇中,超声分散15min,磁力转子搅拌30min,得到粘稠状的乙炔黑与PTFE的混合物。将所述乙炔黑与PTFE的混合物置于80°C的恒温水浴锅中,保温至乙炔黑与PTFE混合物中的无水乙醇全部蒸发完毕,并形成膏体状乙炔黑与PTFE混合物。将到的膏体状乙炔黑与PTFE混合物取出,用滤纸吸掉表面水分,用辊压机压制成厚度为0.5mm的膜状空气扩散层。
[0081]步骤6,空气电极的制备。将上述步骤中得到的Ag-Cu合金催化剂层放置在空气扩散层表面,用辊压机将催化剂层与空气扩散层压制成厚度为0.5mm的膜状空气电极,用压片机将得到的空气电极在2MPa的压力下压制lOmin。将空气电极放入真空干燥箱中,50°C的温度下真空干燥30min,随炉冷却,即可得到基于无碳Ag-Cu枝晶催化层的空气电极。
[0082]实施例6
[0083]本实施例是一种基于无碳Ag-Cu催化剂层的空气电极。所述的基于无碳Ag-Cu催化剂层的空气电极其特征是:泡沫镍上沉积一层Ag-Cu合金,Ag-Cu合金的微观形貌是枝晶状。枝晶在泡沫镍基体上均匀分布,生长形态完整,一次枝晶长约10-20微米,二次枝晶长度为2-8 μ m,二次枝晶的生长方向与一次晶呈90度。Ag-Cu枝晶中存在Ag,Cu和Cu2O相,组成元素为零价态的Ag和Cu,并在表面有氧化铜层。催化剂空气电极的一次锌空电池在100mA/cm2下的放电功率是82.5mWcm_2,二次锌空电池的充放电往复效率大于51.8%。
[0084]本实施例的制备过程如下:
[0085]步骤1,泡沫镍的处理。将泡沫镍剪成条,依次浸入丙酮和质量分数为5%的稀硫酸中,并分别浸泡3h和15min,用去离子水冲洗干净。
[0086]步骤2,前驱溶液的配置:置换的前驱溶液为硫酸铜溶液和硝酸银溶液。其中:
[0087]硫酸铜溶液为0.3mol -Γ1的硫酸铜溶液,由分析纯级别的五水合硫酸铜和去离子水组成,配制时,在烧杯中加入50mL去离子水,将称量好的五水合硫酸铜加入去离子水中,用磁力转子在中等转速下搅拌,得到硫酸铜溶液。
[0088]硝酸银溶液为0.0lmol.L—1的硝酸银溶液,由分析纯级别的硝酸银和去离子水组成。配制时,在烧杯中用量筒取50ml去离子水,将称好的硝酸银倒入去离子水中,超声分散15min,超声波功率为100瓦,得到硝酸银溶液。
[0089]步骤3,制备泡沫镍上的铜纳米粒子。将处理好的泡沫镍垂直放入硫酸铜溶液中浸泡lh,取出后用去离子水轻轻冲洗以去除泡沫镍上的硫酸铜溶液,得到表面附着有铜纳米粒子的泡沫镍。
[0090]步骤4,制备Ag-Cu合金催化剂层。所述Ag-Cu合金催化剂层是通过在泡沫镍上制备Ag-Cu纳米粒子的枝晶得到。具体过程是,将表面附着有铜纳米粒子的泡沫镍浸入
0.0lmol.L-1的硝酸银溶液中,置换120秒。去离子水清洗以去除泡沫镍上的硝酸银溶液。在空气中晾干,得到Ag-Cu合金催化剂层。
[0091]步骤5,空气扩散层的制备。乙炔黑与PTFE按1:2.5的比例在无水乙醇中,超声分散15min,磁力转子搅拌30min,得到粘稠状的乙炔黑与PTFE的混合物。将所述乙炔黑与PTFE的混合物置于80°C的恒温水浴锅中,保温至乙炔黑与PTFE混合物中的无水乙醇全部蒸发完毕,并形成膏体状乙炔黑与PTFE混合物。将到的膏体状乙炔黑与PTFE混合物取出,用滤纸吸掉表面水分,用辊压机压制成厚度为0.5mm的膜状空气扩散层。
[0092]步骤6,空气电极的制备。将上述步骤中得到的Ag-Cu合金催化剂层放置在空气扩散层表面,用辊压机将催化剂层与空气扩散层压制成厚度为0.5mm的膜状空气电极,用压片机将得到的空气电极在3MPa的压力下压制9min。将空气电极放入真空干燥箱中,50°C的温度下真空干燥30min,随炉冷却,即可得到基于无碳Ag-Cu枝晶催化层的空气电极。
[0093]实施例7
[0094]本实施例是一种基于无碳Ag-Cu催化剂层的空气电极。所述的基于无碳Ag-Cu催化剂层的空气电极其特征是:泡沫镍上沉积一层Ag-Cu合金,Ag-Cu合金的微观形貌是枝晶状。枝晶在泡沫镍基体上均匀分布,生长形态完整,一次枝晶长约15?20 μ m, 二次枝晶长度为I?9 μ m,二次枝晶的生长方向与一次晶呈80度。Ag-Cu枝晶中存在Ag,Cu和Cu2O相,组成元素为零价态的Ag和Cu,并在表面有氧化铜层。催化剂空气电极的一次锌空电池在100mA/cm2下的放电功率是79.9mWcm_2,二次锌空电池的充放电往复效率大于51.8%。
[0095]本实施例的制备过程如下:
[0096]步骤1,泡沫镍的处理。将泡沫镍剪成条,依次浸入丙酮和质量分数为5%的稀硫酸中,并分别浸泡3h和15min,用去离子水冲洗干净。
[0097]步骤2,前驱溶液的配置:置换的前驱溶液为硫酸铜溶液和硝酸银溶液。其中:
[0098]硫酸铜溶液为0.3mol *L_1的硫酸铜溶液,由分析纯级别的五水合硫酸铜和去离子水组成,配制时,在烧杯中加入50mL去离子水,将称量好的五水合硫酸铜加入去离子水中,用磁力转子在中等转速下搅拌,得到硫酸铜溶液。
[0099]硝酸银溶液为0.0lmol.Γ1的硝酸银溶液,由分析纯级别的硝酸银和去离子水组成。配制时,在烧杯中用量筒取50ml去离子水,将称好的硝酸银倒入去离子水中,超声分散15min,超声波功率为100瓦,得到硝酸银溶液。
[0100]步骤3,制备泡沫镍上的铜纳米粒子。将处理好的泡沫镍垂直放入硫酸铜溶液中浸泡5h,取出后用去离子水轻轻冲洗以去除泡沫镍上的硫酸铜溶液,得到表面附着有铜纳米粒子的泡沫镍。
[0101]步骤4,制备Ag-Cu合金催化剂层。所述Ag-Cu合金催化剂层是通过在泡沫镍上制备Ag-Cu纳米粒子的枝晶得到。具体过程是,将表面附着有铜纳米粒子的泡沫镍浸入
0.0lmol.L-1的硝酸银溶液中,置换120秒。去离子水清洗以去除泡沫镍上的硝酸银溶液。在空气中晾干,得到Ag-Cu合金催化剂层。
[0102]步骤5,空气扩散层的制备。乙炔黑与PTFE按1:2.5的比例在无水乙醇中,超声分散15min,磁力转子搅拌30min,得到粘稠状的乙炔黑与PTFE的混合物。将所述乙炔黑与PTFE的混合物置于80°C的恒温水浴锅中,保温至乙炔黑与PTFE混合物中的无水乙醇全部蒸发完毕,并形成膏体状乙炔黑与PTFE混合物。将到的膏体状乙炔黑与PTFE混合物取出,用滤纸吸掉表面水分,用辊压机压制成厚度为0.7mm的膜状空气扩散层。
[0103]步骤6,空气电极的制备。将上述步骤中得到的Ag-Cu合金催化剂层放置在空气扩散层表面,用辊压机将催化剂层与空气扩散层压制成厚度为0.4mm的膜状空气电极,用压片机将得到的空气电极在2MPa的压力下压制7min。将空气电极放入真空干燥箱中,50°C的温度下真空干燥30min,随炉冷却,即可得到基于无碳Ag-Cu枝晶催化层的空气电极。
【权利要求】
1.一种基于无碳Ag-Cu催化剂层的空气电极,其特征在于,所述基于无碳Ag-Cu催化剂层的空气电极是在泡沫镍上沉积Ag-Cu合金得到;所述Ag-Cu合金的微观形貌是树枝晶或者球晶或者片晶;所述的Ag-Cu合金中存在Ag, Cu和Cu2O相,组成元素为零价态的Ag和Cu,并在该Ag-Cu合金表面有氧化铜层;所述Ag-Cu催化剂空气电极的一次锌空电池在10mA/cm2下的放电功率是79.9?85.8mWcm_2,二次锌空电池的充放电往复效率大于51.8%。
2.如权利要求1所述基于无碳Ag-Cu催化剂层的空气电极,其特征在于,当Ag-Cu合金的微观形貌是树枝晶时,该枝晶在泡沫镍基体上均匀分布,生长形态完整,并且一次枝晶长约7?30 μ m,二次枝晶长度为0.5?9 μ m,所述二次枝晶的生长方向与一次枝晶呈75?90 ° ;当Ag-Cu合金的微观形貌是球晶时,该球晶的直径为0.1?I μ m ;当Ag-Cu合金的微观形貌是片晶时,该片晶的厚度是0.5?3 μ m。
3.一种制备权利要求1所述基于无碳Ag-Cu催化剂层的空气电极的方法,其特征在于,具体过程是: 步骤I,泡沫镍的处理; 步骤2,配置前驱溶液:所述前驱溶液包括硫酸铜溶液和硝酸银溶液;所述的硫酸铜溶液为I?5mol.L—1的硫酸铜溶液,由分析纯级别的五水合硫酸铜和去离子水组成;所述的硝酸银溶液为0.005?0.015mol -Γ1的硝酸银溶液,由分析纯级别的硝酸银和去离子水组成; 步骤3,制备泡沫镍上的铜纳米粒子;将处理好的泡沫镍垂直放入硫酸铜溶液中浸泡I?5h,取出后用去离子水轻轻冲洗以去除泡沫镍上的硫酸铜溶液,得到表面附着有铜纳米粒子的泡沫镍; 步骤4,制备Ag-Cu合金催化剂层;所述Ag-Cu合金催化剂层是通过在泡沫镍上制备Ag-Cu纳米粒子的枝晶得到;具体过程是,将表面附着有铜纳米粒子的泡沫镍浸入0.005?0.015mol -Γ1的硝酸银溶液中,置换60?180s ;去离子水清洗以去除泡沫镍上的硝酸银溶液;在空气中晾干,得到Ag-Cu合金催化剂层; 步骤5,空气扩散层的制备;乙炔黑与PTFE按1:2?3的比例在无水乙醇中,常规方法混合均匀,得到粘稠状的乙炔黑与PTFE的混合物;将所述乙炔黑与PTFE的混合物置于80?90°C的恒温水浴锅中,保温至乙炔黑与PTFE混合物中的无水乙醇全部蒸发完毕,并形成膏体状乙炔黑与PTFE混合物;将到的膏体状乙炔黑与PTFE混合物取出,用滤纸吸掉表面水分,用辊压机压制成厚度为0.5?0.8mm的膜状空气扩散层; 步骤6,空气电极的制备;将上述步骤中得到的Ag-Cu合金催化剂层放置在空气扩散层表面,用辊压机将催化剂层与空气扩散层压制成厚度为0.4?0.6mm的膜状空气电极,用压片机将得到的空气电极在2?3MPa的压力下压制5?1min ;将空气电极放入真空干燥箱中,50°C的温度下真空干燥30min,随炉冷却,即可得到基于无碳Ag-Cu枝晶催化层的空气电极。
【文档编号】H01M4/86GK104393307SQ201410542530
【公开日】2015年3月4日 申请日期:2014年10月14日 优先权日:2014年10月14日
【发明者】陈福义, 靳亚超 申请人:西北工业大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1