一种多孔材料及其制备和应用

文档序号:9923043阅读:1177来源:国知局
一种多孔材料及其制备和应用
【技术领域】
[0001]本发明属于纳米材料制备领域,具体的说涉及一种具有贵金属外层包覆银内核的多孔材料。
【背景技术】
[0002]随着煤炭、石油和天然气等燃料的消耗量与日剧增及能源资源的储量日益枯竭,寻找环境友好可持续发展的能源技术迫在眉睫。燃料电池因其具有能量转化效率高、无污染、无噪音等优点,已成为世界各国研究的热点。
[0003]目前,燃料电池阴极ORR催化剂最有效的催化剂仍然是Pt及其合金催化剂。而Pt有限的储量和高昂的价格成为燃料电池商业化的障碍之一。如何在不降低催化剂活性的前提下提高其利用率成为近来的研究热点。
[0004]Adzic研究组发现通过Cu-UPD在贵金属粒子表面形成单层Cu原子,再与Pt2+进行置换得到Pt单层催化剂,高度分散的Pt使得该类催化剂的ORR比质量活性大大提高。然而其内核一般采用Pd、Au等贵金属及其合金,成本较高。Ag相对与Pt、Pd、Au等贵金属而言,具有储量多,价格低得优势,然而对其研究较少。多孔银由于其表面积大,有利于传质等优点在催化领域显示出了良好的应用前景,由于银不耐酸腐蚀,限制了其在酸性环境中的应用,以Pt、Pd等贵金属为壳材料,以多孔银为核材料制备多孔核壳结构的催化剂可以使其在酸性环境中的应用,但此方面的研究还未见报道。

【发明内容】

[0005]本发明针对现有技术中存在的问题,发明了一种多孔材料及其制备方法。
[0006]为实现上述
【发明内容】
,本发明采用以下技术方案来实现:
[0007]—种多孔材料,所述多孔材料微观上由多孔金属银及其内外表面附着的贵金属层构成;所述多孔材料具有一级孔和二级孔;所述一级孔的孔径为5-500nm,二级孔的孔径为1-5 μ mD
[0008]所述分级多孔银由银纳米粒子聚集形成的一级孔银聚集体,一级孔银聚集体再次聚集相互连接而形成;所述一级孔银聚集体上具有一级孔,再次聚集的一级孔银聚集体之间具有二级孔;
[0009]所述一级孔的孔径优选为20-200nm ;二级孔的孔径优选为1.5-3 μ m。
[0010]所述贵金属层为铀、钯、金、铱中的一种或两种以上;贵金属于多孔材料中的质量含量 1% -99%。
[0011]所述多孔材料的制备方法,包括以下步骤:
[0012](I)采用电化学方法对银片、银棒或块状烧结银粉进行氧化处理;
[0013](2)对步骤(I)所得处理后的银片、银棒或块状烧结银粉进行还原制得具有一级孔和二级孔的分级多孔银;
[0014](3)于步骤(2)所得分级多孔银直接或者表面沉积中间金属元素后置于贵金属盐溶液中进行置换反应后制得,或者直接在多孔银表面物理溅射贵金属制得。
[0015]步骤(3)所述中间金属元素为Cu、Pb中的一种或两种;贵金属盐溶液为氯铂酸、氯金酸、氯钯酸、氯铱酸、氯化铂、氯化钯、氯化铱、硝酸铂、硝酸钯中的一种或两种以上;所述贵金属盐的浓度为ImM?IM所述置换反应时间为1s?2h ;所述贵金属为铀、金、钯、铱、中的一种或两种以上。
[0016]步骤(3)所述分级多孔银表面沉积中间金属元素的具体方法为欠电位沉积法或物理溅射法。
[0017]步骤(I)所述采用电化学方法对银片、银棒或块状烧结银粉进行氧化处理的过程中,以银片、银棒或块状烧结银粉中的一种为工作电极,以铂或石墨棒中的一种为对电极,银/氯化银、汞/氧化汞或饱和甘汞中的一种为参比电极,以含Cl ,Br或I中的一种或两种以上卤素离子的溶液为电解液。
[0018]步骤(I)所述电化学方法对银片、银棒或块状烧结银粉进行氧化处理的过程中,相对于可逆氢电极的电化学处理电位为0.5V?10V,优选为0.5V?5V ;电化学处理时间为Is-1OOh,优选为 60s-20h,最优为 120s_8h。
[0019]所述电解液中卤素离子的浓度总和大于0.0OlmM。
[0020]步骤(2)所述还原方法为电化学还原、光照还原、电子束还原、辐射还原、激光还原中的一种或两种以上。
[0021]所述多孔材料可用作金属空气燃料电池氧还原催化剂、质子交换膜燃料电池氧还原催化剂或直接液体燃料电池氧还原催化剂。
[0022]与现有技术相比,本发明所述多孔材料具有表面积大、贵金属利用率高等优点,由于具有多孔结构,有利于传质,将其用作氧还原催化剂时,其催化活性大幅提高。
【附图说明】
:
[0023]图1为比较例I和实施例1制备样品的氧还原活性曲线。
【具体实施方式】
:
[0024]比较例1:20% Pt/C (庄信万丰有限公司)
[0025]图1为比较例I和实施例1制备样品的氧还原活性曲线。由图中可以看出多孔银核铂壳催化剂由于和商品碳载铂催化剂接近的比表面积活性。
[0026]实施例1:配置含0.005M NaCl和0.1M NaOH的溶液并将其作为电解液,直径为5mm的银块状电极作为工作电极,铂片为对电极,汞/氧化汞电极为参比电极,在1.0V(相对于可逆氢电极)下电化学处理2h后再在0.1M NaOH电解液中在0.15V(相对于可逆氢电极)下进行电化学还原5min得到多孔银。将得到的多孔银在含有50mM的氯铂酸的电解液中浸渍lOmin。清洗之后得到样品。
[0027]实施例2:配置含0.0OlmM NaCl的溶液并将其作为电解液,以银片作为工作电极,石墨棒为对电极,银/氯化银电极为参比电极,在1.5V (相对于可逆氢电极)下电化学处理10h后再在20万勒克斯的强光照下照射Ih得到多孔银。将得到的多孔银在50mM硝酸铜和50mM硝酸的溶液中390mV (相对于可逆氢电极)欠电位沉积5min,再在含有50mM的氯铂酸的电解液中浸渍lOmin。清洗之后得到样品。
[0028]实施例3:配置含2M NaCl和0.1M HCl的溶液并将其作为电解液,以银棒作为工作电极,银片为对电极,饱和甘汞电极为参比电极,在5.0V下电化学处理360s后再进行铜靶X射线照射Ih得到多孔银。将得到的多孔银在含有50mM的氯钯酸的电解液中浸渍lOmin。清洗之后得到样品。
[0029]实施例4:配置饱和NaCl的溶液并将其作为电解液,烧结银粉作为工作电极,金片为对电极,银/氯化银电极为参比电极,在10.0V下电化学处理Is后再用电子枪束轰击20min得到多孔银。将得到的多孔银在50mM硝酸铜和50mM硝酸的溶液中390mV (相对于可逆氢电极)欠电位沉积5min,再在含有50mM的氯钯酸的电解液中浸渍lOmin。清洗之后得到样品。
[0030]实施例5:配置含0.1M HCl的溶液并将其作为电解液,Ag片作为工作电极,Pt片为对电极,饱和甘汞电极为参比电极,在2.0V下电化学处理Ih后再进行IW的激光照射Ih得到多孔银。将得到的多孔银在含有50mM的氯铱酸的电解液中浸渍lOmin。清洗之后得到样品。
[0031]实施例6:配置含0.0OlmM NaBr的溶液并将其作为电解液,以银片作为工作电极,石墨棒为对电极,银/氯化银电极为参比电极,在1.5V (相对于可逆氢电极)下电化学处理10h后再在50万勒克斯的强光照下照射5min得到多孔银。将得到的多孔银在50mM硝酸铜和50mM硝酸的溶液中390mV (相对于可逆氢电极)欠电位沉积5min,再在含有50mM的氯铱酸的电解液中浸渍lOmin。清洗之后得到样品。
[0032]实施例7:配置含0.005M NaBr和0.1M NaOH的溶液并将其作为电解液,直径为5mm的银块状电极作为工作电极,铂片为对电极,汞/氧化汞电极为参比电极,在1.0V(相对于可逆氢电极)下电化学处理20h后再在0.1M NaOH电解液中在0.3V (相对于可逆氢电极)下进行电化学还原1min得到多孔银。将得到的多孔银在含有50mM的氯金酸的电解液中浸渍lOmin。清洗之后得到样品。
[0033]实施例8:配置含2M NaBr和0.1M HBr的溶液并将其作为电解液,以银棒作为工作电极,银片为对电极,饱和甘汞电极为参比电极,在5.0V下电化学处理Is后再进行镁靶X射线照射Ih得到多孔银。将得到的多孔银在50mM硝酸铜和50mM硝酸的溶液中390mV (相对于可逆氢电极)欠电位沉积5min,再在含有50mM的氯金酸的电解液中浸渍lOmin。清洗之后得到样品。
[0034]实施例9:配置饱和NaBr的溶液并将其作为电解液,烧结银粉作为工作电极,金片为对电极,银/氯化银电极为参比电极,在10.0V下电化学处理60s后再用电子枪束轰击40min得到多孔银。将得到的多孔银在含有50mM的氯化钯和50mM的硝酸的电解液中浸渍1min0清洗之后得到样品。
[0035]实施例10:配置含0.1M HBr的溶液并将其作为电解液,Ag片作为工作电极,Pt片为对电极,饱和甘汞电极为参比电极,在2.0V下电化学处理Ih后再进行2W的激光照射3h得到多孔银。将得到的多孔银在50mM硝酸铅和50mM硝酸的溶液中_21mV (相对于可逆氢电极)欠电位沉积5min,再在含有50mM的氯铀酸的电解液中浸渍lOmin。清洗之后得到样品O
[0036]实施例11:配置含0.0OlmM NaI的溶液并将其作为电解液,以银片作为工作电极,石墨棒
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1