丙型肝炎病毒非结构蛋白4a(ns4a)是增强子元件的制作方法

文档序号:455450阅读:474来源:国知局
专利名称:丙型肝炎病毒非结构蛋白4a(ns4a)是增强子元件的制作方法
技术领域
本发明涉及调节关联基因表达的增强子的发现。更具体地,发现来自丙型肝炎病毒(HCV)的非结构蛋白4A(NS4A)调节关联核酸的表达和免疫原性。
背景技术
增强子是增加邻近基因从启动子转录的水平的顺式作用元件。时常,转录的增强与增强子元件的位置和方向相对独立。(见Khoury和Gruss,Cell33313(1983))。已经在很多病毒中鉴定了增强子元件,包括多瘤病毒、乳头状瘤病毒、腺病毒、逆转录病毒、肝炎病毒、巨细胞病毒、疱疹病毒、乳多空病毒,如猿猴病毒40(SV40)和BK,和在很多非病毒基因中也鉴定了增强子元件,如小鼠免疫球蛋白基因内含子内。(见例如美国专利号RE37,806)。在哺乳动物细胞中起作用的增强子在生物技术、免疫学和医学中特别有用并且显然需要更多增强子。
发明概述发现丙型肝炎病毒(HCV)非结构蛋白4A(NS4A)增强关联核酸的转录和免疫原性。在第一组实验中,观察到当HCV-1NS3/4A基因通过真核表达载体转染到哺乳动物细胞中时,NS3的表达水平比当HCV-1NS3基因和表达载体单独(即没有NS4A)转染时高。此外,发现与用NS3基因单独免疫的小鼠相比,用NS3/4A基因免疫的小鼠引发了高10至100倍的NS3特异性抗体水平。与NS3基因(3.0)相比,NS3/4A基因引发的体液反应显示出更高的IgG2a/IgG1比率(>20),提供了T辅助细胞1-偏离反应的证据。
在另一组实验中,发现当用低剂量NS3/4A基因(10μg)肌内注射免疫携带表达NS3/NS4A的SP2/0骨髓瘤细胞的小鼠时,表达NS3/4A的肿瘤细胞的生长被抑制;而用NS3基因单独或NS3蛋白低剂量免疫小鼠对表达NS3/4A的肿瘤细胞的生长没有抑制。此外,确定了当使用基因枪时,在2%-4%的前体频率下,有效引发细胞毒性T淋巴细胞(CTL)反应,和抑制携带表达NS3/NS4A的SP2/0骨髓瘤细胞的小鼠中表达NS3/4A的肿瘤细胞的生长,仅需要三个4μg剂量的NS3/4A基因。
本发明的几个实施方案包括增强与NS4A关联的核酸的转录水平的方法。在有些方法中,例如核酸在细胞中表达增加或增强是通过提供编码丙型肝炎病毒(HCV)非结构蛋白4A(NS4A)或其功能部分的第一核酸,鉴定增强表达的第二核酸;和将所述第二核酸与所述第一核酸在所述细胞中相关联,由此这种关联引起所述第二核酸的表达增强。在有些应用中,第二核酸是HCV非结构蛋白3(NS3)。第一和第二核酸可以顺式、并列连接在相同的构建体、分开的构建体上,或反式连接。另外,在有些应用中,第一核酸由SEQ ID NO.2的10和20个之间、20和30个之间、30和40个之间、或50和54个之间的连续氨基酸组成。
本发明的更多实施方案涉及增强与NS4A关联的核酸的免疫原性的方法。在有些方法中,例如核酸的免疫原性增加或增强是通过提供编码丙型肝炎病毒(HCV)非结构蛋白4A(NS4A)或其功能部分的第一核酸,鉴定增强免疫原性的第二核酸;和将所述第二核酸与所述第一核酸相关联,由此这种关联引起所述第二核酸的免疫原性增强。在有些应用中,第二核酸是HCV非结构蛋白3(NS3)。第一和第二核酸可以顺式、并列连接在相同的构建体、分开的构建体上,或反式连接。另外,在有些应用中,第一核酸由SEQ ID NO.2的10和20个之间、20和30个之间、30和40个之间或50和54个之间的连续氨基酸组成。
附图简述

图1.在35S-甲硫氨酸存在下,由质粒NS3-pVAX1、NS3/4A-pVAX1和mNS3/4A-pVAX1产生并通过SDS-PAGE分离的体外翻译产物。泳道1,分子量标记(CFA 756;Amersham Pharmacia Biotech);泳道2,61kDa试剂盒对照,泳道3,阴性对照,泳道4,NS3-pVAX1,泳道5,NS3/4A-pVAX1和泳道6,mNS3/4A-pVAX1。
图2.rSFV-NS3(a)、mNS3/4a(b)或NS3/4a(c)感染的BHK-21细胞表达的NS3蛋白的分析。用35S甲硫氨酸标记后,细胞用冷甲硫氨酸“追踪”指定时间。用免疫沉淀法和10%SDS PAGE分析所得细胞裂解产物。也用免疫荧光染色法,使用NS3-特异性单克隆抗体分析rSFV-NS3(d)和rSFV-NS3/4A(e)感染的BHK细胞中的NS3表达。感染后细胞染色24小时,观察到rSFV-NS3感染的细胞中NS3蛋白的更大分散。
图3.用100μg NS3-pVAX1或NS3/4A-pVAX1免疫五只H-2d小鼠的各组(a)引发的抗体反应。箭头表示免疫的时间点。所有小鼠用心脏毒素预先处理。给出平均终点抗体±SD的值。也显示了十至二十只H-2d小鼠的各组中由100μg NS3-pVAX1、NS3/4A-pVAX1或mNS3/4A-pVAX1引发的体液反应比较。在第0和4周引发和加强小鼠。作为平均终点抗体效价±SD提供值。实线表示p<0.01的显著差异,虚线表示p<0.05的差异,和虚线表示没有观察到显著差异(Mann-Whitney U检验)。
图4.免疫的H-2d小鼠的脾中对NS3的T细胞反应。用100μgNS3-pVAX1或NS3/4A-pVAX1免疫五只小鼠的各组。所有小鼠用心脏毒素预先处理。给出抗原诱导的增生减去自发的增生(Δcpm)的值。显示的是一式三份测定的平均cpm值±SD的值。(a)在第六周,用含rNS3(20μg)的PBS、NS3-pVAX1或NS3/4A-pVAX1免疫的BALB/c小鼠中的NS3特异性IgG亚类反应的比较。(b)已经给出了对NS3的IgG1或IgG2a抗体的平均终点效价±SD的值。NS3的IgG2a抗体的平均终点效价除以NS3的IgG1抗体的平均终点效价得到效价比率。高比率(>3)表示Th1样反应和低比率(<0.3)表示Th2样反应,而离1三倍差异内的值(0.3至3)表示混合的Th1/Th2反应。也给出的(c)是肌内注射给予含rNS3的CFA免疫一次后,NS3/4A-pVAX1质粒每月注射三次后,脾中的增生反应(最后一次注射后六周杀死这些小鼠)。显示的是一式三份测定(c)的平均cpm值的值。
图5.H-2d小鼠中体外可检测的CTLs引发的动力学。用100μgNS3/4A-pVAX1以一月的间隔肌内注射免疫五只H-2d小鼠的各组。所有小鼠用心脏毒素预先处理。已经给出了两次注射(a)、三次注射(b)和六次注射(c)100μg DNA的细胞毒性试验结果。特异性裂解百分比相当于表达NS3/4A的SP2/0细胞得到的裂解百分比减去未转染的SP2/0细胞得到的裂解百分比。已经给出了40∶1、20∶1和10∶1的效应物与靶(E∶T)细胞比率的值。认为10%以上的特异性裂解是阳性。每条线相当于各类小鼠。
图6.使用不同的免疫方式对体内肿瘤细胞生长的抑制。腹膜内注射给予PBS或含20μg rNS3的CFA,或100μg对照质粒(p17-pcDNA3)或10μgNS3-pVAX1或NS3/4A-pVAX1(b)或100μg NS3-pVAX1或NS3/4A-pVAX1或mNS3/4A-pVAX1(c)免疫五至十只H-2d小鼠的各组。在4、8、12和16周引发和加强小鼠。所有小鼠用心脏毒素预先处理。最后一次免疫后两周,给小鼠皮下注射2×106个表达NS3/4A的SP2/0细胞。在肿瘤注射后7、11和13天通过皮肤测定各个肿瘤的大小。评估整个时期各组的平均肿瘤生长和使用曲线下面积(AUC)和ANOVA在统计学上比较各组。在(d)中,提供了实验组和对照组之间的统计学比较。
图7.从未免疫小鼠(a和b)、用10μg NS3/4A-pVAX1(c和d)免疫的小鼠、和用100μg NS3/4A-pVAX1(e和f)免疫的小鼠切除的实体瘤的组织学外观。苏木精-伊红(a、c和e)或抗CD3抗体(b、d和f)染色的表达NS3/4A的SP2/0骨髓瘤的切片。图(a)中插入部分显示了RT-PCR检测转染细胞系的NS3/4AmRNA表达的结果。泳道1和2显示分子量标记,泳道3显示NS3/4A-SP2/0细胞,泳道4显示SP2/0细胞,泳道5、7和8是阴性对照和泳道6显示NS3/4A-pVAX1质粒的DNA PCR,得到2,061个碱基的条带。
图8.用NS3/4A-pVAX1的基因枪免疫诱导H-2Db限制性肽表位特异性的CTL。用含100μg NS3特异性肽(GAVQNEVTL(SEQ.ID.No.1))的CFA皮下免疫或用4μg DNA/剂使用基因枪以一月间隔经皮免疫五至十只C57BL/6小鼠的各组。通过照射负荷NS3肽的天然脾细胞,在体外再次刺激5天来自天然的(a)或NS3/4A肽免疫的小鼠(b)或NS3/4A-pVAX1基因枪免疫的小鼠(d)。用不相关的H-2Db结合肽再次刺激的来自基因枪免疫的小鼠的脾细胞作为阴性对照(c)。在d)图片中,白方框表示三次免疫后特异性裂解百分比,和黑方框表示四次免疫后特异性裂解百分比。括号内已经指出用于再次刺激培养物的肽。每条线代表各类小鼠的数据。
图9.基因枪免疫后NS3/4A特异性CD8T细胞的诱导。用负荷NS3肽(GAVQNEVTL(SEQ.ID.NO.1)的二聚H-2Db∶Ig融合蛋白对来自天然小鼠(a、c、e和g)和NS3/4A-pVAX1 DNA免疫的小鼠(b、d、f和h)的脾细胞进行流式细胞染色确定NS3/4A肽特异性CD8T细胞的频率。未负荷的H-2Db∶Ig融合蛋白用于监测非特异性染色(g和h)。共收集了150,000-200,000个细胞,并且在每个点图的括号中指出了H-2Db∶Ig染色的CD8+细胞百分比。
图10.使用基因枪免疫对体内肿瘤细胞生长的抑制。十只BALB/c小鼠的各组保留不进行处理或用4μg DNA/剂NS3/4A-pVAX1给予每月四次经皮免疫。最后一次免疫后四周,给小鼠皮下注射1×106个表达NS3/4A的SP2/0细胞。在肿瘤注射后6、7、8、10、11、12、13和14、15天通过皮肤测定肿瘤大小。两条曲线的曲线下面积在统计学上有差异(ANOVA;p<0.01)。
图11.wtNS3-pVAX1(野生型NS3)、wtNS3/4A(野生型NS3/4A)和coNS3/4A(人结肠优化的NS3/4A)质粒基因枪免疫或皮下注射wtNS3/4A-SFV颗粒(含NS3/4A的塞姆利基森林病毒颗粒)在H-2b小鼠中引发的体外可检测的CTL。五至十只H-2b小鼠的各组免疫一次(a)或两次(b)。特异性裂解百分比相当于包被NS3肽的RMA-S细胞(a和b中的上排)或表达NS3/4A的EL-4细胞(a和b中的下排)得到的裂解百分比减去未负荷或未转染的EL-4得到的裂解百分比。已经给出了60∶1、20∶1和7∶1的效应物与靶(E∶T)细胞比率的值。每条线表示各类小鼠。
图12.不同免疫原单一免疫后引发的HCV NS3/4A特异性肿瘤抑制反应的能力估计。十只C57BL/6小鼠的各组保留不进行处理或给予指定的免疫原一次免疫,如图11所述,((a)、(b)、(c)、(g)和(h)使用基因枪,4μg DNA;(d)皮下注射107个SFV颗粒;(e)皮下注射含100μg肽的CFA;和(f)皮下注射含20μg rNS3的CFA)。最后一次免疫后两个周,给小鼠皮下注射1×106个表达NS3/4A的EL-4细胞。在肿瘤注射后6和19天通过皮肤测定肿瘤大小。已经给出平均肿瘤大小±标准误差的值。在(a)至(e)中,作为阴性对照,用空pVAX质粒通过基因枪免疫的组的平均数据已经绘制在每个图中。在(f)至(h)中,阴性对照是未免疫的小鼠。也给出的是使用曲线下面积和ANOVA进行对照与每个曲线的统计学比较获得的p值。
发明详述已经发现来自丙型肝炎病毒(HCV)的NS4A基因是增加关联基因或核酸的转录和免疫原性的增强子。这里提供的数据证明当HCV-1NS3/4A基因通过真核表达载体转染哺乳动物细胞时,NS3的表达水平比当HCV-1NS3基因和表达载体单独(即没有NS4A)转染时高。发现与用NS3基因单独免疫的小鼠相比,用NS3/4A基因免疫的小鼠引发了高10至100倍的NS3特异性抗体水平。肌内或经皮给予NS3/4A-pVAX1质粒有效引发了NS3特异性细胞毒性T淋巴细胞(CTL)。此外,每剂4μg质粒的四次基因枪免疫引起有效的免疫反应,其中大约4%的总脾CD8+群是NS3/4A-特异性T细胞。这些反应在体内活跃,并足以抑制表达NS3/4A的肿瘤细胞的生长。当经皮给予与人临床试验中使用的免疫原剂量等量的剂量时,发现NS3/4A-pVAX1免疫原可非常有效引发NS3特异性CTL。
这里描述的实施方案涉及包含NS4A增强子的基因构建体以增加关联核酸(如编码NS3的基因)的转录或免疫原性的用途。可以使用包含NS4A增强子的表达构建体,例如增强标记基因(如绿色荧光蛋白或“GFP”或lacZ)、编码免疫原(如肝炎或HIV抗原)的核酸、或治疗性核酸(如反义构建体)的表达。包含NS4A增强子的表达构建体还可以配制成疫苗和组合物中的活性成分,用于产生对关联基因或基因产物的免疫反应。优选实施方案使用为基因枪递送而配制的组合物,其包含约0.1-20μg之间任何量(如0.1μg、0.5μg、1μg、3μg、5μg、7μg、10μg、13μg、15μg、17μg或20μg)的含有NS4A增强子或其功能部分和关联基因的表达构建体。
通过给细胞,优选哺乳动物(如人、猫、狗、马和绵羊)或植物中存在的细胞,提供包含NS4A增强子的足以增加与所述NS4A增强子连接的对象基因表达的量的组合物可以实施这里描述的方法。下列部分提供的实施例证明增强子活性(如关联基因转录的上调和增加所述关联基因和/或基因产物的免疫原性)在细胞培养物(体外)和哺乳动物(体内)都存在。
以下部分描述NS4A增强子和含有该NS4A增强子的构建体。
NS4A增强子丙型肝炎病毒(HCV)属于单链RNA病毒的黄病毒科家族。(Virology,Fields ed.,第三版,Lippencott-Raven publishers,pp 945-51(1996))。HCV基因组长度大约9.6kb,并编码至少十个多肽。(Kato,Microb.Comp.Genomics,5129-151(2000))。基因组RNA翻译为一个单一聚蛋白,该聚蛋白随后被病毒和细胞蛋白酶切割而产生功能性多肽。(Id.)该聚蛋白被切割为三个结构蛋白(核心蛋白、E1和E2)、功能未知的p7和六个非结构(NS)蛋白(NS2、NS3、NS4A/B、NS5A/B)。(Id.)NS3编码负责病毒成熟所需的一些蛋白水解事件的丝氨酸蛋白酶(Kwong等,Antiviral Res.,4167-84(1999))和NS4A作为NS3蛋白酶的辅因子。(Id.)NS3还显示出NTP酶活性,并具有体外RNA解旋酶活性。(Kwong等,Curr.Top.Microbiol.Immunol.,242171-96(2000))。
已经认识到使用NS3/4A作为免疫原的重要性,见如美国申请09/929,955和美国申请09/930,591。此外,对含有完全NS3/4A蛋白酶的基因免疫原的体液反应出乎意料得强烈。(Lazdina等,J Gen Virol,821299-1308(2001))。这个现象的原因现在还不清楚,尽管有些人猜测辅因子NS4A的存在增加了NS3的细胞内稳定性。(Wolk等,J Virol,742293-2304(2000)和Tanjji等,J Virol,691575-1581(1995))。NS4A氨基酸末端结构域将NS3/4A复合体靶向至细胞内膜的事实支持稳定性增加假说。(Tanji等,J Virol,691575-1581(1995))。此外,HCV NS3的蛋白酶和解旋酶活性都需要NS4A存在。(Bartenschlager等,J Virol,673835-3844(1993);Bartenschlager等,J Virol,697519-7528(1995);Failla等,J Virol,683753-3760(1994);Pang等,Embo J,211168-1176(2002))。然而尚未认识到NS4A基因及其部分增强关联基因的表达和免疫原性,直到本次公开。
术语“NS4A增强子”是指来自任何HCV分离株(优选HCV-1b)的增强关联核酸的转录和/或所述关联核酸的免疫原性的任何NS4A基因。在一些上下文中,术语“NS4A增强子”是指HCV分离株(优选HCV-1)的NS4A基因的一部分,其保留增强关联基因的转录和/或所述关联基因的免疫原性的能力。那就是,“NS4A增强子”可以由编码NS4A的约3-54个之间任何量的连续氨基酸(如STWVLVGGVL AALAAYCLTT GSVVIVGRIILSGKPAIIPD REVLYREFDE MEEC(SEQ.ID.NO.2),如登记号CAB46677和Lohmann等,Science 285110-113(1999)公开)的核酸组成、基本由之组成或包含之,只要该分子保留增强关联基因的转录和/或所述关联基因的免疫原性的能力。那就是,NS4A增强子可以由编码NS4A(SEQ.ID.NO.2)的至少3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53或54个连续氨基酸的核酸组成、基本由之组成或包含之。
另外,“NS4A增强子”可以由NS4A基因的约9-162之间任何量的连续核苷酸的核酸(如AGCACCTGGG TGCTGGTAGG CGGAGTCCTAGCAGCTCTGG CCGCGTATTG CCTGACAACA GGCAGCGTGGTCATTGTGGG CAGGATCATC TTGTCCGGAA AGCCGGCCATCATTCCCGAC AGGGAAGTCC TTTACCGGGA GTTCGATGATATGGAAGAGT GC(SEQ.ID.NO.3),如登记号AJ238799和Lohmann等,Science 285110-113(1999)公开)组成、基本由之组成或包含之,只要该分子保留增强关联基因的转录和/或对所述关联基因的免疫原性的能力。那就是,NS4A增强子可以由NS4A基因(如SEQ.ID.NO.3)的至少9、15、21、24、27、30、33、36、39、42、45、48、51、54、57、60、63、66、69、72、75、78、81、84、87、90、93、96、99、102、105、108、111、114、117、120、123、126、129、132、135、138、141、144、147、150、153、156、159或162个连续核苷酸的核酸组成、基本由之组成或包含之。
这里描述的NS4A增强子可以并入基因构建体,如表达构建体,该构建体被设计使得待增强的任何期望对象(subject)核酸(如NS3)可以与NS4A增强子相关联。这种关联可以是“顺式”,其处于相同质粒上,或“反式”,其处于分开的质粒上。优选,NS4A和待增强的核酸并列连接。最好这种构建体在NS4A增强子处或其附近具有允许对象核酸更容易以盒样方式插入并与NS4A增强子连接的方便限制性位点(如多克隆位点)。
以下实施例描述几个构建体的制备,其用于鉴定和表征NS4A增强子。
实施例1如下产生含有NS3和NS3/4A基因的构建体。从感染HCV基因型1b的患者中扩增全长NS3和NS3/NS4A基因片段,如前所述。(Lazdina等,JGen Mirol,821299-1308(2001))。NS3和NS3/4A基因插入真核表达载体pVAX1(InVitrogen,San Diego,CA)。为了扩增NS3,使用正向引物5′-GTGGAA TTCATGGCG CCTATC ACG GCC TAT-3′(SEQ.ID.NO.4),和反向引物5′-CCA CGC GGC CGC GAC GACCTACAG-3′(SEQ.ID.NO.5)引入EcoRI和NotI限制性位点。工程改造的翻译起始和终止密码子带下划线。为了扩增NS3/NS4A,使用正向引物5′-GTG GAA TTCATGGCG CCT ATCACG GCC TAT-3′(SEQ.ID.NO.4)和反向引物5′-CCC TCT AGATCAGCACTC TTC CAT TTC ATC-3′(SEQ.ID.NO.6)引入EcoRI和XbaI限制性位点。再次,工程改造的翻译起始和终止密码子带下划线。对表达构建体进行测序以确保正确序列和阅读框架,用PCR和限制性内切酶切割分析构建体的大小。
也制备含有突变NS3/4A(mNS3/4A)基因的表达构建体。在一个突变构建体中,例如,NS4A上的氨基末端丝氨酸残基突变为脯氨酸。通过体外定点诱变,使用正向引物(5′-CTG GAG GTC GTC ACG CCT ACC TGGGTG CTC GTT-3′(SEQ.ID.NO.7))和反向引物(5′-AAC GAG CAC CCAGGT AGG CGT GAC GAC CTC CAG-3′(SEQ.ID.NO.8))将这个突变引入构建体(QuikChange,定点诱变试剂盒,Stratagene,La Jolla,CA)。所得构建体是mNS3/4A-pVAX1载体。对突变构建体进行测序以控制期望的突变序列并确保正确的阅读框架。
产生了含有NS3、NS4A增强子和突变NS3/4A的构建体,从含有Luria-Bertani(LB)培养基,补充了50μg卡那霉素/mL的LA/Kana板上培养的大肠杆菌中纯化,如前所述。(Lazdina等,J GenVirol,821299-1308(2001)和Zhang等,Clin Diagn Lab Immunol,758-63(2000))。纯化的质粒DNA溶于无菌磷酸盐缓冲盐水(PBS)至1mg/ml的浓度。
为了确保插入的基因完整并可以翻译,在35S-甲硫氨酸存在下,使用偶联原核T7的网织红细胞裂解物系统(TNT;Promega,Madison,WI)进行体外转录,如前所述。(Lazdina等,JGen Virol,821299-1308(2001)和Zhang等,Clin Diagn Lab Immunol,758-63(2000))。产生了来自质粒NS3-pVAX1,NS3/4A-pVAX1和mNS3/4A-pVAX1的翻译产物并用SDS-PAGE分离。该试验表明野生型和突变蛋白可以从质粒正确翻译(见图1)。
NS3/4A质粒体外翻译后,预先观察到两个条带(大约70至78kD)变得可见,它表明在体外翻译试验中,NS3蛋白酶介导的NS3和NS4A之间的切割可能不完全。(见Lazdina等,J Gen Tirol,821299-1308(2001)和Zhang等,Clin Diagn Lab Immunol,758-63(2000))。通过在NS3/4A蛋白水解位点引入脯氨酸取代P1′丝氨酸的靶向突变(见Ingallinella等,Biochemistry,378906-8914(1998)和Steinkuhler等,J Virol,706694-6700(1996)),仅仅代表预期的NS3/4A融合蛋白的条带保持可见(图1)。通过用Thr-Pro-Thr基序取代连接的Thr-Ser-Thr基序,蛋白水解位点被成功破坏,因为仅可以检测到作为来自该突变质粒的翻译产物的NS3/4A融合蛋白。因此,确定NS3-pVAX1、NS3/4A-pVAX1和mNS3/4A-pVAX1构建体表达了预测的全长基因并且NS3的蛋白酶活性完好无损。
使用婴仓鼠肾(BHK)-21细胞,也分析基于塞姆利基森林病毒(SFV)载体的表达系统中的NS3、NS3/4A和mNS3/4A基因。PCR分离编码NS3、NS3/4A和mNS3/4A的序列作为Spel-BStBl片段并插入含有衣壳的34个氨基酸长翻译增强子序列随后是FMDV 2a切割肽的pSFV10Enh的Spel-BstBl位点。(见Smerdou等,Curr Opin Mol Ther,1244-251(1999)和Smerdou等,J Virol,731092-1098(1999))。
使用两个辅助RNA系统完成重组RNA包装入rSFV颗粒。(Smerdou等,Curr Opin Mol Ther,1244-251(1999)和Smerdou等,J Virol,731092-1098(1999))。简言之,用重组RNA和两个辅助RNAs共转染BHK细胞(维持在补充5%FCS、10%胰蛋白磷酸盐肉汤、2mM谷氨酰胺、20mMHepes和抗生素(链霉素10μg/ml和青霉素100IU/ml)的完全BHK培养基中),两个辅助RNAs中一个编码SFV衣壳蛋白,另一个编码包膜蛋白。培养48时间后,收获含有重组病毒原料的培养基并纯化。(见Fleeton等,JGen Virol,81749-758(2000))。
然后用[35S]甲硫氨酸进行代谢性标记来分析rSFV感染的细胞的表达水平。(见Smerdou等,Curr Opin Mol Ther,1244-251(1999);Smerdou等,JVirol,731092-1098(1999))。简言之,用rSFV颗粒以5的MOI感染BHK细胞,15小时后,生长培养基替换为不含甲硫氨酸的MEM 30分钟,之后添加含有75μCi/ml[35S]甲硫氨酸的新鲜培养基。15分钟标记时期后,细胞进一步在含有未标记甲硫氨酸的培养基中培养不同时间。然后收集上清并用含有100mM碘乙酰胺的Nonidet P-40缓冲液裂解细胞。用蛋白A琼脂糖和抗NS3单克隆抗体(由G Inschauspé,Lyon,France友好提供)免疫沉淀细胞裂解产物4℃过夜。洗涤的沉淀重悬于SDS样品缓冲液中,95℃加热5分钟,之后在10%丙烯酰胺还原凝胶上进行SDS-PAGE分析。表达这三个基因的SFV载体对BHK细胞的非生产性感染表明具有完整蛋白水解位点的NS3/4A基因产生了关联基因-NS3的最高表达(见图2)。这数据证明NS4A的存在增强关联基因NS3的表达。
接着进行感染的BHK细胞的间接免疫荧光。(Smerdou等,Curr OpinMol Ther,1244-251(1999)和Smerdou等,J Virol,731092-1098(1999))。于是用rSFV-NS3、NS3/4a或mNS3/4A以5的MOI感染BHK细胞。生长16、18或24小时后,细胞在甲醇中固定并通过该细胞与抗NS3单克隆抗体和随后的抗小鼠IgG FITC(Sigma)温育来检测蛋白表达。rSFV-NS3和rNS3/4A感染的BHK细胞的免疫荧光染色揭示了NS3的不同胞内分布(见图2)。与rNS3/4A感染24小时后相比,用rSFV-NS3感染而表达的NS3蛋白显示出更弥散的染色图案,提供了NS4A赋予膜靶向证据。
下一个部分描述可以在基因构建体中与NS4A增强子相关联的几个基因。
可以与NS4A增强子相关联的核酸NS4A增强子可以提高很多不同关联核酸的转录水平和免疫原性。NS4A增强子可以提高标记基因的转录水平,例如编码GFP、新霉素磷酸转移酶、lacZ、或氯霉素酯转移酶的基因,其中,使用市场上可买到的构建体和/或分子生物学的传统方法可以容易地与NS4A增强子相关联。NS4A增强子也可以提高编码免疫原的核酸的转录水平和免疫原性。编码肝炎或HIV抗原的核酸可以容易地与NS4A增强子相关联,如由相当于乙型肝炎(HBV)核心和e蛋白或HIV gp120上存在的序列的肽组成、基本上由之组成或包含之的肽。(见如美国专利6,417,324;5,589,175和5,840,313)。NS4A增强子还可以提高治疗性基因或核酸片段的转录水平。编码干扰素或干扰核酸(如反义或产生RNAi的核酸)的基因或编码酶的基因可以与NS4A连接。(见如美国专利4,855,238;5,574,137;5,595,888;5,690,925;6,326,193;或美国申请20020137210和20020086356;或PCT申请WO0244321;WO0175164;W00142443;WO0129058;WO02072762和WO0168836)。
下一个实施例描述NS4A/GFP构建体的构建。
实施例2NS4A/GFP构建体可以如下制备和表征。GFP载体(如pDS1-1、pDS1-N1或pDS1-C1)得自商业供应商(Clonetech)。设计这些表达载体以评估增强子和/或启动子的功效且设计具有促进NS4A和其它元件引入的方便的多克隆位点。例如一些载体具有内源启动子,另一些允许启动子插入。可以用PCR产生NS4A序列,如上所述,使用促进载体中与GFP序列最接近克隆的引物。任选,pVAX-1中存在的启动子被亚克隆进入GFP/NS4A构建体。优选,创建缺乏NS4A的对照载体,以便直接估计NS4A对GFP表达的影响。一旦通过测序证实了正确克隆,就用NS4A/GFP构建体或备选地对照构建体转染来自合适细胞系的细胞。然后使用常规分析(如显微镜检查或FACS),根据制造商推荐的方案比较含有NS4A/GFP构建体的细胞和含有对照构建体的细胞中GFP的表达。与含有对照构建体的细胞相比,含有NS4A/GFP的细胞将显示出增强的GFP表达。
以下部分描述NS4A增强子用于促进或提高对关联基因的免疫反应的几种方法。
NS4A提高关联核酸的免疫原性除了增强关联核酸的转录水平外,发现NS4A也增强关联核酸的免疫原性。因此,这里描述的几个实施方案涉及含有NS4A和关联核酸的构建体的制备和用途,关联核酸是免疫原。很好建立了核酸在疫苗制剂中作为免疫原或活性成分的应用。(见如美国专利5589466和6214804)。优选实施方案涉及与基于病毒核酸的免疫原如肝炎免疫原(如HBV核心和e免疫原和HCV免疫原)和HIV免疫原(如gp120免疫原)相关联的含有NS4A的构建体的用途。为此目的,可以与NS4A相关联的核酸包括例如编码美国专利6,417,324;5,589,175和5,840,313中描述的肽的核酸。下一个实施例描述用含有NS4A,也含有关联NS3基因的构建体进行的实验。这些实验的结果为NS4A促进或提高对关联免疫原的免疫反应提供了证据。
实施例3为了检测不同NS3基因的免疫原性,用重组(r)NS3和NS3、NS3/4A和mNS3/4A基因免疫BALB/c(H-2d)小鼠并评估抗体效价。使用BALB/c小鼠,因为已经证明它们是NS3的很好应答者,和是基因型1的NS4A的低/无应答者。(Lazdina等,J Gen Virol,821299-1308(2001);Sallberg等,JGen Virol,772721-2728(1996);和Zhang等,J Gen Virol,782735-2746(1997))。因此,免疫反应的任何不同不能归因于新的CD4+T辅助(Th)表位的添加。近交BALB/c(H-2d)小鼠得自商业卖主(Charles River,Uppsala,Sweden)。第一次免疫后每隔两周或四周通过异荧烷麻醉小鼠逆循环放血收集用于抗体检测和同种分型的血清。如前所述进行酶免疫测定。(Lazdina等,J Gen Virol,821299-1308(2001)和Sallberg等,J Gen Virol,772721-2728(1996))。
为了直接比较NS3和NS3/4A基因的免疫原性,用100μg NS3-pVAX1或NS3/4A-pVAX1免疫五只BALB/c(H-2d)小鼠的两组的每一组。含质粒DNA的PBS在胫骨前(TA)肌肉肌内注射给予。(Davis等,Human GeneTherapy,4733-740(1993))。用NS3/4A-pVAX1免疫的小鼠具有更迅速的抗体反应,为NS3/4A质粒具有更高的内在免疫原性提供了证据(见图3)。四次免疫后,用NS3/4A免疫的小鼠具有更高的抗体水平。
为了证实这些初步的发现,用仅表达NS3的NS3-pVAX1,或表达NS3和NS4A的NS3/4A-pVAX1,或表达突变NS3/4A融合蛋白的突变NS3/4A质粒免疫更大组的小鼠。NS3-pVAX1和NS3/4A-pVAX1质粒之间的免疫原性差异被完全重复。(见图3)。再次,NS3/4A基因比单独NS3基因在平均抗体水平和应答小鼠频数方面更具免疫原性。这些结果证实了NS4A增强关联基因和/或基因产物的免疫原性。有趣的是,在早期免疫反应中,即在二和四周,NS3/4A-pVAX1质粒也比mNS3/4A-pVAX1质粒更具免疫原性。(见图3)。因此,在一些情况下,期望在关联基因和NS4A之间有功能性蛋白水解位点。
为了确定在NS3和NS4A蛋白连接处是否产生了新的Th表位,这可以部分解释NS3/4A基因所见到的免疫原性增加,进行T细胞扩增试验。用rNS3或NS3/4A-pVAX1免疫BALB/c小鼠,九天后,建立脾细胞回忆(recall)培养物(即体内引发的细胞与rNS3和跨越NS3/4A连接处的20个氨基酸肽回忆培养五天)。重组NS3(rNS3)蛋白由Darrell L.Peterson,Department of Biochemistry,Commonwealth University,VA友好提供。以前已经详细描述了大肠杆菌中重组NS3蛋白(不包括NS4A)的产生。(Jin等,Arch.Biochem.Biophys.,32347-53(1995))。使用前,用PBS透析rNS3蛋白过夜并无菌过滤。用与完全弗氏佐剂(1∶1)混合的100μg肽进行肽免疫,并在尾巴根部皮下注射(s.c.)。通过自动肽合成来合成用作DNA免疫原的相当于完整NS3/4A序列的二十个链节的肽,如前所述。(Sallberg等,ImmunolLett,3059-68(1991))。
如图3所示,用rNS3体外回忆rNS3和NS3/4A-pVAX1引发的T细胞。rNS3或NS3/4A-pVAX1引发的T细胞都不能用NS3/4A连接肽回忆。在C57BL/6(H-2b)小鼠中重复得到相同结果。这些结果证实NS3/4A融合蛋白没有产生新的T辅助细胞位点。
为了比较NS3和NS3/4A的增殖Th细胞反应,用100μg质粒免疫各组小鼠,13天后,收获脾细胞并使用rNS3建立体外回忆试验。对NS3的增殖反应的检测遵循以前描述的方案。(Lazdina等,J Gen Virol,821299-1308(2001)和Sallberg等,J Gen Virol,772721-2728(1996))。简言之,用100μg NS3-pVAX1或NS3/4A-pVAX1在TA肌肉免疫各组小鼠。十三天后收获脾细胞,制备单细胞悬液,细胞与系列稀释的rNS3培养。细胞与或不与rNS3培养四天并在最后24小时添加3H标记的胸腺嘧啶核苷(TdR)。液体闪烁计数测定放射性胸腺嘧啶核苷的吸收。
确定了在NS3/4A免疫小鼠中引发的NS3特异性Th细胞水平比在NS3免疫的小鼠中更有效(图4)。T细胞增生水平较高并且回忆可检测反应所需的rNS3量较低。
以前已经详细描述了NS3/4A免疫引发的Th细胞表型。(Lazdina等,JGen Virol,821299-1308(2001))。为了直接比较NS3和NS3/4A免疫引发的倾向T辅助1(Th1)和Th2的T细胞反应,分析NS3特异性IgG1(Th2)和IgG2a(Th1)抗体的水平。(见图4)。用含rNS3的PBS或佐剂免疫的H-2d和H-2k小鼠中,IgG1是主要的亚型。rNS3免疫小鼠中IgG2a/IgG1的比率总是<1,不管小鼠单倍型如何,这是Th2占优势反应的信号。(Schirmbeck等,Intervirology,44115-123(2001))。相比之下,NS3-pVAX1或NS3/4A-pVAX1免疫的小鼠具有由IgG1/IgG2a比率>1证实的倾向Th1的Th细胞反应。然而,NS3-pVAX1免疫小鼠的亚型比率为混合Th1/Th2反应提供了证据(图4)。相比之下,NS3/4A-pVAX1免疫的小鼠无一显示IgG1,表明深深的倾向Th1反应。
这个实施例的试验证明了基于NS3的DNA免疫原中NS4A的包含提供了更迅速的NS3特异性体液反应,其达到较高效价。此外,Th细胞的引发更有效和Th1/Th2平衡移向Th1。因此,NS4A的添加已经提高了NS3蛋白的内在免疫原性。下一个实施例提供了NS4A增强体内关联核酸的免疫原性的另外证据。
实施例4通过监测含有表达期望抗原的SP2/0骨髓瘤细胞的BALB/c小鼠中肿瘤生长的抑制可以有效地在体内分析对具体抗原的免疫反应。(见Encke等,J Immunol,1614917-4923(1998))。DNA免疫后肿瘤生长的抑制完全依赖于特异性CTLs的有效引发。(Encke等,J Immunol,1614917-4923(1998))。这个模型比例如重组牛痘病毒系统更可靠,因为细胞不产生非期望的病毒蛋白(即来自载体的蛋白)。
制备稳定表达NS3/4A的SP2/0细胞系,发现表达NS3/4A的细胞系的体内生长动力学与亲本细胞系完全一致。SP2/0-Ag14骨髓瘤细胞系(H-2d)维持在补充了10%胎牛血清(FCS;Sigma Chemicals,St.Louris,MO)、2mML-谷氨酰胺、10mM HEPES、100U/ml青霉素和100μg/ml链霉素、1mM非必需氨基酸、50μMβ-巯基乙醇和1mM丙酮酸钠(GIBCO-BRL,Gaithesburgh,MD)的DMEM培养基中。使用SuperFect(Qiagen GmbH,Hilden,FRG)转染试剂,用线性化NS3/4A-pcDNA3.1质粒转染SP2/0细胞产生具有稳定表达NS3/4A的SP2/0-Ag14细胞。根据制造商的方案实施转染程序。有限稀释克隆转染的细胞并通过添加800μg遗传霉素(G418)/ml完全DMEM培养基进行选择。反转录PCR和使用NS3的单克隆抗体的捕获EIA来证实NS3/4A的表达。(Zhang等,Clin Diagn Lab Immunol,758-63(2000))。
设计初步实验确定引发CTLs所需的DNA注射量,其在体外裂解表达NS3/4A的细胞。用心脏毒素预处理(即DNA免疫前五天肌内给予50μl/TA的含0.01mM心脏毒素(Latoxan,Rosans,France)的0.9%无菌NaCl盐水,并以四周间隔加强)小鼠,然后在TA肌肉内给予每月两次、三次或六次100μg NS3/4A-pVAX1注射。每次注射后两周杀死五只小鼠的各组并分析。来自DNA免疫的BALB/c小鼠的脾细胞重悬于完全DMEM培养基中。在25ml烧瓶中,以含有5U/ml重组小鼠IL-2(mIL-2;R&D Systems,Minneapolis,MN)的12ml终体积进行五天体外刺激。再刺激培养物含有共40×106个免疫脾细胞和2×106个照射(10000rad)的表达NS3/4A蛋白的同基因SP2/0细胞。体外刺激五天后,进行标准51Cr释放试验。SP2/0细胞和表达NS3/4A蛋白的SP2/0细胞作为靶并用20μl51Cr(5mCi/ml)标记一小时,然后在PBS中洗涤三次。系列稀释的效应细胞与5×103个51Cr标记的靶细胞/孔共同培养。在5%CO2、37℃培养四小时后,收集100μl上清并用γ-计数器确定放射性。
类似地,来自肽免疫小鼠(免疫后12天)或天然小鼠的脾细胞重悬于补充了10%FCS、2mML-谷氨酰胺、10mM HEPES、100U/ml青霉素和100μg/ml链霉素、1mM非必需氨基酸、50μM β-巯基乙醇和1mM丙酮酸钠的RPMI1640培养基。在25ml烧瓶中,以含有25×106个脾细胞和25×106个照射的(2000rad)同基因脾细胞的12ml总体积进行五天体外刺激。在0.05μM NS3/4A H-2Db结合肽(序列GAVQNEVTL SEQ.ID.NO.1)或不相关H-2Db肽(序列KAVYNFATM SEQ.ID.NO.9)存在下进行再刺激。体外培养五天后,如上所述进行51Cr释放试验。51Cr标记前,在+37℃,用50μM肽脉冲1.5小时的RMA-S细胞和RMA-S细胞作为靶。确定了引发体外可检测到的CTLs需要三至六次肌内注射(见图5)。
为了确保体内引发活性CTLs,用表达NS3/4A的细胞体内攻击前,所有小鼠接受五次免疫。根据Encke等所述方法对免疫小鼠进行表达NS3/4A的SP2/0骨髓瘤的体内攻击。(Encke等,J Immunol,1614917-4923(1998))。简言之,用不同免疫原在零、四、八、12和16周如所述免疫BALB/c小鼠各组。最后一次免疫后两周,在右侧腹劈下注射2×106个表达NS3/4A的SP2/0细胞。在第七、11和13天通过皮肤测定肿瘤大小来确定肿瘤生长的动力学。计算平均肿瘤大小并使用曲线下面积(AUC)比较肿瘤动态发展。使用方差分析(ANOVA)比较AUC值。Fisher′s精确检验用于频率分析和Mann-Whitney U检验用于比较两组的值。使用Macintosh版StatView软件(5.0版)进行计算。用PBS或用表达1型人类免疫缺陷病毒p17蛋白(Iroegbu等,Clin Diagn Lab Immunol,7377-383(2000))的对照质粒免疫的各组小鼠中肿瘤的生长没有差异。(见图6)。
在第14天,杀死所有小鼠,取出肿瘤,石蜡包埋并切片。简言之,肿瘤组织置于福尔马林中,石蜡包埋,并制备4μM的切片。用抗生物素蛋白-生物素封闭试剂盒(Vector,Vector Laboratories,Burlingame,CA)预处理石蜡包埋的切片,然后用抗CD3抗体(Dako,Denmark)免疫染色以确定肿瘤中浸润的T细胞量。为了检测,使用生物素酰化的免疫球蛋白,随后使用抗生物素蛋白-生物素过氧化物酶(Vector)。对一些CD3免疫染色也使用微波预处理。4μM厚的肿瘤切片安放在载玻片上,根据标准程序,一些用苏木精-伊红染料染色。对于哪个组属于切片组盲的病理学家分析肿瘤的组织学外观。
用含rNS3的CFA免疫的小鼠不显示肿瘤生长的抑制,证实特异性B细胞的引发,以及在这个模型中,单独Th细胞不提供肿瘤保护,而用100μgNS3-pVAX1或NS3/4A-pVAX1免疫的小鼠在所有时间点显示出肿瘤生长的明显抑制。(见图6)。有趣的是,用mNS3/4A免疫在第7和13天显示出肿瘤生长的明显抑制,而在第11天不显示。质粒量降低10倍,NS3-pVAX1质粒丧失引发抑制反应的能力,而NS3/4A-pVAX1质粒不是如此。(见图6)。这些实验揭示NS4在体内肿瘤保护性免疫反应的引发中增强NS3的免疫原性。NS3/4A连接处的功能性切割位点的存在可能重要,因为用mNS3/4A-pVAX1免疫产生了轻微降低的保护。
不同实验组收获的所有肿瘤的组织学揭示模拟免疫小鼠中发展的大多数肿瘤是坏死性的,其特征在于中央细胞死亡和固缩细胞核残留物的存在。(见图7)。在CD3抗原染色的相应切片中,仅注意到阳性T淋巴细胞的稀疏浸润。对从用重组NS3蛋白免疫的小鼠中分离的肿瘤进行类似观察。DNA免疫的动物中(即NS3-pVAX1、NS3/4A-pVAX1和mNS3/4A-pVAX1)仅观察到偶尔坏死。在这些肿瘤中,大面积已经被水肿和血管化组织取代。(见图7)。这些区域被CD3阳性淋巴细胞稠密浸润。在与有活力的肿瘤组织分界面,注意到淋巴细胞,以及调亡细胞蓄积,其可能是垂死的骨髓瘤细胞。(见图7)。此外,用CD3抗体染色揭示肿瘤退化区域主要是T细胞浸润。(见图7)。
这些数据进一步证实T细胞,推测是CTLs,负责观察到的肿瘤生长抑制,和在NS4A存在下,以降低10倍的免疫原剂量可以在体内获得表达NS3/4A的肿瘤细胞的CTL依赖性抑制。清楚地,NS4A增强关联基因或基因产物(如融合蛋白的异源二聚体)的免疫原性。
下一个实施例描述评估基于NS3/NS4A的DNA免疫原用途的实验。
实施例5尽管在再生肌肉组织中注射对于在小鼠进行DNA免疫有效,但是这种处理对于人类使用不理想。因此,进行实验评估使用基因枪用NS3/4A-pVAX1免疫原经皮免疫的功效。对于基于基因枪的免疫,根据制造商(Bio-Rad Laboratories,Hercules,CA)提供的方案将质粒DNA与金颗粒连接。免疫之前,刮刷注射区域并根据制造商的方案进行免疫。每次注射剂量含有4μg质粒DNA。用相同剂量以一个月的间隔加强。
最初,开发流式细胞术定量CTL反应所需的试剂以便评估经皮给予质粒的CTL引发效率。首先,鉴定相当于H-2b限制性NS3特异性CTL表位的肽以便使用二价MHC∶Ig融合蛋白定量NS3/4A-特异性CTLs(见DalPorto等,Proc Natl Acad Sci USA,906671-6675(1993))。接下来,从跨越NS3/4A的一组重叠的20个氨基酸长的合成肽(具有10个氨基酸重叠的共69个不同肽)中鉴定NS3/4A特异性CTL表位。检测20个氨基酸长的肽在抗原加工相关转运子(TAP)2缺乏的RMA-S细胞系表面表达I类MHC分子的稳定性。(Liunggren等,Nature,346476-480(1990);Stuber等,Eur JImmunol,222697-2703(1992))。
简言之,RMA-S细胞维持在补充了5%FCS、2mM L-谷氨酰胺、100U/ml青霉素和100μg/ml链霉素的RPMI 1640培养基中。所有细胞生长在潮湿37℃、5%CO2的恒温箱中。大约,1×106个RMA-s细胞与大约0.3mM各个20-链节的肽在补充了10%FCS、2mM L-谷氨酰胺和10mMHEPES的RPMI1640培养基中室温(~21℃)培养16-20小时。然后洗涤细胞并以最佳浓度(1μg/106)的偶联抗-H-2Kb或抗-H-2Db抗体的FITC在冰上染色30分钟。细胞重悬于含有0.5μg/ml碘化丙腚(PI;Sigma)的PBS/1%FCS(FACS缓冲液)中。然后用FACS分析活细胞(PI阴性)上H-2Kb和H-2Db的表达。通过这个试验,鉴定以高亲和力结合H-2Db分子的单一肽。
为了鉴定更优选的肽序列,合成九个氨基酸长的肽(八个氨基酸重叠)并评估H-2Db结合。使用不同肽浓度(0.01-100μM),在37℃追踪45分钟负荷肽的RMA-S细胞,之后为了降低非特异性背景,用抗H-2Db抗体染色。
上面的实验揭示了显著结合H-2Db的由序列GAVQNEVTL SEQ.ID.NO.1组成的肽,其位于NS3的C末端,从NS3/4A连接处21个氨基酸。然后这个肽用于免疫C57BL/6(H-2b)小鼠(4-8周龄)。近交C57BL/6(H-2b)小鼠得自商业卖主(Charles River,Uppsala,Sweden)。收获来自免疫小鼠的脾细胞,再刺激培养物中放置NS3肽和不相关肽。五天后,检测效应细胞对负荷肽的RMA-S细胞的裂解。
NS3/4A特异性CTLs仅可在用NS3/4A肽再刺激的肽免疫小鼠的脾细胞中检测到。(见图8)。为了检测得自NS3的CTL肽是否可以被使用基因枪用NS3/4A-pVAX1免疫引发的CTLs所识别,用NS3肽再刺激DNA免疫小鼠的脾并评估负荷肽的RMA-S细胞的裂解。这些实验表明使用基因枪用NS3/4A-pVAX1经皮免疫的小鼠仅当用NS3肽而不是非相关肽再刺激脾细胞时产生NS3特异性CTLs(见图8)。
然后直接非体内定量特异性CTLs。这个方法的一个优点是在分析前它避免了CTLs的体外扩增。用重组可溶二聚小鼠H-2Db∶Ig融合蛋白非体内染色NS3/4A DNA免疫小鼠的脾细胞,分析NS3/4A肽特异性CD8+T细胞的频数。大约2×106个脾细胞重悬于100μl PBS/1%FCS(FACS缓冲液),与1μg/106个细胞的Fc封闭抗体在冰上温育15分钟。细胞然后与2μg/106个细胞的+4℃预负荷160nM过量的得自NS3/4A的肽(序列GAVQNEVTLSEQ ID NO.1)48小时的H-2Db∶Ig或2μg/106个细胞的未负荷H-2Db∶Ig融合蛋白在冰上温育1.5小时。然后细胞在FACS缓冲液中洗涤两次并重悬于含有10μl/100μl偶联PE的大鼠-α小鼠IgG1二抗的100μl FACS缓冲液中,并在冰上温育10分钟。然后细胞在FACS缓冲液中洗涤并与1μg/106个细胞的偶联FITC的α-小鼠CD8抗体温育30分钟。然后细胞在FACS缓冲液中洗涤两次并重悬于含有0.5μg/ml PI的0.5ml FACS缓冲液中。FACS Calibur(BDB)上获取了每个样品的大约200,000事件且死亡细胞(PI阳性细胞)被排除在分析之外。
使用负荷NS3肽的二价H-2Db∶Ig融合蛋白分子直接非体内定量NS3特异性CTLs揭示使用基因枪用NS3/4A-pVAX1经皮免疫的小鼠脾中约2%至4%CD8+群是NS3/4A特异性的(见图9)。这个结果与裂解试验中记录的负荷肽细胞的有效裂解完全一致。清楚地,NS3/4A-pVAX1有效引发了大量特异性CTLs群,其在体外容易检测到并识别细致制谱的结合H-2Db的NS3特异性CTL表位。
为了检测经皮给予后体内引发的NS3/4A特异性CTL反应的功效,用表达NS3/4A的SP2/0肿瘤细胞系攻击免疫小鼠。以前的实验表明四次经皮注射引发高前体频数的NS3/4A特异性CTLs。十只BALB/c小鼠的各组保留不处理或给予4μg NS3/4A-pVAX1质粒以一月的间隔四次注射。总剂量16μgNS3/4A-pVAX1质粒有效地引发体内CTL反应并显著抑制肿瘤生长。(见图10)。因此,使用基因枪用与已经用于人疫苗试验的抗原剂量一致的剂量免疫((Roy等,Vaccine,19764-778(2000)),发现NS3/4A-pVAX1质粒有效地引发肿瘤抑制免疫反应。下一个实施例提供了NS4A通过增加关联核酸的表达而增强其免疫原性的证据。
实施例6为了评估增加与NS4A关联的基因的免疫原性的基础,进行试验研究在NS3/4A-pVAX1质粒或对照序列存在下B细胞的活化和增生。用5μg/mlpVAX1载体或5μg/ml NS3-pVAX1DNA或5μg/ml NS3/4A-pVAX1DNA刺激含10%FCS的RPMI 1640培养基中的BALB/c脾细胞(2×106个/ml)24小时或48小时。在培养基中生长的细胞仅作为阴性对照,并且1μg/mlLPS(Sigma Chemicals,St.Louis,MO)和1.3μg/ml术语称作CpG-1826的硫代磷酸酯修饰的脱氧寡核苷酸(ODN;Cybergene AB,Sweden)(Hartmann等,JImmunol,1641617-1624(2000))作为阳性对照。4小时培养过程中,添加溴脱氧尿核苷(BrdU;Sigma Chemicals)至10μM的终浓度。培养末,细胞离心并在PBS/1%FCS中洗涤2次。最后洗涤之后,细胞与2.4G2mAb(含1μg/106个细胞的PBS/1%FCS)在+4℃培养20分钟。然后如上洗涤细胞。其后细胞用偶联PE的抗CD69抗体和偶联CyChromeTM的抗CD45R/B220抗体在+4℃染色30分钟。然后如上洗涤细胞。其后固定细胞并通过每孔添加100μlCytofix/CytopermTM溶液(包括在Cytofix/Cytoperm Plus试剂盒中;BDB Pharmingen)渗透并在+4℃温育20分钟。其后在Perm/WashTM溶液(包括在Cytofix/Cytoperm Plus kit中)中洗涤细胞。用1∶10的偶联FITC的抗BrdU抗体染色细胞,该抗体稀释于购自Boehringer Mannheim(Mannheim,Germany)的补充了2.5μl/ml 2000U/ml(50mg/ml PBS)DNase I的Perrn/WashTM溶液中。细胞在黑暗中室温下培养一小时,然后在Perm/WashTM溶液中洗涤两次并重悬于PBS/1%FCS中。在FACS CaliburTM(BDB)上分析样品并使用CellQuestTM(BDB)程序计算CD69和BrdU阳性的B细胞(CD45R/B220gate)百分比。对照DNA序列(CPG-1826)活化了B细胞,但是通过流式细胞术观察到添加NS3-pVAX1和NS3/4A-pVAX-1诱导的B细胞活化比较显示没有差异。这个数据提供了NS4A通过增强关联基因表达而增加相关基因的免疫原性的证据。
在前面实施例中,所有单克隆抗体和MHC∶Ig融合蛋白(Dal Porto等,Proc Natl Acad Sci USA,906671-6675(1993))购自BDB Pharrningen(SanDiego,CA),包括抗CD16/CD32(Fc-封闭TM,克隆2.4G2)、偶联FITC的抗CD8(克隆53-6.7)、偶联FITC的抗H-2Kd(克隆AF6-88.5)、偶联FITC的抗H-2Db(克隆KH95)、重组可溶二聚小鼠H-2Db∶Ig、偶联PE的大鼠-α小鼠IgG1(克隆X56)、偶联FITC的抗BrdU(克隆B44)、偶联PE的抗CD69(克隆H1.2F3)、偶联Cy-ChromeTM的抗CD45R/B220(克隆RA3-682)。下一个实施例提供了NS4A是增强子的更多证据。
实施例7
为了直接比较不同载体引发的NS3特异性CTLs的体外裂解活性,一或两次免疫后进行标准51Cr释放试验。H-2b小鼠中体外可检测的CTLs的引发是由wtNS3-pVAX1(野生型NS3)、wtNS3/4A(野生型NS3/4A)、和coNS3/4A(人密码子优化的NS3/4A)质粒,或皮下注射wtNS3/4A-SFV颗粒(含有塞姆利基森林病毒颗粒的NS3/4A)的基因枪免疫进行的。为了创建密码子优化的NS3/4A构建体,分析野生型NS3/4A关于在人细胞中最常使用密码子的密码子使用。共433个核苷酸(15个氨基酸不同)被替换为人细胞最优的密码子使用。coNS3/4A基因与HCV-1参照菌株的3417-5475位核苷酸区域具有79%的序列同源性。
五至十只H-2b小鼠的各组免疫一次(a)或两次(b)。在负荷NS3肽的表达H-2Db的RMA-S细胞和稳定表达NS3/4A的EL-4细胞上检测体内引发的CTLs的裂解活性。特异性裂解百分比相当于包被NS3肽的RMA-S细胞((a)和(b)中的上排)或表达NS3/4A的EL-4细胞((a)和(b)中的下排)得到的裂解百分比减去未负荷或未转染的EL-4得到的裂解百分比。已经给出了60∶1、20∶1和7∶1的效应物与靶(E∶T)细胞比率的值。每条线表示各类小鼠。
一个剂量后,编码NS3/4A的构建体比NS3质粒明显更有效引发裂解包被NS3肽的靶细胞的CTLs变得明显(见图11)。因此,NS4A基因的存在增强CTL引发事件。当使用表达NS3/4A的EL-4细胞时,这种差异稍不清晰,推测是由于这个试验敏感性较低。两次免疫后,所有NS3/4A载体似乎都引发了具有类似效率的NS3特异性CTLs。然而,与仅含有wtNS3基因的质粒相比,用任何含有NS3/4A的载体免疫两次都清楚地更有效引发NS3特异性CTLs。因此,NS4A基因是促进NS3特异性CTLs更迅速引发的增强子。下一个实施例提供了NS4A是增强子的更多证据。
实施例8使用SP2/0骨髓瘤细胞的BALB/c小鼠中,或使用EL-4淋巴瘤细胞的C57BL/6小鼠中体内肿瘤生长抑制的分析,本领域技术人员认识表达HCV病毒抗原代表体内功能性HCV特异性免疫反应。(见Encke J等,J Immunol1614917-4923(1998))。以前已经描述了稳定表达NS3/4A的SP2/0细胞系(见Frelin L等,Gene Ther 10686-699(2003))和表达NS3/4A的EL-4细胞系特征如下所述。
为了证实使用表达NS3/4A的EL-4细胞系的肿瘤生长抑制完全依赖于NS3/4A特异性免疫反应,进行对照实验。十只C57BL/6小鼠的各组保留不免疫,或用coNS3/4A质粒免疫两次。最后一次免疫后两个周,皮下注射106个天然EL-4细胞或表达NS3/4A的EL-4细胞(NS3/4A-EL-4)攻击小鼠。NS3/4A特异性免疫反应是保护所需的,因为仅免疫的小鼠受到抗NS3/4A-EL-4细胞系生长的保护。因此,这个H-2b限制模型表现非常类似于以前所述的H-2d限制模型(Id.)。
用重组NS3蛋白的免疫提供了NS3/4A特异性B细胞和CD4+T细胞在抗肿瘤生长的保护中都不起关键作用的证据。来自coNS3/4A质粒免疫H-2b小鼠的脾细胞的CD4+或CD8+T细胞的体外耗尽提示51Cr释放试验中CD8+T细胞是主要效应细胞。为了定义体内功能性抗肿瘤效应细胞群,用NS3/4A-EL-4肿瘤细胞系攻击前一周、攻击期间选择性耗尽coNS3/4A质粒免疫小鼠中的CD4+或CD8+T细胞。流式细胞术分析揭示分别已经耗尽85%的CD4+和CD8+T细胞。这个实验揭示CD4+T细胞的体内耗尽对肿瘤免疫没有显著的影响。相比之下,体内CD8+T细胞的耗尽显著降低肿瘤免疫。因此,正如所料,NS3/4A特异性CD8+CTLs似乎是肿瘤生长抑制的体内模型中效应物阶段的主要保护性细胞。
接着上面描述的肿瘤攻击模型用于评估不同免疫原引发抗NS3/4A-EL-4肿瘤细胞体内生长的保护性免疫的效率。为了确保研究的引发事件的有效性,所有小鼠仅仅免疫一次。与体外CTL数据完全一致,观察到仅含有NS3/4A的载体能够迅速引发保护性免疫反应。见图12(p<0.05,ANOVA)。这个引发事件依赖于NS4A增强子并与密码子优化无关。
为了进一步弄清楚体内保护性CD8+CTL反应引发的先决条件,进行另外的实验。首先,用得自NS3的CTL肽免疫的C57BL/6小鼠没有抗NS3/4A-EL-4肿瘤生长的保护(图12)。其次,用含重组NS3的佐剂进行的免疫没有抗肿瘤生长的保护(图12)。因为得自NS3的CTL肽在C57BL/6小鼠中有效引发CTLs和含rNS3的佐剂引发高水平的NS3特异性T辅助细胞,所以引发体内保护性CTLs好象需要内源产生的NS3/4A。为了进一步描述引发事件的特性,使用基因枪用coNS3/4A基因一次免疫B细胞各组(μMT)或CD4缺乏的C57BL/6小鼠,并在两周以后攻击(图12)。由于两个系统都受到抗肿瘤生长的保护,因此B细胞或CD4+T细胞都不是体内功能性NS3/4A特异性CTLs引发所需的(图12)。因此,C57BL/6小鼠体内肿瘤保护性NS3/4A特异性CTLs的引发需要增强子NS4A和免疫原的内源表达。在C57BL/6小鼠中,引发较少依赖于基因传递途径或辅助细胞,如B细胞或CD4+T细胞。coNS3/4ADNA质粒引发的体内功能性CTL不依赖CD4+T辅助细胞的事实可能有助于解释这种引发发生的速度。
使用NS3/4A-EL-4细胞系的C57BL/6小鼠中重复的实验表明抗肿瘤生长的保护在NS3/4A基因首次免疫后已经获得,与密码子优化无关(图12)。而且,两次注射后,抗NS3/4A-EL-4肿瘤生长的免疫性甚至进一步增强,但是仅当NS4A存在时如此。因此,这个模型可能不足够敏感以揭示不同免疫原的内在免疫原性中的细微差异。为了更好比较wtNS3/4A和coNS3/4ADNA质粒的免疫原性,在H-2d小鼠中实施另外的实验,其中肿瘤保护性免疫好象需要至少两次免疫。重要的是要指出用NS3/4A基因在BALB/c小鼠中基因枪免疫后获得的IgG亚型分布显示混合Th1/Th2样反应。因此,倾向Th2的BALB/c小鼠品系中的Th2样免疫途径(基因枪)可能损害引发体内有效的CTL反应的能力是可能的。
这里描述的组合物可以含有其它成分,包括但不限于各种肽、佐剂、粘合剂、赋形剂如稳定剂(为了促进长期贮藏)、乳化剂、增稠剂、盐、防腐剂、溶剂、分散介质、包衣、抗细菌剂和抗真菌剂、等渗和延迟吸收试剂等等。如见美国申请09/929,955和美国申请09/930,591。这些组合物适于治疗动物,尤其是哺乳动物,作为避免疾病或情况的预防措施或作为治疗已经罹患疾病或病症的动物的治疗剂。
也可以存在很多其它成分。例如,佐剂和抗原可以用于与常规赋形剂(如适于胃肠外、肠内(如口服)或局部应用的不与佐剂和/或抗原有害反应的药用有机或无机载体物质)的混合物中。合适的药用载体包括但不限于水、盐溶液、醇类、阿拉伯胶、植物油、苯甲醇、聚乙二醇、明胶、碳水化合物如乳糖、直链淀粉或淀粉、硬脂酸镁、滑石、硅酸、粘性石蜡、芳香油、脂肪酸甘油一酯和甘油二酯、季戊四醇脂肪酸酯、羟甲基纤维素、聚乙烯吡咯烷酮等。Remmington′s Pharmaceutical Sciences,15th Edition,EastonMack Publishing Company,pages 1405-1412和1461-1487(1975)和TheNational Formulary XIV.14th Edition,Washington,American PharmaceuticalAssociation(1975)中描述了很多更合适的载体。
这里描述的基因构建体尤其可以与一种试剂一起配制或一起给予,相对于缺乏这种试剂下给予同一基因疫苗时的细胞吸收和/或表达基因构建体,该试剂增加细胞吸收和/或表达基因构建体。1994年1月26日申请的PCT专利申请序列号PCT/US94/00899中描述了这种试剂和与基因构建体组合给予它们的方案。这种试剂的实例包括CaPO4、DEAE葡聚糖、阴离子脂质;胞外基质活性酶;皂角苷;凝集素;雌激素化合物和甾族激素;羟基化低链烷基;二甲基亚砜(DMSO);尿素;和苯甲酸酯酰基苯胺、脒、尿烷及其盐酸盐,如局部麻醉剂家族的那些。此外,该基因构建体可以与脂质/聚阳离子复合物装入胶囊/一起给予。
编码NS4A的核酸可以“顺式”提供给待增强的核酸(例如并列或连接)或可以“反式”提供(如在不依赖含有待增强基因的构建体而运行的分开的构建体上或在与含有待增强基因的构建体整合的分开的构建体上)。可供选择地,NS4A肽可以与任一上面描述的构建体一起给予。
疫苗可以灭菌并且如果期望可以与佐剂混合,如不与该佐剂或给予的核酸或肽有害反应的润滑剂、防腐剂、稳定剂、湿润剂、乳化剂、影响渗透压的盐、缓冲液、着色剂、调味剂和/或芳香剂等等。
具体疫苗制剂的有效量和给药方法可以根据各个患者和疾病类型和阶段,以及本领域技术人员已知的其它因素而变化。该疫苗的治疗功效和毒性可以通过细胞培养或实验动物中的标准药物程序来确定,如ED50(50%群体治疗有效的剂量)。细胞培养试验和动物研究得到的数据可用于配制人使用的剂量范围。该疫苗的剂量优选处于包括ED50但没有毒性的循环浓度范围内。这个范围内变化的剂量取决于佐剂衍生物和HCV抗原的类型、使用的剂型、患者的敏感性和给药途径。
由于很多佐剂已经出售几年,很多剂型和给药途径是已知的。这里描述的实施方案上下文中可以提供所有已知的剂型和给药途径。优选,有效增强动物中针对抗原的免疫反应的佐剂量可以认为是在动物中足以获得大约0.25-12.5μg/ml抗原血清水平的量,优选大约2.5μg/ml。在一些实施方案中,根据待给予疫苗的动物体重确定佐剂量。因此,疫苗制剂中佐剂的量可以是0.1-6.0mg/kg体重。也就是说,一些实施方案具有相当于大约0.1-1.0mg/kg、1.1-2.0mg/kg、2.1-3.0mg/kg、3.1-4.0mg/kg、4.1-5.0mg/kg和5.1-6.0mg/kg动物体重的佐剂量。更常见,该疫苗含有大约0.25mg-2000mg佐剂。也就是说,一些实施方案具有大约250μg、500μg、1mg、25mg、50mg、100mg、150mg、200mg、250mg、300mg、350mg、400mg、450mg、500mg、550mg、600mg、650mg、700mg、750mg、800mg、850mg、900mg、1g、1.1g、1.2g、1.3g、1.4g、1.5g、1.6g、1.7g、1.8g、1.9g和2g佐剂。
如同本领域技术人员将认识到,疫苗中抗原的量可以根据抗原类型及其免疫原性而变化。因此疫苗中抗原的量可以变化。然而,如一般指导,疫苗可以含有例如大约1μg、5μg、1μg、20μg、40μg、80μg、100μg、0.25mg-5mg、5-10mg、10-100mg、100-500g及2000mg以上这里描述的抗原。当所述抗原是核酸时,优选,抗原的量是0.1μg-1mg、期望0.1μg-100μg,优选3μg-50μg,和最优选7μg、8μg、9μg、10μg、11μg-20μg。
在这里描述的一些方法中,各个医师考虑待治疗的患者来选择佐剂和/或抗原的确切量。此外,佐剂的量可以与相同或等量抗原组合或分开添加,并且考虑到患者特异性或抗原特异性原因,在具体接种方案期间可以调整这些量,使得提供足够的水平。在这种静脉中,可以考虑的患者特异性和抗原特异性因素包括但不限于患者疾病状况的严重性、患者的年龄和体重、饮食、给药时间和频率、药物组合物、反应敏感性和对治疗的耐受性/反应。
尽管已经参照实施方案和实施例描述了本发明,但是应当理解可以进行各种改变而不背离本发明的精神。因此,本发明仅受后附权利要求的限制。
序列表<110>三肽公司马蒂·萨尔贝里<120>丙型肝炎病毒非结构蛋白4A(Ns4A)是增强子元件<130>TRIPEP.052VPC<150>US 60/430,009<151>2002-11-26<160>9<170>FastSEQ for Windows Version 4.0<210>1<211>9<212>PRT<213>丙型肝炎病毒<400>1Gly A1a Val Gln Asn Glu Val Thr Leu1 5<210>2<211>54<212>PRT<213>丙型肝炎病毒<400>2Ser Thr Trp Val Leu Val Gly Gly Val Leu Ala Ala Leu Ala Ala Tyr1 5 10 15Gys Leu Thr Thr Gly Ser Val Val Ile Val Gly Arg Ile Ile Leu Ser20 25 30Gly Lys Pro Ala Ile Ile Pro Asp Arg Glu Val Leu Tyr Arg Glu Phe35 40 45Asp Glu Met Glu Glu Cys50<210>3<211>162<212>DNA<213>丙型肝炎病毒<400>3agcacctggg tgctggtagg cggagtccta gcagctctgg ccgcgtattg cctgacaaca 60ggcagcgtgg tcattgtggg caggatcatc ttgtccggaa agccggccat cattcccgac 120agggaagtcc tttaccggga gttcgatgag atggaagagt gc 162<210>4<211>30<212>DNA<213>丙型肝炎病毒
<400>4gtggaattca tggcgcctat cacggcctat 30<210>5<211>24<212>DNA<213>丙型肝炎病毒<400>5ccacgcggcc gcgacgacct acag 24<210>6<211>30<212>DNA<213>丙型肝炎病毒<400>6ccctctagat cagcactctt ccatttcatc 30<210>7<211>33<212>DNA<213>丙型肝炎病毒<400>7ctggaggtcg tcacgcctac ctgggtgctc gtt 33<210>B<211>33<212>DNA<213>丙型肝炎病毒<400>8aacgagcacc caggtaggcg tgacgacctc cag 33<210>9<211>9<212>PRT<213>丙型肝炎病毒<400>9Lys Ala Val Tyr Asn Phe Ala Thr Met1 权利要求
1.一种增加核酸在细胞中表达的方法,包括提供编码丙型肝炎病毒(HCV)非结构蛋白4A(NS4A)或其功能部分的第一核酸;鉴定增加表达的第二核酸;将所述第二核酸与所述第一核酸在所述细胞中相关联,由此这种关联引起所述第二核酸表达,该表达高于在不存在所述第一核酸时的表达。
2.权利要求1的方法,其中所述第二核酸是HCV非结构蛋白3(NS3)。
3.权利要求1或2的方法,其中所述第一和第二核酸顺式连接。
4.权利要求1或2的方法,其中所述第一和第二核酸并列连接。
5.权利要求1或2的方法,其中所述第一和第二核酸在相同的构建体上。
6.权利要求1或2的方法,其中所述第一和第二核酸在分开的构建体上。
7.权利要求1或2的方法,其中所述第一核酸由SEQ.ID.NO.2的10和20个之间的连续氨基酸组成。
8.权利要求1或2的方法,其中所述第一核酸由SEQ.ID.NO.2的20和30个之间的连续氨基酸组成。
9.权利要求1或2的方法,其中所述第一核酸由SEQ.ID.NO.2的30和40个之间的连续氨基酸组成。
10.权利要求1或2的方法,其中所述第一核酸由SEQ.ID.NO.2的50和54个之间的连续氨基酸组成。
11.一种在哺乳动物中增加抗原免疫原性的方法,包括提供编码丙型肝炎病毒(HCV)非结构蛋白4A(NS4A)或其功能部分的第一核酸;鉴定编码在哺乳动物中免疫原性增加的抗原的第二核酸;将所述第二核酸与所述第一核酸相关联,由此这种关联产生所述抗原在所述哺乳动物中的免疫原性,该免疫原性高于在所述哺乳动物中不存在所述第一核酸时由所述第二核酸产生的所述抗原的免疫原性。
12.权利要求11的方法,其中所述第二核酸是HCV非结构蛋白3(NS3)。
13.权利要求11或12的方法,其中所述第一和第二核酸顺式连接。
14.权利要求11或12的方法,其中所述第一和第二核酸并列连接。
15.权利要求11或12的方法,其中所述第一和第二核酸在相同的构建体上。
16.权利要求11或12的方法,其中所述第一和第二核酸在分开的构建体上。
17.权利要求11或12的方法,其中所述第一核酸由SEQ.ID.NO.2的10和20个之间的连续氨基酸组成。
18.权利要求11或12的方法,其中所述第一核酸由SEQ.ID.NO.2的20和30个之间的连续氨基酸组成。
19.权利要求11或12的方法,其中所述第一核酸由SEQ.ID.NO.2的30和40个之间的连续氨基酸组成。
20.权利要求11或12的方法,其中所述第一核酸由SEQ.ID.NO.2的50和54个之间的连续氨基酸组成。
全文摘要
本发明涉及调节关联基因表达的增强子的发现。更具体地,发现来自丙型肝炎病毒(HCV)的非结构蛋白4A(NS4A)调节关联核酸的表达和免疫原性。
文档编号C12N15/86GK1717416SQ200380104289
公开日2006年1月4日 申请日期2003年11月25日 优先权日2002年11月26日
发明者马蒂·萨尔贝里 申请人:三肽公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1