机器人臂、机器人及机器人操作方法

文档序号:2376834阅读:131来源:国知局
机器人臂、机器人及机器人操作方法
【专利摘要】本发明涉及机器人臂、机器人及机器人操作方法。所述机器人臂包括:可伸展/可缩回臂单元,该可伸展/可缩回臂单元被构造成在水平方向上伸展和缩回并且设置有布置在其末端部中的带轮;以及机器人手,该机器人手借助所述带轮以可旋转的方式连接至所述可伸展/可缩回臂单元的末端部。该机器人臂还包括带驱动装置,该带驱动装置包括一个或多个驱动动力源,所述驱动动力源靠近所述机器人手布置并且被构造成直接驱动围绕所述带轮缠绕的带。
【专利说明】机器人臂、机器人及机器人操作方法
【技术领域】
[0001]这里公开的实施方式涉及机器人臂、机器人及机器人操作方法。
【背景技术】
[0002]传统上,水平多关节型机器人已知为用于搬运诸如玻璃基板和半导体晶片之类的工件的机器人。水平多关节型机器人是一种包括可伸展/可缩回臂单元的机器人,在该可伸展/可缩回臂单元中,两个臂通过关节相连。在水平多关节型机器人中,安装在可伸展/可缩回臂单元的末端部处的机器人手通过旋转操作相应的臂而沿着水平方向线性地运动。
[0003]每个臂的旋转操作均例如通过将用作驱动动力源的单个马达的动力借助带-带轮机构进行输送并使安装在每个臂的基端部中的带轮旋转来执行。
[0004]在该水平多关节型机器人中,要求机器人手的取向在每个臂的旋转操作过程中不变。在这方面,例如已经提议了一种方法,其中,通过在机器人手的基端部中安装从动带轮并且将该从动带轮连接至前述带-带轮机构,从而响应于臂的旋转而旋转,来限制机器人手的取向。
[0005]然而,在使用带-带轮机构的情况下,已知的是,由于带的膨胀、收缩和挠曲,而使动力传递刚性降低。已经提出许多不同技术来确保动力传递刚性(例如参见日本实用新型申请公报 N0.H02-58151A)。
[0006]在日本实用新型申请公报Νο.Η02-58151Α中公开的动力传递装置中,张设在驱动齿轮和从动齿轮之间的带构件由诸如金属板等的加强构件来部分或全部加强。
[0007]然而,现如今工件尺寸增大,因此,在传统情况下,在与工件的尺寸无关的情况下确保动力传递刚性并且减小横向摇摆方面,仍有进一步改进的余地。
[0008]例如,在传统情况下使用金属板作为带的加强构件。然而,如果将利用具有高比重的加强构件加强的带布置在水平方向上,则带的长度随着臂的长度由于工件的尺寸明显增加而变得更大。结果,带容易在竖直方向上发生挠曲。因此,传统情况的技术不足以与工件的尺寸无关地去确保动力传递刚性。
[0009]另外,如从用于宽度为2m以上的液晶面板的玻璃基板的出现可以看出,近年来工件尺寸明显增大。为此,与传统情况相比,很有可能由于工件负载或其他原因而在水平方向上产生大的横向摇摆。在这种情况下,根据传统情况,带需要例如通过增加金属板的厚度来进行强有力的加强。然而,这带来的问题是,带变得容易挠曲,并且成本变高。

【发明内容】

[0010]这里公开的实施方式提供了一种机器人臂、机器人及机器人操作方法,它们能够确保动力传递刚性并减小横向摇摆,而与工件的尺寸无关。
[0011]根据实施方式的一方面,提供了一种机器人臂,该机器人臂包括:可伸展/可缩回臂单元,该可伸展/可缩回臂单元被构造成在水平方向上伸展并缩回并且设置有布置在其末端部中的带轮;机器人手,该机器人手借助所述带轮以可旋转的方式连接至所述可伸展/可缩回臂单元的末端部;以及带驱动装置,该带驱动装置包括一个或多个驱动动力源,所述驱动动力源靠近所述机器人手布置并被构造成直接驱动围绕所述带轮缠绕的带。
[0012]通过这里公开的实施方式的一个方面,可以确保动力传递刚性并且减小横向摇摆,而与工件的尺寸无关。
【专利附图】

【附图说明】
[0013]图1是示出了根据一实施方式的机器人的构造的示意图。
[0014]图2是示出了其中可伸展/可缩回臂单元伸展的机器人的操作的示意平面图。
[0015]图3A是示出了根据第一实施方式的机器人臂的内部构造的示意平面图。
[0016]图3B是由图3A中的EVl表示的区域的放大图。
[0017]图4A是示出了控制装置的构造的框图。
[0018]图4B示出了横向摇摆校正信息的一个示例。
[0019]图5是示出了根据第二实施方式的机器人臂的内部构造的示意平面图。
[0020]图6是示出了根据第三实施方式的机器人臂的内部构造的示意平面图。
[0021]图7是示出了带断开感测机构的构造的示意平面图。
【具体实施方式】
[0022]现在将参照附图详细地描述在题述申请中公开的机器人臂、机器人和机器人操作方法的实施方式。当前公开内容不受下面这里描述的实施方式的限制。
[0023]在如下描述中,将举例描述用于搬运作为搬运目标对象的玻璃基板的基板搬运机器人。基板搬运机器人将被简称为“机器人”。作为末端执行器的机器人手将被简称为“手”。玻璃基板将被称为“工件”。
[0024]首先,将参照图1描述根据当前实施方式的机器人10的构造。图1是示出了根据当前实施方式的机器人10的构造的示意图。
[0025]为了更容易理解所做的描述,在图1中示出了包括Z轴的三维直角坐标系,该Z轴的正方向是竖直向上方向,其负方向是竖直向下方向。沿着XY平面延伸的方向表示“水平方向”。在如下描述中使用的其他附图中有时也会示出该直角坐标系。在如下描述中,将X轴正方向定义为“前”,将Y轴正方向定义为“左”。
[0026]在如下描述中,有时情况是这样的,S卩:如果有多个构成部件,则一些构成部件用附图标记表示,而其余构成部件不用附图标记表示。在这种情况下,用附图标记表示的构成部件在构造上与没有用附图标记表示的其余构成部件相同。
[0027]图1中所示的机器人10是包括一对可伸展/可缩回臂单元11的双臂水平多关节型机器人,这一对可伸展/可缩回臂单元能够在伸展/缩回方向(即X轴方向上)伸展和缩回。更具体地说,机器人11包括一对可伸展/可缩回臂单元11、一对手12、臂基座13、升降架14和运行台15。
[0028]每个可伸展/可缩回臂单元11都包括第一臂Ila和第二臂lib。升降架14包括第一升降臂14a、第二升降臂14b和基部14c。“机器人臂”被构造成至少包括所述可伸展/可缩回臂单元11和手12。
[0029]每个手12都是用于把持工件的末端执行器,并安装在每个可伸展/可缩回臂单元11的末端部中。可伸展/可缩回臂单元11和手12的细节在稍后参照图2描述。臂基座13用作可伸展/可缩回臂单元11的基部并以水平可旋转的方式支撑可伸展/可缩回臂单元11。
[0030]臂基座13连接至升降架14,以围绕平行于竖直方向的摆动轴线S摆动。在如下描述中,有时将围绕摆动轴线S的摆动操作称为机器人10的“摆动轴线操作”。
[0031]升降架14以可摆动的方式支撑位于其末端部处的臂基座13,并沿着平行于竖直方向的上下运动方向来上下移动臂基座13。
[0032]第一升降臂14a在其末端部中支撑臂基座13,从而臂基座13能够围绕摆动轴线S摆动并且能够围绕轴线Ul旋转。第二升降臂14b在其末端部中支撑第一升降臂14a的基端部,从而第一升降臂14a能够围绕轴线U2旋转。
[0033]基部14c安装在运行台15上,以支撑第二升降臂14b的基端部,从而第二升降臂14b能够围绕轴线L旋转。运行台15是由运行托架等形成的运行机构。运行台15沿着例如平行于图1中的Y轴的运行轴线SL运行。该运行轴线SL不限于具有线性形状的轴线。在如下描述中,有时将沿着该运行轴线SL的运行操作称为机器人10的“运行轴线操作”。
[0034]机器人10通过使臂基座13围绕轴线Ul旋转、使第一升降臂14a围绕轴线U2旋转并且使第二升降臂14b围绕轴线L旋转而进行上下操作。
[0035]控制装置20连接至机器人10以与机器人10通信。控制装置20控制机器人10以执行各种操作,例如稍后将描述的可伸展/可缩回臂单元11的上下操作、摆动轴线操作、运行轴线操作以及伸展/缩回操作。基板搬运系统I被构造成至少包括控制装置20和机器人10。
[0036]接下来,将参照图2描述包括手12的每个可伸展/可缩回臂单元11的伸展/缩回操作。图2是示出了其中使可伸展/可缩回臂单元11伸展的机器人10的操作的示意平面图。
[0037]为了更容易理解所做的描述,以下这里将示出并描述用作双臂的可伸展/可缩回臂单元11中的一个臂单元,即与右臂对应的可伸展/可缩回臂单元11。
[0038]如图2所示,可伸展/可缩回臂单元11的第一臂Ila的基端部连接至臂基座13,从而第一臂Ila能够围绕轴线Pl旋转。第二臂Ilb的基端部连接至第一臂Ila的末端部,从而第二臂Ilb能够围绕轴线P2旋转。
[0039]手12的基端部连接至第二臂Ilb的末端部,从而手12能够轴线P3旋转。手12包括框架12a和多个叉齿12b。框架12a连接至第二臂lib。框架12a将叉齿12b以平行的方式支撑。
[0040]第二臂Ilb和框架12a具有中空结构。用于旋转手12的带驱动装置布置在第二臂Ilb和框架12内。稍后将参照图3A和随后的附图更详细对其进行说明。
[0041]如图2所示,叉齿12b是用于保持工件W的构件,并被构造成通过将工件W支撑在例如其主表面上而保持工件W。用于保持工件W的方法不限于上述示例,叉齿12b可以吸附工件W。
[0042]如图2所示,当伸展可伸展/可缩回臂11时,机器人10执行将可伸展/可缩回臂单元11伸展的操作,同时将手12的运动方向和取向限制为规定的运动方向和规定的取向(图2中所示的X轴正方向)。[0043]更具体地说,当伸展可伸展/可缩回臂11时,机器人10使第一臂Ila围绕轴线Pl逆时针旋转旋转量Θ (参见图2中的箭头201)。此时,第二臂Ilb相对于第一臂Ila围绕轴线P2顺时针旋转两倍旋转量2 Θ (参见图2中的箭头202)。
[0044]手12相对于第二臂Ilb围绕轴线P3逆时针旋转旋转量Θ (参见图2中的箭头203)。这些操作是用于伸展可伸展/可缩回臂单元11同时将手12的运动方向限制为沿着X轴线性延伸的方向并将手12的取向(即叉齿12b的末端部的取向)限制为前侧的基本旋转操作。
[0045]传统上,通过将布置在臂基座13等中的单个驱动动力源的动力借助带-带轮机构传递到轴线P2或轴线P3来执行旋转操作。然而,只要在传统情况下执行该基本旋转操作,因为带的动力传递刚性可能较低,并且手12保持较大工件W的机会可能进一步增加,因而很可能发生由图2中虚线轨迹204所表示的横向摇摆。
[0046]因而,在当前实施方式中,通过校正手12在规定位置中的旋转操作来减小横向摇摆(参见图2中的箭头205和206),由此采取用于可靠地限制手12的运动方向和取向的措施(参见箭头207)。
[0047]接下来,将参照图3A至图6相继描述作为这种措施的具体示例的第一至第三实施方式。
[0048](第一实施方式)
[0049]图3A是示出根据第一实施方式的机器人臂的内部构造的示意平面图。图3B是由图3A中的EVl表示的区域的放大图。为了便于描述,图3B示出了通过将X轴和Y轴旋转为与第二臂Ilb的延伸方向一致所获得X’轴和Y’轴。
[0050]如图3A所示,根据第一实施方式的机器人10的第一臂Ila在其基端部中设置有旋转轴线与轴线Pl重合的驱动带轮llaa。驱动带轮Ilaa连接至安装在臂基座13内的马达Ml的输出轴。马达Ml是用于借助驱动带轮Ilaa使第一臂Ila围绕轴线Pl旋转的驱动动力源。
[0051]第二臂Ilb在其基端部中设置有旋转轴线与轴线P2重合的从动带轮llba。第二臂Ilb借助从动带轮Ilba连接至第一臂Ila,从而第二臂Ilb能够相对于第一臂Ila的旋转而相对地旋转。
[0052]从动带轮Ilba和驱动带轮Ilaa借助带Tl彼此相连。因此,第二臂Ilb借助从动带轮Ilba而围绕轴线P2被动地旋转,从动带轮Ilba借助带Tl接收马达Ml的动力。
[0053]手12借助安装在第二臂Ilb的末端部中的带轮12aa连接至第二臂Ilb的末端部,从而手12能够围绕轴线P3旋转。
[0054]如由图3A中的EVl所示的矩形虚线区域所示的,第二臂Ilb包括具有两个马达(即第一马达M2a和第二马达M2b)的带驱动装置,每个马达都用作用于靠近手12布置(即,在第二臂Ilb的末端部内)的带T2的驱动动力源。带驱动装置是通过驱动围绕第二臂Ilb的末端部中的带轮12aa缠绕的带T2而使手12围绕轴线P3旋转的机构。
[0055]现在将详细地描述带驱动装置。如图3B所示,带驱动装置包括两个马达M2a和WZh以及两个滚珠丝杠,即第一滚珠丝杠B2a和第二滚珠丝杠B2b。
[0056]马达M2a和M2b分别包括布置成沿着第二臂Ilb的延伸方向(在图3B中的X’轴方向上)延伸的输出轴01和02。滚珠丝杠B2a和B2b分别连接至输出轴01和02。[0057]通过将马达M2a和M2b布置成使得他们的输出轴01和02沿着第二臂Ilb的延伸方向延伸,可以减小至少第二臂Ilb的厚度。这有助于减小机器人10的尺寸并使操作空间变窄。
[0058]围绕带轮12aa缠绕的带T2的一端固定至滚珠丝杠B2a的螺母N2a。带T2的另一端固定至滚珠丝杠B2b的螺母N2b。
[0059]在以上描述的构造中,马达M2a和M2b被独立地驱动和控制,以调节带轮12aa的旋转量、带轮12aa的旋转方向(参见图3B中的箭头)以及带T2的张力。
[0060]更具体地说,例如通过将由马达M2a的操作引起的螺母N2a沿箭头301的方向的运动与由马达M2b的操作引起的螺母N2b沿箭头304的方向的运动组合,能够使带轮12aa围绕轴线P3逆时针旋转。
[0061]此时,例如,当假定沿箭头301的方向作用的力为I时,如果马达M2a和M2b被单独地驱动和控制,从而使得沿箭头301的方向作用的力等于I并且使得沿箭头304的方向作用的力等于l-α (其中α是小于I的正数),则可以改变带轮12aa的逆时针旋转量,从而在削弱带T2的张力的同时使带轮12aa旋转。
[0062]如果马达M2a和M2b被分别地驱动和控制,使得沿箭头301的方向作用的力等于I并且使得沿箭头304的方向作用的力等于l+α,则可以改变带轮12aa的逆时针旋转量,从而在加强带T2的张力的同时使带轮12aa旋转。
[0063]与上述逆时针旋转类似的方式,通过将螺母N2b的沿箭头303的方向的运动和螺母N2a的沿箭头302的方向的运动组合可以使带轮12aa顺时针旋转。
[0064]通过将螺母N2a的沿箭头301的方向的运动和螺母N2b的沿箭头303的方向的运动组合可以容易地增加带T2的张力。
[0065]马达M2a和M2b的这种独立控制由控制装置20来执行。现在将参照图4A描述控制装置20的构造。图4A是示出了控制装置20的构造的框图。
[0066]在图4A中,仅仅示出了描述控制装置20的特征所需要的部件,一般部件没有被示出。
[0067]如图4A所示,控制装置20包括控制器21和存储单元22。控制器21包括臂驱动控制器21a、手驱动控制器21b和调节器21c。存储单元22存储横向摇摆校正信息22a。
[0068]控制器21执行控制装置20的总体控制。臂驱动控制器21a执行用作第一臂Ila的驱动动力源的马达Ml的驱动控制。
[0069]手驱动控制器21b彼此独立地驱动和控制马达M2a和M2b。基于之前在横向摇摆校正信息22a中设定的用于横向摇摆量的校正值,调节器21c调节由手驱动控制器21b执行的马达M2a和M2b的驱动控制。
[0070]存储单元22是诸如硬盘装置或非易失性存储器之类的存储器装置,并且被构造成存储横向摇摆校正信息22a。
[0071]现在将参照图4B描述横向摇摆校正信息22a。图4B示出了横向摇摆校正信息22a的一个示例。在图4B中,手12的横向摇摆量在水平轴上示出,而旋转量在竖直轴上示出。虚线曲线和三个中央箭头对应于图2中所示的虚线204和箭头205、206和207。
[0072]横向摇摆校正信息22a例如通过在机器人10的制造过程中进行的评价测试来得出,并且是与用于相应的旋转量的横向摇摆量对应的一组预定校正值。[0073]例如,图4B示出了这样一个示例,其中,当手12的旋转量为Θ /4时,该手12的横向摇摆量在负方向变大(即,其中手12相对于可伸展/可缩回臂单元11的旋转大大地延迟的示例)。在这种情况下,例如,用于在该正时将带轮12aa的旋转量或带T2的张力向正方向校正的校正值被设定在横向摇摆校正信息22a中。
[0074]因而,当手12的实际旋转量为Θ /4时,马达M2a和M2b被分别地驱动和控制,使得能够借助校正值将带轮12aa的旋转量或带T2的张力向正方向调节。
[0075]图4B进一步示出了这样一个示例,其中,当手12的旋转量为3 Θ /4时,该手12的横向摇摆量在正方向上变大(即,其中手12相对于可伸展/可缩回臂单元11的旋转大大地提前的示例)。在这种情况下,例如,用于在该正时将带轮12aa的旋转量或带T2的张力向负方向校正的校正值被设定在横向摇摆校正信息22a中。
[0076]因而,当手12的实际旋转量为3 Θ /4时,马达M2a和M2b被分别地驱动和控制,使得能够借助校正值将带轮12aa的旋转量或带T2的张力向负方向调节。
[0077]图4B中所示的示例仅仅为一个示例。作为另选示例,所述横向摇摆校正信息22a可以是基于在机器人10的实际操作过程中反复检测到的实际横向摇摆量的学习信息。在这种情况下,与手12的实际旋转量对应的横向摇摆量可以通过例如在手12的末端部中安装横向摇摆量测量传感器来检测。校正值可以基于所检测的值被持续地更新。
[0078]以上描述的带驱动装置可以提供如下效果。首先,用于使带轮12aa旋转的带T2的驱动动力源靠近手12安装。这有助于缩短带T2的长度。因而,能使得动力传递刚性难以下降。此外,带T2由马达M2a和M2b直接驱动。因此可以确保动力传递刚性而与工件W的尺寸无关,由此减小横向摇摆。
[0079]带T2的相反两端借助于螺母N2a和N2b由滚珠丝杠B2a和B2b引导和移动。因而,可以精确地移动带T2。这有助于确保动力传递刚性而与工件W的尺寸无关。
[0080]带T2能够由被彼此独立地驱动和控制的马达M2a和M2b从其相反两端被驱动。这使得可以精细地调节带轮12aa的旋转量和带T2的张力。因而,即使工件W具有大尺寸并且横向摇摆趋于较大地产生,也可以确保动力传递刚性,以减小横向摇摆。
[0081]另外,马达M2a和M2b被布置成使得其输出轴01和02沿着第二臂Ilb的延伸方向延伸。因此可以减小至少第二臂Iib的厚度。这有助于减小机器人10的尺寸并使得操作空间变窄。
[0082]如上所述,根据第一实施方式的机器人臂包括可伸展/可缩回臂单元11、手(机器人手)12和带驱动装置。可伸展/可缩回臂单元11在水平方向上伸展和缩回并且在其末端部设置有带轮。手12借助该带轮以可旋转的方式连接至可伸展/可缩回臂单元11的末端部。带驱动装置包括靠近手布置的驱动动力源,以直接驱动围绕带轮缠绕的带。
[0083]根据第一实施方式的机器人臂,因此可以确保动力传递刚性而与工件W的尺寸无关,由此减小横向摇摆。
[0084]在以上描述的第一实施方式中,已经图示了这样一种情况,其中,各个驱动动力源被连接至带驱动装置的带的相反两端,并且带的张力通过独立地控制驱动动力源来进行调节。另选地,可以采用安装有空转带轮的构造。该构造将被认为是第二实施方式并且下面将参照图5进行描述。
[0085](第二实施方式)[0086]图5是示出了根据第二实施方式的机器人臂的内部构造的示意性平面图。由于只有图5中所示的可伸展/可缩回臂单元11’的内部构造在第一实施方式和第二实施方式之间不同,因此图5仅仅示出了可伸展/可缩回臂单元11’。
[0087]图5相当于第一实施方式的图3B。因此,描述将集中在第二实施方式的与第一实施方式的部件不同的部件。在一些情况下,将简要地描述相同的部件,或者将省略它们的重复描述。这在稍后将参照图6描述的第三实施方式中同样适用。
[0088]如图5中所示,根据第二实施方式的可伸展/可缩回臂单元11’的第二臂lib’包括带驱动装置,在该带驱动装置中,作为带T2的驱动动力源的马达M2a和M2b靠近手12布置。马达M2a和M2b被布置成使得它们的输出轴01和02沿着图5中的Z轴方向延伸。尽管没有用附图标记表示,但带轮分别连接至输出轴01和02。
[0089]可伸展/可缩回臂单元11’的第二臂lib’还包括附加带轮llbb,该附加带轮Ilbb作为带轮12aa的配对物沿着第二臂lib’的延伸方向安装并被构造成围绕轴线P4旋转。如图5所示,该附加带轮Ilbb可以用由布置在第二臂lib’的基端部中以围绕轴线P2旋转的从动带轮Ilba替代。
[0090]空转带轮IP靠近马达M2a和M2b布置(即在第二臂lib’的末端部中)。
[0091]如图5中所示,带T2经由马达M2a的带轮、马达M2b的带轮和空转带轮IP被张设而围绕带轮12aa和附加带轮Ilbb行进。
[0092]通过该构造,通过使马达M2a和M2b的带轮顺时针旋转(参见图5中的箭头501和502),可以使带轮12aa围绕轴线P3逆时针旋转(参见图5中的箭头503),同时利用空转带轮IP保持带T2的张力。另外,通过使马达M2a和M2b在逆时针方向上旋转可以使带轮12aa顺时针旋转。
[0093]根据第二实施方式的机器人臂能够提供如下效果。首先,驱动动力源靠近手12安装,并且附加带轮Ilbb与驱动动力源相邻地布置。这使得可以缩短在带轮12aa和附加带轮Ilbb之间经张设的带T2的长度。因而,可以使动力传递刚性难以下降。
[0094]由于带轮12aa能够在利用空转带轮IP保持带T2的张力的同时进行旋转,因此可确保动力传递刚性而与工件的尺寸无关,由此减小横向摇摆。
[0095]由于缠绕在带轮12aa和附加带轮Ilbb之间的带T2能够反复旋转,因此如果必要则可以进行摆动手12的操作。
[0096]如图5所示,作为驱动动力源的马达M2a和M2b布置在带轮12aa和附加带轮Ilbb之间。因此可以实现结构紧凑的带驱动装置。
[0097]在图5中所示的示例中,马达M2a和M2b被布置成使得他们的输出轴01和02沿着Z轴方向延伸。另选地,输出轴01和02可以被安装成沿着图5中的X’轴方向(即,沿着第二臂lib’的延伸方向)延伸。在这种情况下,输出轴01和02的旋转方向可以通过使用齿轮等来进行转换。
[0098]在这种情况下,可以减小第二臂lib’的厚度。这有助于减小机器人10的尺寸并
使操作空间变窄。
[0099]在上述第一实施方式中,已经例示了其中各个驱动动力源被连接至带驱动装置的带的相反两端并且驱动动力源被彼此独立地控制的情况。另选地,可以采用其中驱动动力源仅被安装在带的一端的构造。该构造将被认为是第三实施方式并且下面将参照图6进行描述。
[0100](第三实施方式)
[0101]图6是示出了根据第三实施方式的机器人臂的内部构造的示意平面图。由于图6中所示的可伸展/可缩回臂单元11”的内部构造在第一实施方式和第三实施方式之间是不同的,因此图6仅仅示出了可伸展/可缩回臂单元11”。
[0102]如图6所示,根据第三实施方式的可伸展/可缩回臂单元11”的第二臂lib”包括带驱动装置,在该带驱动装置中,作为带T2的驱动动力源的单个马达M2a靠近手12布置。
[0103]马达M2a被布置成使其输出轴01沿着第二臂lib”的延伸方向(B卩,沿着图6中的V轴方向)延伸。滚珠丝杠B2a和带轮Ilbc连接至输出轴01。
[0104]具有反方向螺纹的滚珠丝杠B2b相对于滚珠丝杠B2a并排地安装。带轮Ilbd连接至滚珠丝杠B2b。带轮Ilbd借助带T连接至带轮Ilbc,由此滚珠丝杠B2b能够随着滚珠丝杠B2a的旋转而旋转。
[0105]在上述构造中,在驱动马达M2a时,螺母N2a和N2b总是在彼此相反的方向上运动,由此在一个方向上旋转带轮12aa。
[0106]更具体地说,如图6所示,当马达M2a沿箭头601的方向移动螺母N2a时,滚珠丝杠B2b被动地旋转以沿箭头602的方向移动螺母N2b,结果使带轮12aa围绕轴线P3逆时针旋转。带轮12aa能够通过反向旋转马达M2a而顺时针旋转。
[0107]根据第三实施方式的机器人臂能够提供如下效果。首先,带T2可具有较短长度,这是因为用于旋转带轮12aa的带T2的驱动动力源靠近手12安装。因此可以使得动力传递刚性的降低难以发生。由于带T2由马达M2a直接驱动,因此可以确保动力传递刚性而与工件W的尺寸无关,由此减小横向摇摆。
[0108]带T2的相反两端借助于螺母N2a和N2b由滚珠丝杠B2a和B2b引导并移动。因而,可以在保持带T2的张力的同时精确地移动带T2。这有助于确保动力传递刚性而与工件W的尺寸无关。
[0109]马达M2a被布置成使其输出轴01沿着第二臂lib”的延伸方向延伸。因此可以减小至少第二臂lib”的厚度。这有助于减小机器人10的尺寸并使操作空间变窄。
[0110](其他实施方式)
[0111]以上描述的各个实施方式的共同之处是它们都包括用于直接驱动使手旋转的带的马达或多个马达。利用该方面,可以提供一种用于感测带断开的带断开感测机构。
[0112]将参照图7描述该修改。图7是示出了包括带断开感测机构30的构造的第二臂单元11”’的示意平面图。图7相当于第一实施方式的图3B。
[0113]如图7所示,该带断开感测机构30包括分别连接至马达M2a和M2b的负载检测单元30a。负载检测单元30a是用于检测作用在马达M2a和M2b上的负载的变化的单元。
[0114]在带T2没有断开的状态下,负载至少作用在用于直接驱动带T2的马达M2a和M2b上,而与手12是处于停止状态还是处于操作状态无关。
[0115]利用该方面,当负载检测单元30a检测到作用在马达M2a和M2b上的负载基本上同时地改变至接近无负载状态(即,其中负载等于零的状态)时,带断开感测机构30在带T2断开时感测到这一状态。
[0116]结果,可以快速地检测并处理手12由于带断开而变得不能控制的情形。这间接地帮助确保了动力传递刚性并减小了横向摇摆。
[0117]尽管在以上描述的各个实施方式中通过示例描述了双臂机器人,但是这不是为了限制机器人的臂的数量。当前公开内容可以应用于单臂机器人或具有两个以上的臂的机器人。
[0118]在以上描述的各个实施方式中,已经通过示例描述了其中可伸展/可缩回臂单元通过互连两个臂而形成的情况。然而,这不是为了限制彼此连接的臂的数量。
[0119]在以上描述的各个实施方式中,机器人被安装在运行托架上以执行运行轴线操作。然而,运行机构的种类不受限制,只要机器人能够沿着预定轨迹运动即可。
[0120]在以上描述的各个实施方式中,已经通过示例描述了其中作为搬运目标对象的工件是玻璃基板的情况。然而,这不是为了限制工件的种类。
[0121]在以上描述的各个实施方式中,已经通过示例描述了其中机器人是基板搬运机器人的情况。然而,这不是为了限制机器人的用途。只需要该机器人是水平多关节型机器人。
[0122]本领域技术人员能够容易地推导出其他效果和修改示例。为此,当前公开的宽泛方面并不限于以上所示和描述的具体公开和代表性实施方式。因而,本领域技术应该理解,根据设计要求和其他因素可以出现各种修改、组合、子组合和变更,只要它们在所附权利要求或其等同物的范围内即可。
【权利要求】
1.一种机器人臂,该机器人臂包括: 可伸展/可缩回臂单元,该可伸展/可缩回臂单元被构造成在水平方向上伸展和缩回并且设置有布置在其末端部中的带轮; 机器人手,该机器人手借助所述带轮以可旋转的方式连接至所述可伸展/可缩回臂单元的末端部;以及 带驱动装置,该带驱动装置包括一个或多个驱动动力源,所述驱动动力源靠近所述机器人手布置并且被构造成直接驱动围绕所述带轮缠绕的带。
2.根据权利要求1所述的机器人臂,其中,所述可伸展/可缩回臂单元包括第一臂和第二臂,所述第一臂具有以可旋转的方式连接至臂基座的基端部,所述第二臂具有以可旋转的方式连接至所述第一臂的末端部的基端部和供所述机器人手以可旋转的方式连接的末端部,并且 所述带驱动装置布置在所述第二臂中。
3.根据权利要求2所述的机器人臂,其中,所述带驱动装置包括均用作驱动动力源的一个或多个马达,并且 每个马达都被布置成使得其输出轴沿着所述第二臂的延伸方向延伸。
4.根据权利要求3所述的机器人臂,其中,每个马达的输出轴连接有滚珠丝杠,并且 所述带通过将该带的端部固定至所述滚珠丝杠的螺母而连接至各马达。
5.根据权利要求3所述的机器人臂,其中,所述带驱动装置包括连接至所述带的一端的第一马达和连接至所述带的另一端的第二马达,并且 所述带的张力或所述带轮的旋转`量`通过独立地驱动并控制所述第一马达和所述第二马达来调节。`
6.根据权利要求4所述的机器人臂,其中,所述带驱动装置包括连接至所述带的一端的第一马达和连接至所述带的另一端的第二马达,并且 所述带的张力或所述带轮的旋转量通过独立地驱动并控制所述第一马达和所述第二马达来调节。
7.根据权利要求2所述的机器人臂,其中,所述带驱动装置包括:均用作驱动动力源的第一马达和第二马达;与所述第一马达和所述第二马达相邻地布置的多个空转带轮;以及作为所述带轮的配对物沿着所述第二臂的延伸方向设置的附加带轮, 所述第一马达和所述第二马达布置在所述带轮和所述附加带轮之间,并且 所述带将所述带轮和所述附加带轮互连,使得所述带借助于所述第一马达的输出轴、所述第二马达的输出轴和所述空转带轮而围绕所述带轮和所述附加带轮行进。
8.根据权利要求2所述的机器人臂,其中,所述带驱动装置包括:用作驱动动力源的单个马达,该马达被布置成使得其输出轴沿着所述第二臂的延伸方向延伸;第一滚珠丝杠,该第一滚珠丝杠连接至所述马达的输出轴和所述带的一端;以及第二滚珠丝杠,该第二滚珠丝杠的螺纹方向与所述第一滚珠丝杠的螺纹方向相反,该第二滚珠丝杠被构造成跟随所述第一滚珠丝杠的旋转而旋转并且连接至所述带的另一端。
9.根据权利要求1至8中任一项所述的机器人臂,该机器人臂还包括: 负载检测单元,该负载检测单元被构造成检测作用在每个驱动动力源上的负载的变化;以及带断开感测机构,该带断开感测机构被构造成在所述负载检测单元检测到所述驱动动力源基本同时地变化成接近无负载状态时感测到所述带的断开。
10.一种机器人,该机器人包括权利要求1至8中任一项所述的机器人臂。
11.一种操作机器人的方法,该机器人设置有机器人臂,该机器人臂包括:可伸展/可缩回臂单元,该可伸展/可缩回臂单元被构造成在水平方向上伸展和缩回并且设置有布置在其末端部中的带轮;机器人手,该机器人手借助所述带轮以可旋转的方式连接至所述可伸展/可缩回臂单元的末端部;以及带驱动装置,该带驱动装置包括连接至所述带的一端的第一马达和连接至所述带的第二端的第二马达,所述第一马达和所述第二马达靠近所述机器人手布置以直接驱动围绕所述带轮缠绕的带,该方法包括: 基于与所述机器人手的横向摇摆量成比例地设定的校正值,通过独立地驱动并控制所述第一马达和所述第二马·达,来调节所述带的张力或所述带轮的旋转量。
【文档编号】B25J18/02GK103817706SQ201310574917
【公开日】2014年5月28日 申请日期:2013年11月15日 优先权日:2012年11月16日
【发明者】井上久哉, 末吉智 申请人:株式会社安川电机
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1