物体移动装置、物体处理装置、曝光装置、物体检查装置及元件制造方法_3

文档序号:9630951阅读:来源:国知局
离安装有各两个。此外,保持单元的数目及配置并不限于此,亦可按照基板大小、易弯曲程度等来适当追加额外的保持单元。又,保持单元65亦可安装于Y框构件。
[0075]由图5(A)及图5(B)可知,保持单元65具有形成为YZ剖面L字形的臂部66。在臂部66的基板载置面,设有用以通过例如真空吸附来吸附基板P的吸附垫67。又,在臂部66的上端部设有接头构件68,该接头构件68连接至管(图示省略)的一端,管的另一端连接于未图示的真空装置。吸附垫67与接头构件68经由设于臂部66内部的配管构件而彼此连通。在臂部66与X框构件61x的彼此对向的对向面,分别形成有突出成凸状的凸状部69a,在该彼此对向的一对凸状部69a之间,通过多个螺栓69b架设有在Z轴方向分离的一对与XY平面平行的板弹簧69。亦即,臂部66与X框构件61x通过平行板弹簧而连接。是以,臂部66相对X框构件61x在X轴方向及Y轴方向通过板弹簧69的刚性而限制其位置,相对于此,在Z轴方向(垂直方向)上则能通过板弹簧69的弹性以不旋转于θ X方向的方式位移(上下移动)于Z轴方向。
[0076]此处,臂部66的下端面(一 Z侧端面)较一对X框构件61x及一对Y框构件61y各自的下端面(一 Z侧端面)更往一 Z侧突出。其中,臂部66的基板载置面的厚度T,设定为较空气悬浮单元50的气体喷出面与基板P的下面间的距离Dp (本实施形态中例如为
0.8_左右)薄(例如设定为0.5_左右)。因此,在臂部66的基板载置面的下面与多个空气悬浮单元50的上面之间形成有例如0.3mm左右的空隙,在基板保持框60与XY平面平行移动于多个空气悬浮单元50上时,臂部66与空气悬浮单元50彼此不接触。此外,如图6(A)?图6(C)所示,在基板P的曝光动作中,臂部66由于不通过定点载台40的上方,因此臂部66与空气夹具单元80亦不会彼此接触。此外,臂部66的基板载置面部如上述厚度较薄,因此在Z轴方向的刚性较低,但由于能扩大抵接于基板P的部分(与XY平面平行的平面部)的面积,因此能使吸附垫大型化,提升基板的吸附力。又,能确保臂部本体在与XY平面平行的方向的刚性。
[0077]驱动单元70如图3所示,具有固定于定盘12上的X导件71、搭载于X导件71且可在X导件71上移动于X轴方向的X可动部72、搭载于X可动部72的Y导件73、以及搭载于Y导件73且可在Y导件73上移动于Y轴方向的Y可动部74。如图2所示,基板保持框60的+X侧的Y框构件61y固定于Y可动部74。
[0078]X导件71如图2所示,配置于定点载台40的一 X侧且在分别构成第三及第四列的空气悬浮单元列的第四台空气悬浮单元50与第五台空气悬浮单元50之间。又,X导件71较第4列的空气悬浮单元列更往+X侧延伸。此外,图3中为避免图式过于复杂,省略空气悬浮单元50的图示的一部分。X导件71具有以X轴方向为长边方向的与XZ平面平行的板状构件所构成的本体部71a、以及在定盘12上支承本体部71a的多个例如三个支承台71b (参照图1)。本体部71a的Z轴方向的位置设定成其上面位于多个空气悬浮单元50各自的支承部52下方。
[0079]在本体部71a的+Y侧侧面、一Y侧侧面、以及上面(+Z侧之面)如图1所示分别固定有与X轴平行延伸设置的X线性导件75。又,在本体部71a的+Y侧、一 Y侧各自的侧面固定有磁石单元76,该磁石单元76包含沿X轴方向排列的多个磁石(参照图3)。
[0080]X可动部72如图1所示,由YZ剖面为倒U字形的构件构成,前述X导件71插入于该构件的一对对向面间。在X可动部72的内侧面(顶面及彼此对向的一对对向面)分别固定有形成为剖面υ字形的滑件77。滑件77具有未图示的滚动体(例如球体、滚子等),以相对X线性导件75可滑动的状态卡合(嵌合)于X线性导件75。又,在X可动部72的一对对向面分别固定有与固定在X导件71的磁石单元76对向的包含线圈的线圈单元78。一对线圈单元78构成通过与一对磁石单元76的电磁相互作用将X可动部72在X导件71上驱动于X轴方向的电磁力驱动方式的X线性马达。供应至线圈单元78的线圈的电流大小、方向受未图示的主控制装置控制。X可动部72在X轴方向的位置信息通过未图示的线性编码器系统或光干涉仪系统高精度地测量。
[0081]在X可动部72的上面固定有与Z轴平行之轴79的一端(下端)。轴79如图1所示,通过构成第四列的空气悬浮单元列的第四台与第五台空气悬浮单元50之间而较各空气悬浮单元50上面(气体喷出面)更往+Z侧延伸。轴79的另一端(上端)固定于Y导件73的下面中央(参照图3)。因此,Y导件73配置于空气悬浮单元50上面的上方。Y导件73由以Y轴方向为长边方向的板状构件构成,在其内部具有未图示的磁石单元,该磁石单元包含沿Y轴方向排列的多个磁石。此处,由于Y导件73配置于多个空气悬浮单元50上方,因此其下面被空气悬浮单元50所喷出的空气支承,藉此,可防止Y导件73因例如其Y轴方向两端部的自身重量而下垂。因此,不需确保用以防止上述下垂的刚性,可谋求Y导件73的轻量化。
[0082]Y可动部74如图3所示,由在内部具有空间的高度方向尺寸较小(薄)的箱形构件构成,在其下面形成有容许轴79通过的开口部,又,Y可动部74在+Y侧及一 Y侧侧面亦具有开口部,Y导件73经由该开口部插入于Y可动部74内。又,Y可动部74,在对向于Y导件73的对向面具有未图示的非接触推力轴承、例如空气轴承,并且可以非接触状态在Y导件73上移动于Y轴方向。由于保持基板P的基板保持框60固定于Y可动部74,因此对前述定点载台40及多个空气悬浮单元50分别为非接触状态。
[0083]再者,Y可动部74在其内部具有包含线圈的线圈单元(图示省略)。该线圈单元构成通过与Y导件73所具有的磁石单元的电磁相互作用将Y可动部74在Y导件73上驱动于Y轴方向的电磁力驱动方式的Y线性马达。供应至线圈单元的线圈的电流大小、方向受未图示的主控制装置控制。Y可动部74在Y轴方向的位置信息通过未图示的线性编码器系统或光干涉仪系统高精度地测量。此外,上述X线性马达、Y线性马达可以是动磁式及动圈式的任一者,其驱动方式亦不限于劳伦兹力驱动方式,亦可以是可变磁阻驱动方式等其他方式。又,作为将上述X可动部驱动于X轴方向的驱动装置、以及将上述Y可动部驱动于Y轴方向的驱动装置,可视例如被要求的基板的定位精度、产能、基板的移动行程等,使用例如包含滚珠螺杆或齿条与小齿轮等的单轴驱动装置,亦可使用采用例如金属线或皮带等牵引X可动部、Y可动部而将之分别驱动于X轴方向、Y轴方向的装置。
[0084]除此之外,液晶曝光装置10亦具有用以测量位于紧邻投影光学系统PL下方的基板P表面(上面)的面位置信息(Z轴、Θ X、Θ y的各方向的位置信息)的面位置测量系统(图示省略)。可使用例如美国发明专利第5,448,332号说明书等所揭示的斜入射方式者作为面位置测量系统。
[0085]如上述构成的液晶曝光装置10 (参照图1),是在未图示的主控制装置的控制下,通过未图示的掩膜装载器将掩膜Μ装载于掩膜载台MST,以及通过未图示的基板装载器将基板Ρ装载于基板载台装置PST。其后,通过主控制装置使用未图示的对准检测系统进行对准测量,在对准测量结束后,即进行步进扫描方式的曝光动作。
[0086]图6㈧?图6(C)显示上述曝光动作时的基板载台装置PST的动作的一例。此外,以下说明分别于基板P的+Y侧、一 Y侧区域各设定一个以X轴方向为长边方向的矩形照射区域、即所谓单一基板双显示器的情形。如图6(A)所示,曝光动作从基板P的一 Y侧且一X侧的区域朝向基板P的一 Y侧且+X侧的区域进行。此时,通过驱动单元70的X可动部72 (参照图1等)在X导件71上被驱动往一 X方向,而将基板P相对曝光区域IA往一 X方向(参照图6(A)的黑箭头)驱动,而对基板P的一 Y侧区域进行扫描动作(曝光动作)。其次,基板载台装置PST如图6 (B)所示,通过驱动单元70的Y可动部74在Y导件73上被驱动往一 Y方向(参照图6(B)的白箭头),以进行步进动作。此后,如图6(C)所示,通过驱动单元70的X可动部72 (参照图1等)在X导件71上被往+X方向驱动,而将基板P相对曝光区域IA往+X方向(参照图6(C)的黑箭头)驱动,而对基板P的+Y侧区域进行扫描动作(曝光动作)。
[0087]主控制装置在进行如图6(A)?图6(C)所示的步进扫描方式的曝光动作中,使用干涉仪系统及面位置测量系统持续测量基板P在XY平面内的位置信息及基板P表面的被曝光部位的面位置信息,根据其测量值适当控制四个Z — VCM,以调整(定位)成使基板P中被定点载台40保持的部分、亦即使位于紧邻投影光学系统PL下方的被曝光部位的面位置(Z轴方向、ΘΧ及0y各方向之位置)位于投影光学系统PL的焦深内。藉此,本实施形态的液晶曝光装置10所具有的基板载台装置PST中,即使例如假设在基板P表面产生起伏或基板P产生厚度的误差,亦可确实地使基板P的被曝光部位的面位置位于投影光学系统PL的焦深内,而能使曝光精度提升。
[0088]又,在通过定点载台40调整基板P的面位置时,基板保持框60的臂部66追随基板P的动作(往ζ轴方向的移动或倾斜动作)而位移于Z轴方向。藉此,防止基板P的破损、或臂部66与基板P的偏移(吸附误差)等。此外,多个空气悬浮单元50由于能较空气夹具单元80使基板P更高地悬浮,因此在该基板P与多个空气悬浮单元50间的空气刚性较空气夹具单元80与基板P间的空气刚性低。是以,基板P可容易地在多个空气悬浮单元50上变化其姿势。又,由于固定有基板保持框60的Y可动部74是以非接触方式支承于Y导件73,因此在基板P的姿势变化量大、臂部66无法追随基板P时,能通过基板保持框60本身的姿势的变化,避免上述吸附误差等。此外,亦可作成使X导件73与X可动部72的连结部刚性较低而使Y导件73整体的姿势与基板保持框60 —起变化的构成。
[0089]又,基板载台装置PST中,被多个空气悬浮单元50悬浮支承成大致水平的基板P被基板保持框60保持。又,基板载台装置PST中,通过驱动单元70驱动基板保持框60,藉以使基板P沿水平面(XY 二维平面)被导引,且基板P中被曝光部位(曝光区域IA内的基板P的一部分)的面位置被定点载台40精确控制。如上述,由于基板载台装置PST中,将基板P沿XY平面导引的装置即驱动单元70 (XY载台装置)、与将基板P保持成大致水平且进行Z轴方向的定位的装置即多个空气悬浮单元50、以及定点载台40 (Z/调平载台装置)彼此独立的不同装置,因此与在XY 二维载台装置上将台构件(基板保持具)(用以将基板P以良好平面度保持,具有与基板P大致相同程度的面积)分别驱动于Z轴方向及倾斜方向(Z/调平载台亦与基板同时地被XY 二维驱动)的现有载台装置(参照例如PCT国际公开第2008/129762号(对应美国发明专利申请公开第2010/0018950号说明书))相较,可大幅减低其重量(特别是可动部分的重量)。具体而言,例如使用一边超过3m的大型基板时,相较于现有的载台装置中可动部分的总重量为接近10t,本实施形态中的基板载台装置PST能使可动部分(基板保持框60、X可动部72、Y导件73、以及Υ可动部74等)的总重量降为数百kg程度。因此,例如用以驱动X可动部72的X线性马达、用以驱动Y可动部74的Y线性马达可分别为输出较小者,而能减低运转成本。又,电源设备等的基础整备亦较为容易设置。又,由于线性马达的输出较小即可,因此能减低初期成本。
[0090]又,驱动单元70中,由于保持基板保持框60的Y可动部74以非接触方式被支承于Y导件73,而将基板P沿XY平面导引,因此几乎没有从设置于地面F上的定盘12侧经由空气轴承传达的Z轴方向的振动(干扰)对基板保持框60的控制带来不良影响之虞。因此,基板P的姿势稳定,曝光精度提升。
[0091]又,由于驱动单元70的Y可动部74以非接触状态被支承于Y导件73而可防止产生灰尘,因此纵使Y导件73及Y可动部74配置于较多个空气悬浮单元50的上面(气体喷出面)更上方,亦不会对基板P的曝光处理带来影响。另一方面,X导件71及X可动部72配置于较空气悬浮单元50更下方,因此即使假设产生灰尘,对曝光处理带来影响的可能性亦低。但,亦可使用例如空气轴承等将X可动部72相对X导件71以非接触状态支承成可移动于X轴方向。
[0092]又,定点载台40的重量抵销器42及空气夹具单元80,由于搭载于与定盘12在振动上分离的Y柱33上,因此例如使用驱动单元70驱动基板保持框60 (基板P)时产生的驱动力的反作用力或振动等不会传达至重量抵销器42及空气夹具单元80。因此,能以高精度进行使用Z — VCM的空气夹具单元80的位置(亦即基板P的被曝光部位的面位置)控制。又,驱动空气夹具单元80的四个Z — VCM,由于Z固定件47固定于与Y柱33成非接触的底座框85,因此驱动空气夹具单元80时的驱动力的反作用力不会传至重量抵销器42。是以,能以高精度控制空气夹具单元80的位置。
[0093]又,由于通过使用了移动镜62x及62y (固定于基板保持框60,亦即接近最终定位控制的对象物即基板P而配置)的干涉仪系统来测量基板保持框60的位置信息,因此能将控制对象(基板P)与测量点间的刚性维持得较高。亦即,由于能将应该知道最终位置的基板与测量点视为一体,因此可提升测量精度。又,由于直接测量基板保持框60的位置信息,因此即使假设于X可动部72及Y可动部74产生直线运动误差,测量结果亦不易受其影响。
[0094]又,由于空气夹具单元80的本体部81上面(基板保持面)在X轴方向的尺寸设定得较曝光区域IA在X轴方向的尺寸长,因此在基板P的被曝光部位(曝光预定部位)较曝光区域IA位于基板P移动方向的上游侧的状态、特别是扫描曝光开始前一刻,能在使基板P等速移动前的加速阶段,预先调整该基板P的被曝光部位的面位置。是以,能从曝光开始确实地使基板P的被曝光部位的面位置位于投影光学系统PL的焦深内,而能提升曝光精度。
[0095]又,在基板载台装置PST中,由于作成多个空气悬浮单元50、定点载台40、驱动单元70以平面排列配置于定盘12上的构成,因此组装、调整、维护等均容易进行。又,由于构件的数目较少且各构件为轻量,因此输送亦为容易。
[0096]此外,例如当基板P的+X侧或一 X侧端部通过定点载台40上方时等,基板P仅重叠于空气夹具单元80的一部分的状态(空气夹具单元80未完全被基板P覆盖的状态)。此种情况下,由于作用于空气夹具单元80上面的基板P的载重变小,因此失去空气的平衡而空气夹具单元80使基板P悬浮得到力变弱,空气夹具单元80与基板P的距离Da (参照图5(B))变得较所欲的值(例如0.02mm)小。此种情况下,主控制装置视基板P的位置(视基板P与保持面重叠的面积)将空气夹具单元80与基板P下面间的空气压力及/或空气流量(本体部81所喷出及吸引的空气的压力及/或流量)控制成空气夹具单元80的上面与基板P的下面的距离Da随时维持一定的所欲值。视基板P的位置将空气压力及/或流量设定为何种程度,较佳是预先通过实验求出。又,可先沿X轴方向将空气夹具单元80的上面分割成多个区域,并使依各区域被喷出及吸引的空气流量、压力设为可控制。又,亦可视基板P与空气夹具单元80的位置关系(基板P与保持面重叠的面积)使空气夹具单元80上下动,藉此适当调整空气夹具单元80的上面与基板P的下面的距离。
[
当前第3页1 2 3 4 5 6 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1