金属氧化物复合料的生产方法、金属氧化物复合料粉末以及陶瓷材料的制作方法

文档序号:3464607阅读:242来源:国知局
专利名称:金属氧化物复合料的生产方法、金属氧化物复合料粉末以及陶瓷材料的制作方法
技术领域
本发明涉及生产金属氧化物复合料的方法,以及由该方法制成的金属氧化物粉末和通过烧结这种粉末而制成的陶瓷材料。
陶瓷材料是非金属的无机材料,其应用需要在高温处理,例如,熔化或烧结处理(P.William Lee-“Ceramics”-1961-Reinhold Publishing Corp.-P.1;Kirk-Othmer-Encyclopedia of Chemical Technology-第三版,第五卷,1979,John Wiley & Sons-USA.P.236)。
一般来说,陶瓷材料的抗温度巨烈变化的能力较差,特别是抗热震,不能承受其力学性能的连续降低。
为了改善经烧结所得陶瓷材料的力学性能,尤其是其抗热震性,曾尝试在陶瓷材料中包含一种无论在室温或烧结温度下都能呈不同的稳定的同素异形变体的化合物的分散质。氧化锆和氧化铪可用作分散质,分散介体可以是,如氧化铝(FR-A-2330660)。这些陶瓷材料是由将包括至少两种不同金属氧化物的复合料粉末进行烧结而制成的,该不同金属氧化物分别形成陶瓷材料的分散介体和分散质。
已知有许多方法可用于生产这种类型的复合料粉末。
第一个已知方法包括,以机械方式将一种分散介体材料粉末与分散质化合物粉末混合(FR-A-2330660)。该已知方法中采用了剧烈的、长时间的混合,但仍不足以获得组分均匀的复合料粉末。
按照另一个已知方法,将分散介体材料和分散质化合物熔化制成熔体,然后通过喷射将熔体急冷而成为细小的液滴,以形成粉末(DE-A-3216651)。这方法难以实施,它涉及非常高的温度并导致其本身难于生产耐高温陶瓷材料。
还有一个已知方法,在有氧化铝粉末存在时,在控制条件下水解醇化锆,以便在氧化铝粉末上沉淀氧化锆粉末。在这已知方法中,氧化铝粉末是被分散在一种含有溶解的醇化锆的液体有机介质中,在控制条件下将所得有机悬浮液与水混合,以水解醇化锆而沉淀氧化锆粉末(Materials Science Monographs-High Tech Ceramics,Vol 38,parts A-C,1987,Elsevier Science Publishers B.V.,Amsterdampart B,pages 1345~1356)。在这已知方法中,在反应混合物中难以防止产生超过所形成氧化铝晶粒的氧化锆的杂晶种(parasitic seeding),它对氧化铝和氧化锆粉末复合料的均匀性有不良影响。
本发明的目的在于提供一种新的方法,以克服上述已知方法的缺点,该方法有可能更容易地生产金属氧化物复合料,尤其是复合料粉末,而其化学均匀性优于用已知方法一般所制得的。
因此,本发明涉及生产金属氧化物复合料的方法,根据本发明,在有金属(氢)氧化物颗粒存在的条件下,水解金属醇化物,控制水解以使金属醇化物转化成包在金属(氢)氧化物颗粒上的金属(氢)氧化物凝胶。
按照本发明的方法,金属氧化物复合料是一种由至少有两种不同金属的氧化物的混合物所制成的固体材料,例如,该材料可以是固体块状或精细的,近似球状、针状或片状(或扁平)的颗粒的粉末。
术语金属(氢)氧化物是指金属氧化物、金属氢氧化物或金属氧化物和金属氢氧化物的混合物。金属(氢)氧化物可以是无水的或水合的、呈非晶态或结晶态。
一般金属(氢)氧化物颗粒的直径不超过几微米、通常小于10微米。较好的直径为不大于5微米,例如在0.05~2微米之间,直径小于1微米为最好。
金属醇化物是一种化合物,其中的金属是通过氧原子而连接到烃基基团上的,如芳香烃基团或直链或环状的、饱和或未饱的、未取代的或部分或完全取代的脂族基团。特别推荐的是含有脂族基团的金属醇化物;优选的是含有未取代的饱和脂族基团,如,甲基、乙基、正丙基、异丙基、正丁基和异丁基基团。
水解的目的在于将金属醇化物转化成金属氧化物或氢氧化物。按照本发明,为了使反应混合物凝胶化并防止沉淀,水解要在已知的“溶胶-凝胶”技术条件下进行(Ferroelectrics,1985,Vol.62,pages 189和190)。
水解可以在室温空气下进行。但是为了避免金属醇化物的非控制分解,要求水解在没有水分的气体气氛条件下进行。可用于本发明方法的气氛实例有无水的空气、氮气和氩气。
原则上,对温度和压力要求不严。一般在多数情况中,可以在室温和正常气压条件下进行。
有关水解的详细的特征和进一步详细描述可参阅EP-A-0234647(SOLVAY&Cie)。
在水解结束时收集的产物是如尾矿似的,通常是包在金属(氢)氧化物颗粒上的、水合的金属氧化物或氢氧化物的凝胶化物质。这种物质可以就这样使用,最好在使用前进行干燥。
在本发明方法的优选实施方案中,为了在金属(氢)氧化物颗粒存在的条件下水解金属醇化物,将金属(氢)氧化物颗粒分散在金属醇化物的有机溶液中,并用水处理所得的有机悬浮液。所用的水最好能溶解在有机液体,一般是乙醇中。
在本发明方法的该实施方案中,醇化物的最佳稀释度和在相应溶剂中的水量都取决于各种因素,特别是金属醇化物组合物中所含的金属、所选择的醇化物、所用的溶剂以及操作温度;它们必须在各种具体情况下,通过常规实验操作而确定。涉及实施水解的这种方法的具体特点和详细描述可参阅EP-A-0234647(SOLVAY&Cie)。
在本发明的另一个具体优选实施方案中,所用的金属(氢)氧化物颗粒是通过在控制条件下,将金属醇化物水解而获得的,以便使颗粒沉淀而不使反应混合物由水解凝胶成为块状。涉及实施水解的这种方法的具体特征和进一步详述可参阅EP-A-0238103、EP-A-0263544和EP-A-0286155(SOLVAY&Cie)。本发明方法的该实施方案具有优点,它可以提供一种形状(近似球形)和粒度都均匀的金属(氢)氧化物颗粒的复合料。
在本发明方法的又一个具体优选实施方案中,将水解结束时所收集的凝胶物质进行粉碎,例如,在研磨机中,以便将其转化为粉末。在该实施方案的改变方式中,将粉碎得到的粉末,在控制条件下进行加热,以使金属氧化物结晶。在本发明方法的这个具体实施方案和其实施的改变方式中,粉碎最好要控制到所产生的粉末的颗粒的平均直径大于金属(氢)氧化物颗粒的直径,该平均直径按下列关系定义d= (Σnidi)/(Σni)其中ni是直径di颗粒的出现率(数量或质量)。
一般,粉碎要控制到使粉末颗粒的平均直径在0.1~10微米之间,如,小于5微米,平均直径小于2微米的最好。
上面所述的实施方案和其实施的改变方式,可用于通过烧结金属氧化物粉末而制备陶瓷材料。
因而本发明还涉及采用本发明方法所获得的金属氧化物复合料粉末和通过烧结这种粉末而制得的陶瓷材料。本发明尤其涉及至少两种不同金属氧化物的复合料粉末,其中一种是以两种不同的同素异形变体存在,并且在粉末烧结温度和室温之间有自然同素异形的转化温度。具体地说,本发明具体涉及的粉末包含非稳定的氧化锆晶体和氧化铝和/或氧化硅晶体(例如,莫来石、堇青石或赛隆晶体),以及通过烧结该粉末而制得的陶瓷材料。在本发明的这些复合料粉末和这些陶瓷材料中,非稳定的氧化锆晶体是能够经受同素异形转化的晶体。事实上,纯氧化锆具有随温度变化而以三种不同的同素异形形式存在的特性。就是-约1100℃以下的单斜晶形,-1100~2200℃之间的四方晶形或正方晶形,-2200℃以上的立方晶形。
氧化锆的同素异形的转变伴随着明显的体积变化。现在已知通过在其晶格中掺入其它适当的金属氧化物,特别是稀土金属氧化物或混合稀土的氧化物,可以使四方晶形或立方晶形在低温下稳定(US-A-3634113;US-A-3860529)。
在本发明范围内,术语“非稳定氧化锆”是指结晶态氧化锆,按上面所述,其立方或四方晶形在低温是不稳定的,或仅仅部分稳定。
本发明的复合料粉末的实施例含有5~50%体积的(氢)氧化锆,最好10~25%。
本发明的复合料是由含金属(氢)氧化物颗粒分散质的金属氧化物的分散介体所形成。本发明可以通过要制得的这些复合料重量来精确地控制组合物。本发明复合料的另一个优点在于可以极精确地控制在复合料中的所分散的金属(氢)氧化物颗粒的大小,所说颗粒在复合料中是以均态分散。
参考附图
,用下列实施例说明本发明,该附图为放大20000×的本发明复合料的照片复制件。
实施例涉及按照本发明的莫来石和氧化锆混合物的母体复合材料的制备,参见附图的单个图案,该附图是这种母体复合材料的照片复制件。
将100ml0.2摩尔的正丁醇锆的乙醇溶液和1.5ml油酸放入一个保持在25℃温度、无水氮气气氛下的反应室中。混合物均化后,将其进行剧烈搅拌并一次性加入100ml 1.25摩尔的水的乙醇溶液,然后使反应混合物熟化2小时。到这结束,方法是按EP-A-0238103、EP-A-0286155和GB-A-2168334所述进行。在熟化结束时,将反应混合物进行离心并收集粉末,用无水乙醇洗涤,然后通过无水空气的气流,在室温下进行干燥。该粉末证明是由平均直径0.24微米的基本球形的颗粒所组成,该颗粒由非晶态水合的锆的氧化物和氢氧化物以及有机残渣的复合混合物所形成。
将(氢)氧化锆颗粒重新分散在乙醇中,均化后,将所得悬浮液引入保持在无水氮气气氛下,温度为25℃的反应室中。予先在反应室中加入75ml正丁醇铝、四乙基原硅酸盐和水的2-甲氧基-1-乙醇溶液(浓度相当于每升溶液1摩尔铝、0.33摩尔硅、1.5摩尔水)。按每摩尔铝,0.3摩尔锆的比例,将(氢)氧化锆颗粒的悬浮液引入反应室。在混合物均化后,加入35ml水的2-甲氧基-1-乙醇溶液(体积40%)。通过形成凝胶使反应混合物固化,这大约需要45分钟。收集这些凝胶,在120℃干燥空气气流中干燥,并使其粉碎。然后磨制凝胶并在500℃空气中干燥4小时。
附图所示为在500℃干燥前的凝胶。
权利要求
1.生产金属氧化物复合料的方法,按照本方法在有金属(氢)氧化物颗粒存在的条件下水解金属醇化物,其特征在于,控制水解使金属醇化物转化成包裹在金属(氢)氧化物颗粒上的金属(氢)氧化物凝胶。
2.按照权利要求1的方法,其特征在于,为了在有金属(氢)氧化物颗粒存在下水解金属醇化物,将金属(氢)氧化物颗粒分散在金属醇化物的有机溶液中并用水处理所得的有机悬浮液。
3.按照权利要求1或2的方法,其特征在于,将凝胶粉碎,以使它转化成粉末,并且在控制条件下加热粉末以使金属氧化物结晶。
4.按照权利要求1至3中的任一方法,其特征在于,所用的金属(氢)氧化物颗粒是通过在控制条件下水解金属醇化物而制得,以使颗粒沉淀而不使反应混合物由水解凝胶成为块状。
5.按照权利要求1至4的任一方法,其特征在于,所用的金属(氢)氧化物颗粒的直径是在0.05~2微米之间。
6.按照权利要求1至5的任一方法,其特征在于,使用(氢)氧化锆颗粒和至少一种选自铝和硅的金属的一种醇化物。
7.按照权利要求3~6的任一方法所制得的金属氧化物复合料粉末。
8.按照权利要求7的复合料粉末,包括非稳定的氧化锆晶体和氧化铝,莫来石、堇青石或赛隆的晶体。
9.按照权利要求8的复合物粉末,其特征在于,其中含有5~50%体积的氧化锆。
10.通过烧结权利要求7~9的任一粉末而制得的陶瓷材料。
全文摘要
生产金属氧化物复合料的方法,按照本方法在有金属(氢)氧化物颗粒存在条件下水解金属醇化物,使金属醇化物转化成金属(氢)氧化物凝胶,包裹在金属(氢)氧化物颗粒上。由该方法制得的金属氧化物复合料粉末以及烧结该粉末而制得的陶瓷材料。
文档编号C01B13/32GK1049485SQ9010707
公开日1991年2月27日 申请日期1990年7月20日 优先权日1989年7月20日
发明者吕·利罗特, 弗兰茨·利格兰德, 乔埃尔·布尔乔特 申请人:索尔维公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1