对登革病毒血清型1E蛋白具有特异性的人单克隆抗体及其用途的制作方法与工艺

文档序号:11996297阅读:269来源:国知局
对登革病毒血清型1E蛋白具有特异性的人单克隆抗体及其用途的制作方法与工艺
对登革病毒血清型1E蛋白具有特异性的人单克隆抗体及其用途相关申请的交叉引用本申请要求于2010年12月14日提交的美国临时专利申请No.61/423,085的优先权,其公开内容为了所有目的特此通过引用全文并入。技术领域本发明涉及抗登革病毒,特别是血清型1的人中和性单克隆抗体。本发明进一步涉及用于治疗或预防脊椎动物受试者中的登革病毒感染的组合物和方法。提供了以有效减轻、消除感染或预防感染复发的量向脊椎动物受试者施用抗体的方法。

背景技术:
登革热是最重要的影响人类的蚊媒病毒性疾病。目前,居住在热带/亚热带的超过100个登革热流行国家中的接近25亿人被认为具有登革热感染的风险。城市中栖息的蚊种埃及伊蚊(Aedesaegypti)是该病毒向人传播的主要传播者。登革病毒感染可导致一系列临床表现,其范围从无症状感染到登革热(DF)-一种急性热病,再到登革出血热(DHF)和登革休克综合征(DSS)-它们是严重的、危及生命的并发症,特点为血管外渗。当前的治疗局限于使用止痛药来减轻症状,而且没有可用的疫苗。登革热病每年影响五千万人,伴有频繁且反复发生的流行。虽然进行了严格的灭蚊,但20世纪90年代在世界上各个地区出现了登革热病的复发,以2005年在新加坡曾经出现的最大爆发达到顶峰。超过80%的报告病例是年轻成人,他们的工作能力受到相关影响,而且有显著的医疗保健费用用于他们的治疗。因此,迫切需要登革疫苗的替代选择,如被动抗体治疗和/或抗病毒药,以在当前时期帮助控制登革热相关疾病。这些提出的疗法具有帮助大批受感染个体的潜能,即使是仅应用于有发展为疾病严重形式的风险的个体(约占总数的10%)。随着登革热在发达国家如美国南部和澳大利亚的流行不断增加以及由于缺乏疫苗,这样的抗体将提供有用的药物治疗。本发明提供完全人单克隆抗体来满足这些及其它需求。

技术实现要素:
本文描述了用于治疗或预防脊椎动物受试者中的登革病毒感染的组合物和方法。特别是,本文公开了由新近从登革血清型1感染中康复的患者产生完全人中和性单克隆抗体的例子。该抗体在体外和体内阻止登革血清型1感染方面显示出预防性和治疗性活性,并且可构成新药物治疗的基础。本发明使用从康复期患者制备永生化记忆B细胞的方法,包括从患者从感染中康复后60天采集的血样纯化其CD22阳性细胞。然后利用EB病毒(EBV)感染对纯化的B细胞进行永生化。该方法生成一组能够产生完全人抗体的永生化记忆B细胞系,可根据针对登革病毒的特异性来筛选这些抗体。这些B细胞系然后可以用作免疫球蛋白模板的富集来源用于鉴别和克隆在体外和体内对登革病毒具有中和活性的重组单克隆抗体。如本文所公开的,我们描述了对登革病毒血清型1具有特异性的第一种完全人单克隆抗体的分离、筛选、克隆和体外/体内表征。一个方面,本发明提供了与登革病毒血清型1包膜蛋白或其片段结合的分离的抗体或其片段,其中该抗体是具有中和活性的人抗体。在该方面的各种实施方案中,抗体或其片段可以是(a)完整的免疫球蛋白分子、(b)scFv、(c)Fab片段、(d)F(ab′)2或(e)二硫键连接的Fv。在其它实施方案中,抗体或其片段可包含选自下组的重链免疫球蛋白恒定结构域:(a)人IgM恒定结构域、(b)人IgG1恒定结构域、(c)人IgG2恒定结构域、(d)人IgG3恒定结构域、(e)人IgG4恒定结构域或(f)人IgA1/2恒定结构域。在再其它的实施方案中,抗体或其片段可包含轻链免疫球蛋白恒定结构域,该恒定结构域可以是:(a)人Igκ恒定结构域或(b)人Igλ恒定结构域。在另外的实施方案中,抗体或其片段包含重链,该重链包含至少一个选自图4(B)所示的CDR序列的CDR。在进一步的实施方案中,抗体或其片段包含轻链,该轻链包含至少一个选自图4(B)所示的CDR序列的CDR。在其它实施方案中,抗体或其片段包含重链,该重链包含三个如图4(B)所示的CDR序列。在其它实施方案中,抗体或其片段包含轻链,该轻链包含三个如图4(B)所示的CDR序列。在进一步的实施方案中,抗体或其片段包含IGHV1-2*02重链框架和至少一个如图4(B)所示的CDR序列。在再进一步的实施方案中,抗体或其片段包含IGKV3-20*01轻链框架和至少一个如图4(B)所示的CDR序列。在一个实施方案中,抗体包含图4(B)所示的重链序列。在另一个实施方案中,抗体包含图4(B)所示的轻链序列。在又另一个实施方案中,抗体是14c10,克隆8。在一些实施方案中,抗体或其片段以小于1×10-8M的亲和常数(KD)与抗原结合。在其它实施方案中,抗体或其片段以小于1×10-9M的亲和常数(KD)与抗原结合。在进一步的实施方案中,抗体或其片段来源于已从登革病毒感染康复的患者的B细胞。在进一步的实施方案中,抗体或其片段的结合跨越病毒中的两个包膜蛋白。在一些实施方案中,跨越两个包膜蛋白的结合包括与一个E蛋白上的DI以及DI与II之间的铰链以及相邻E蛋白的DIII结合。另一个方面,本发明提供一种结合登革病毒的抗体或其片段,其具有14c10克隆8的结合特异性。在进一步的方面,本发明提供一种有效减轻或预防受试者的登革病毒感染的药物组合物,其包含根据上述任一相关方面和实施方案的抗体或其片段以及药学上可接受的载体。在一些实施方案中,药物组合物可进一步包含第二药剂,例如抗病毒药物或止痛药。在进一步的方面,本发明提供一种被动免疫的方法,其包括向受试者施用有效量的根据上述任一相关方面和实施方案的抗体或其片段。在另外的方面,本发明提供一种治疗登革病毒感染的方法,其包括向有需要的受试者施用有效减轻或预防该疾病的量的根据上述任一相关方面和实施方案的抗体或其片段。在一些实施方案中,抗体通过静脉内(IV)、皮下(SC)、肌肉内(IM)、透皮或口服施用。在其它实施方案中,抗体以1-100毫克/千克受试者体重的范围的量施用。这种施用可进一步包括第二药剂的施用,该第二药剂可以是例如抗病毒药物或止痛药。另一个方面,本发明提供一种产生抗登革病毒中和性抗体的方法,其包括:(a)确认新近从登革病毒感染中康复的个体;(b)从该个体获得B细胞;(c)对来自(b)的B细胞进行永生化;和(d)测定来自(c)的永生化B细胞的登革病毒中和作用。在该方面的实施方案中,B细胞是CD22+。在进一步的实施方案中,B细胞用EBV永生化。在其它方面,本发明提供一种分离的核酸,其编码根据上述任一相关方面和实施方案的抗体或其片段。这样的分离核酸可包含在表达载体中。这样的表达载体可包含在宿主细胞如细菌、真核或哺乳动物细胞内。附图说明图1:抗体筛选、表达和表征过程的流程图。从国立大学医院(NUH)接收的登革感染患者中分离CD22+B细胞。在为增强永生化效率而添加的多克隆B细胞激活剂(2.5μg/mlCpG序列、IL2和IL4)的存在下用EBV对这些B细胞进行永生化。B细胞以30个细胞/孔与1×105个从血沉棕黄层获得的已辐照的同种异体PBMC一起接种到96孔圆底孔中。两周后,通过ELISA、PRNT和CPE,针对结合/中和活性筛查来自这些克隆的上清液。提取阳性B细胞系的mRNA,将抗体的重链和轻链序列克隆到内部pCMV载体中,并转染到293F细胞中以产生高浓度的重组抗体。鉴别并进一步表征具有期望的特异性的重组抗体。图2:用CPE和PRNT针对登革中和活性筛查来自永生化B细胞系的上清液。(A)在来源于EBV永生化B细胞系的上清液的存在下,用DV激发BHK-21细胞。(使用该方法筛选每个患者2000个细胞系)。通过用结晶紫染色其余的完整细胞、用乙酸洗脱并测量595nm处的吸光度来评估细胞病变效应。将分析终点定义为50%细胞病变效应,并优化病毒浓度。最初以1/4稀释来筛选测试上清液。前10%的克隆用PRNT再次测试。(B)分泌抗登革中和性人抗体的人B淋巴细胞系的产生。用登革病毒感染80%汇合的BHK细胞3天。使用与活细胞结合的结晶紫染料(Sigma-Aldrich,新加坡)显现病毒噬斑。检测来自B细胞克隆(源自康复期登革1感染个体)的上清液的中和活性。登革1(50pfu)与细胞培养上清液(1/4稀释)孵育1小时,然后添加至BHK细胞。发现细胞系14c10分泌显著减少噬斑数目的抗体。图3:B细胞系14C10表达的抗体模板和相关CDR氨基酸序列。(A)质粒图谱,显示了限制性酶切位点和使用来自14c10的确认的模板来生成重组人IgG1抗体的克隆重链和轻链插入序列。(B)所有确认和克隆的14c10重链和轻链序列,具有其CDR区(分别为CDR1、CDR2和CDR3)加上重链和轻链组合的12个排列以形成不同的重组抗体。图4:抗体模板14c10.8编码对登革血清型1具有结合活性的重组抗体。(A)夹心ELISA,用来测试所有来源于B细胞系14c10的重组表达的抗体,其从293F的上清液表达和纯化。8号模板明确地给出登革病毒血清型1的阳性信号。(B)14c10.8重链和轻链的全核苷酸和氨基酸序列,突出显示了CDR区。图5:使用PRNT和ELISA的重组14c10.8抗体的血清型特异性。(A)夹心ELISA,表明重组IgG114c10抗体针对活的完整登革病毒血清型1的特异性。对登革血清型2、3或4没有观察到结合活性。(B)PRNT数据,表明重组14c10.8抗体针对Westpac74登革病毒血清型1的特异性。对登革血清型2、3或4未检测到显著的中和活性。(C)PRNT原始数据,表明14c10.8对登革病毒血清型1的血清型特异性。图6:对于体外登革感染,14c10.8显示同型抗体依赖性增强(ADE),但无异型抗体依赖性增强。系列稀释的14c10.8抗体与等体积的病毒(MOI为1)在37℃下孵育1小时,然后转移到人髓单核细胞系K562(该细胞系通常用于ADE分析)中,并在37℃下孵育4天。然后从感染的K562细胞收获上清液,并通过PRNT来评估得到的病毒滴度。ADE被定义为与未添加抗体的对照(蓝色虚线)相比提高的病毒滴度。数据证明登革病毒血清型1中存在ADE,但血清型2、3和4中不存在。这一观察提示,14c10.8应当是给予登革1感染患者的安全抗体,条件是它以中和浓度而不是以增强浓度给予。图7:14c10.8向不同人IgG亚类的转化对于其同型增强活性有影响。我们使用所概述的构建体将14c10从人IgG1转化为人IgG3和人IgG4。这些在293F细胞中表达为重组抗体,然后用蛋白-A琼脂糖柱纯化以供进一步测试。我们如图6所描述的使用K562细胞系测试了同型增强。IgG3显示出最大的增强活性,而IgG1位于中间和IgG4具有最低的增强活性水平。图8:14c10.8对于登革病毒E蛋白是特异性的。(i)用DV感染细胞两天。此时细胞裂解,向病毒混合物中加入S32甲硫氨酸以掺入放射性化合物。向混合物中加入抗体,随后添加蛋白A-琼脂糖珠,并在4℃下孵育1小时。洗涤后,用非还原性加样缓冲液洗脱蛋白质,在15%SDS-聚丙烯酰胺凝胶上运行,随后根据制造商的方案进行银染(SilverQuest染色试剂盒,Invitrogen)。56Kd的条带对应于登革病毒的E蛋白。(ii)将纯化的完整登革病毒(变性的和非变性的)加样到非变性凝胶上并转移到膜上以用14C10抗体进行印迹。结果显示,14C10与登革E蛋白上的线性表位具有弱结合。图9:重组14c10抗体针对各种登革血清型1基因型的中和活性。将浓度递增的抗体加入到50个噬斑形成单位(p.f.u.)的各种基因型的登革病毒血清型1(病毒基因型名称在括号中提供)中,并在37℃下孵育1小时。将100μl混合物加入到24孔板中的BHK-21细胞单层中,并在37℃孵育1小时。去除上清液,在感染的细胞上使1ml的2%(w/v)羧甲基纤维素的RPMI+2%FBS溶液成层。在37℃下进一步孵育4天后,用溶解在25%(v/v)甲醛中的0.5%(w/v)结晶紫对孔进行染色以显现噬斑。图10:14c10在体内显示预防和治疗活性:(A)在用登革血清型1感染前24小时,通过向AG129(n=6)小鼠注射各种不同浓度的抗体观察14c10.8的预防活性。登革病毒感染后24小时,向单个群组(n=6)给予250μg/小鼠单一治疗剂量的抗体。在感染后4天通过PRNT对在感染小鼠的血清中产生的病毒血症进行定量。(B)14c10.8在1-5μg/小鼠的浓度下显示预防活性。在更低的抗体浓度下,有一些增强感染的证据。图11:HM14c10是DENV1特异性的人抗体。(A)HM14c10显示对DENV1特异性的中和活性,50%和90%PRNT值分别为0.328μg/ml和1.313μg/ml。(B)HM14c10在亚中和浓度下对DENV1诱导同型ADE,但对DENV2、DENV3或DENV4无异型ADE。HM4G2对所有4种血清型均诱导ADE活性。(C)(a)HM14c10的IgG1Fc区的Fab片段或突变(N297Q)显著降低同型ADE。(b)人IgG(HM14c10)的不同亚类介导差异水平的同型ADE。(D)与HM4G2相比,HM14c10对多种DENV1基因型是高度中和性的。基因型在病毒名称旁的括号中标示。误差条代表一式三份样品的标准差,而且所有实验至少进行三次。图12:HM14c10结合病毒的四级结构依赖性表位。(A)Fab14c10:DENV1复合物的cryoEM图显示120个Fab(蓝色)与病毒表面上的180个E蛋白(青色)结合。黑色三角代表不对称单元。(B)FabHM14c10(I)与E蛋白表位(紫色球形)的连接密度图。E蛋白E-DI、E-DII和E-DIII分别着色为红色、黄色和蓝色。(C)两个不对称单元中E蛋白Cα链上的Fab分子的密度。FabHM14c10(I)和HM14c10(II)是不对称单元中的两个独立分子。(D)不对称单元中的三个E蛋白(灰色阴影)上的FabHM14c10(I)(紫色球形)和HM14c10(II)(青色球形)的表位。图13:HM14c10在体内阻断DENV1附着于BHK细胞并显示强的保护活性。(A)时移共聚焦显微镜检(Timelapseconfocalmicroscopy),显示在(a)同种型对照mAb、(b)HM4G2和(c)HM14c10mAb的存在下BHK宿主细胞的DENV1感染。左图:DENV1和Mab分别用Alexafluor-647(红色)和Alexafluor-488(绿色)标记。右图显示细胞界限(白色虚线)和DENV1在细胞中的分布。(B)活体感染事件的特写。从同种型对照的第18分钟和从HM4G2的第28分钟开始,在BHK细胞中观察到DENV1。HM14c10:DENV1复合物不能附着于BHK细胞。(C)120个随机选择的细胞的内部红色荧光强度量化为1h内的病毒内化的量度。使用单因素方差分析比较3个组。**p<0.0001。(D)HM14c10对于用作预防和治疗剂进行测试;分别在感染后第0天和第2天对DENV1感染的AG129小鼠施用抗体。无论病毒是(a)皮下还是(b)膜膜内注射的,HM14c10都显示保护性反应。分别在感染后第3或4天通过噬斑试验来测定血液病毒血症水平。两个模型中N=5,且使用T-检验来比较样品集,与PBS对照相比**p<0.0001,*p<0.05。图14:对登革病毒具有中和活性的完全人抗体的鉴别和重组表达。(A)(a)从DENV1感染的患者产生两千个EBV-B细胞系,通过ELISA针对与DENV1而不与DENV2、3或4的结合活性筛选上清液。鉴别了七个阳性EBV-BCL细胞系。(b)进行噬斑减少中和试验(PRNT)来测试中和活性。数据表示为在最高稀释倍数时的PRNT100(即完全中和),而且是3个实验的平均值。(B)(a)用来在HEK293细胞中表达源自EBV-BCL的抗体重链和轻链模板的pTT5载体的示意图。(b)从EBV-BCL14c10细胞系克隆并表达十二个重组人IgG1mAb,并通过ELISA测试对DENV1的结合活性。人源化小鼠单克隆4G2抗体(HM4G2)用作阳性对照。8号重组抗体模板(命名为HM14c10)显示出对DENV1的结合活性。(C)(a)HM14c10对DENV1、2、3和4的PRNT活性。(b)通过ELISA测试HM14c10对DENV1、2、3和4的结合活性。这些数据代表3个实验的平均值,而误差条等于来自一式三份样品组的平均值的标准差。图15:HM14c10对多种DENV1临床分离株显示结合活性。使用建立的ELISA方案,在各种浓度下比较HM14c10与人源化小鼠单克隆抗体HM4G2对数种DENV1分离株的结合活性。所有DENV1分离株以1×106pfu/ml使用,并在4℃下使用HB112作为捕获试剂包被过夜。HM14c10或HM4G2抗体以5μg/ml添加,并利用抗-人IgGHRP偶联物来检测结合活性。图16:DENV1E蛋白的融合后晶体结构配合到与登革1病毒复合的FabHM14c10的cryoEM图中。(A)配合的登革1E蛋白的顶视图。cryoEM图以5.5σ的高轮廓水平(highcontourlevel)显示,使得可观察到E蛋白密度的清晰轮廓。在此轮廓水平下,Fab密度消失,表明不是所有可获得的E蛋白表位都被病毒表面上的Fab分子所占据。病毒表面的电子密度通过配合在DENV1E蛋白融合后结构的晶体结构中来解释(18)。因为DENV1融合后E蛋白的晶体结构不能良好配合于作为刚性体的cryoEM图中,E蛋白的三个结构域必须单独配合。E蛋白的结构域I、II和III分别着色为红色、黄色和蓝色。在此显示了来自两个不对称单元的E蛋白,其中一个不对称单元用三角形来表示。(B)DENV1表面上配合的E蛋白的侧视图。可观察到Fab分子的密度、E蛋白胞外域和跨膜(Tm)螺旋。对应于两个相邻E蛋白上的Asn159位的聚糖的密度用箭头标出,并且指出了脂双层的外片和内片的位置。cryoEM图以2.5σ的轮廓水平显示。图17:FabHM14c10和E蛋白结合界面的立体图。FabHM14c10(II)的密度显示与病毒表面上的E蛋白的清晰连接。接触残基用球形标示。cryoEM密度以2.5σ的轮廓水平显示。图18:HM14c10同源性模型的可变区(绿色)与参比人单克隆抗体(PDB代码2GHW)(蓝色)的叠加。图中显示了抗体可变区的(A)侧视图和(B)顶视图。图19:HM14c10可变区同源性模型配合到HM14c10:DENV1cryoEM密度图中。(A)对应于抗体可变区的单个链(a和b)的密度从cryoEM图上圈出。配合的E蛋白的接触残基用青色球形标示。E-DI、E-DII和E-DIII分别着色为红色、黄色和蓝色。(B)同源性模型的轻链和重链单独配合于FabcryoEM密度的可变区中。aFab位置的命名参见图12。bFab密度的命名参见(A)。c同源性模型配合到HM14c10:DENV1cryoEM图(设定在3σ轮廓水平)中通过使用Chimera的“图像配合(fit-in-map)”函数来优化(35)。(C)配合的HM14c10可变区同源性模型(绿色)显示洋红色的CDR。显示的配合具有Fab密度a的轻链和Fab密度b的重链。图20:登革血清型1(基因型PVP159)上的HM14c10表位和该表位与(A)其它DENV1基因型和(B)登革血清型和西尼罗病毒(WNV)的比较。被不对称单元中的FabHM14c10(I)和FabHM14c10(II)识别的表位之间的共同氨基酸残基着色为绿色。被FabHM14c10(I)或FabHM14c10(II)独特识别的残基分别着色为紫色和青色。被FabHM14c10识别的表位的氨基酸序列在DENV1基因型内是保守的,但在登革血清型或西尼罗病毒之间不是保守的。这与观察到的FabHM14c10与大多数登革1基因型结合但不与在(a)位置X1和II或(b)位置X2和I具有阴影抗体足迹(shadedantibodyfootprint)的其它登革血清型或黄病毒交叉反应是一致的。图21:标记的DENV1的感染性和体内效力。(A)活DENV标记如以前所述进行(22)。标记的病毒的感染性和存活力通过噬斑试验经由BHK细胞的滴定来测试。(B)HM14c10的体内效力在使用不同株/浓度的DENV1病毒加上不同的病毒递送模式的两个体内模型中测试。示出了这两个模型的示意图。(a)在模型1中,皮下(S.C.)注射1×106pfu的EHID1株,并且在4天后通过噬斑试验监测血清病毒血症。在DENV1感染前24h给予预防,而治疗应用在感染后+2天给予。(b)还使用了第二个更具侵袭性的DENV1感染模型。向小鼠膜膜内注射1.25×107pfu的DENV1Westpac株。在与模型1相同的时间点通过腹膜内(I.P.)注射施用病毒感染加上预防性和治疗性处理。在该模型中,血浆病毒血症在感染后+3天出现峰值,且施用的抗体对血清病毒血症的效果即在此时测量。两组中的对照都给予等体积的无菌盐水。图22:西尼罗病毒抗体CR4354和登革1特异性HM14c10所结合的表位的比较。(A)HMCR4354和HM14c10分别与WNV(左)(25)和DENV(右)上的E蛋白配合。cryoEM密度以2.8σ(CR4354:WNV)或2.5σ(HM14c10:DENV1)的轮廓水平显示。(B)具有抗体CR4354或HM14c10足迹的WNV(左)和DENV1(右)不对称单元以球形显示。不对称单元中两个独立的结合位点处的表位着色为紫色和青色。不对称单元中的三个E蛋白以灰色阴影表示。不对称单元显示为黑色三角。(C)CR4354(WNV上)和HM14c10(DENV上)之间两个独立表位(a和b)中的残基的比较。两个独立表位中的残基如(B)中着色。具体实施方式本发明总的涉及用于预防或治疗脊椎动物受试者中的登革病毒感染的组合物和方法。特别地,我们从国立大学医院(NUH)传染病科接收的登革感染患者中分离了CD22+B细胞。这些B细胞作为多克隆细胞系在体外用EBV进行永生化。多克隆B细胞激活剂(CpG序列)与人B细胞生长因子、白介素2和白介素4(各1000U/ml)一起加入以增强B细胞永生化的效率。人B细胞系在96孔圆底孔中制备。两周后,用酶联免疫吸附分析(ELISA)、噬斑减少中和试验(PRNT)和细胞病变效应分析(CPE)筛选来自这些克隆的上清液以分析对登革病毒的结合/中和活性。使用产生阳性抗体的B细胞系作为抗体重链和轻链基因扩增的mRNA来源。将抗体的重链和轻链序列克隆到内部pCMV载体中,并转染到293F细胞中以产生高浓度的重组抗体。利用该方法,我们已经克隆并表达了对登革血清型1强特异性的且对各个登革血清型1基因型具有广谱特异性的重组抗体。该抗体不与黄病毒属中的其它病毒结合,并且因此超出对登革血清型1的预期,该抗体不显示或几乎不显示巨噬细胞对其它黄病毒感染的增强。在登革感染的小鼠模型中,体内实验已显示了显著的预防和治疗效力。因此,该抗体代表了对现有登革1感染可得到的最佳候选治疗剂。定义应当理解,本发明不限于特定的方法、试剂、化合物、组合物或生物系统,这些当然都可以变化。还应当理解,本文使用的术语仅是出于描述特定方面的目的,并非意在限制。除非内容中另外明确指出,否则本说明书及所附权利要求书中使用的单数形式“一”、“一种”和“该”包括复数形式的指代物。当指称可测量的值如量、持续时间等等时,本文使用的术语“约”意在包括指定值±20%或±10%,更优选±5%,甚至更优选±1%,再更优选±0.1%的变化,因为这些变化适合于实施所公开的方法。除非另外定义,否则本文使用的所有技术和科学术语具有与本发明所属领域普通技术人员所一般理解的相同的含义。虽然任何与本文所述的相似或等同的方法和材料都可实际用于测试本发明,但在此描述了优选的材料和方法。“脊椎动物”、“哺乳动物”、“受试者”、“哺乳动物受试者”或“患者”可互换使用,且是指哺乳动物如人类患者和非人灵长类动物,以及实验动物如兔、大鼠和小鼠、牛、马、山羊和其它动物。动物包括所有脊椎动物,例如哺乳动物和非哺乳动物,如小鼠、绵羊、狗、牛、禽类、鸭、鹅、猪、鸡、两栖动物和爬行动物。“治疗”或“处理”通常是指(i)感染或再感染的预防,例如预防法,或(ii)目标疾病症状的减轻或消除,例如疗法。用本发明的组合物处理受试者可以防止或减轻登革病毒,特别是血清型1感染的风险。处理可以是预防性的(以防止或延迟疾病发作,或防止其临床或亚临床症状的表现),或在疾病表现后是治疗性地抑制或缓解症状。“预防”或“防止”是指预防性施用本发明的组合物。“治疗有效量”或“有效减轻或消除感染的量”或“有效量”是指足以预防登革病毒感染或缓解(例如缓和、减少、减轻)至少一种与该感染相关的症状的抗体组合物的量。并不要求组合物的施用必须消除登革感染的症状,只要组合物施用的益处超过损害即可。同样地,本文使用的关于登革感染的术语“治疗”和“处理”并非意指受试者必须要治愈感染或消除其所有临床体征,只要通过组合物的施用实现受试者状况的一定缓解或改善即可。“被动免疫”一般是指活性体液免疫以预形成的抗体的形式从一个个体向另一个个体的转移。因此,被动免疫是一种可通过抗体转移实现的短期免疫形式,抗体可以用数种可能的形式施用,例如,作为人或动物的血浆或血清,作为合并的动物或人免疫球蛋白用于静脉内(IVIG)或肌肉内(IG)使用,作为来自被免疫的受试者或来自从疾病中康复的供体的高滴度动物或人IVIG或IG,以及作为单克隆抗体。被动转移可以预防性使用以用于预防疾病发作,以及用于数种类型的急性感染的治疗。一般而言,被动免疫所产生的免疫力仅持续短时间,并且提供即时防护,但身体没有产生记忆,因此患者具有以后被相同病原体感染的风险。抗体如本文使用的术语“抗体”是指能与特异性表位结合的任何免疫球蛋白或完整分子及其片段。这样的抗体包括但不限于多克隆抗体、单克隆抗体、嵌合抗体、人源化抗体、单链抗体、Fab、Fab’、F(ab)’片段和/或完整抗体的F(v)部分及其变体。该术语包含所有同种型,包括IgA、IgD、IgE、IgG和IgM。如本文使用的术语“抗体片段”特指保留母体抗体抗原结合功能的抗体全序列的不完全或分离的部分。抗体片段的例子包括Fab、Fab’、F(ab’)2和Fv片段;双抗体;线性抗体;单链抗体分子和由抗体片段形成的多特异性抗体。完整的“抗体”包含通过二硫键互连的至少两条重(H)链和两条轻(L)链。各重链由重链可变区(在本文中缩写为HCVR或VH)和重链恒定区组成。重链恒定区由CH1、CH2和CH3三个域组成。各轻链由轻链可变区(在本文中缩写为LCVR或VL)和轻链恒定区组成。轻链恒定区由CL一个域组成。VH和VL区可进一步细分成被称为互补决定区(CDR)的高变区,其间散布有被称为框架区(FR)的更保守的区域。各VH和VL由三个CDR和四个FR组成,从氨基末端到羧基末端以下列次序排列:FR1、CDR1、FR2、CDR2、FR3、CDR3、FR4。重链和轻链的可变区包含与抗原相互作用的结合域。抗体的恒定区可介导免疫球蛋白与宿主组织或因子(包括免疫系统的各种细胞(例如效应细胞)和经典补体系统的第一成分(C1q))的结合。术语抗体包括保留结合能力的完整抗体的抗原结合部分。结合部分的例子包括(i)Fab片段,由VL、VH、CL和CH1域组成的单价片段;(ii)F(ab’)2片段,包含在铰链区通过二硫键连接的两个Fab片段的二价片段;(iii)由VH和CH1域组成的Fd片段;(iv)由抗体单臂的VL和VH域组成的Fv片段,(v)dAb片段(Ward等人,Nature,341:544-546(1989)),它由VH域组成;和(vi)分离的互补决定区(CDR)。本文使用的术语“单链抗体”或“单链Fv(scFv)”是指Fv片段的两个域VL和VH的抗体融合分子。虽然Fv片段的两个域VL和VH由单独的基因编码,但是它们可以使用重组方法通过合成的连接体将它们接合起来,该连接体使得它们能够作为其中VL和VH区配对形成单价分子的单一蛋白质链(称作单链Fv(scFv);参见例如Bird等人,Science,242:423-426(1988);和Huston等人,ProcNatlAcadSciUSA,85:5879-5883(1988))制备。这样的单链抗体在提及术语“抗体”片段时包括在内,并且可通过重组技术或完整抗体的酶促或化学裂解来制备。如本文使用的术语“人序列抗体”包括具有源自人种系免疫球蛋白序列的可变区和恒定区(如果存在的话)的抗体。本发明的人序列抗体可包括非由人种系免疫球蛋白序列编码的氨基酸残基(例如,通过体外随机或定点诱变或者通过体内体细胞突变而引入的突变)。这样的抗体可在非人转基因动物中生成,例如,如公开号为WO01/14424和WO00/37504的PCT申请中所述的。但是,本文使用的术语“人序列抗体”并非意在包括其中源自另一哺乳动物物种如小鼠的种系的CDR序列移植到人框架序列上的抗体(例如人源化抗体)。也可产生重组免疫球蛋白。参见Cabilly,美国专利No.4,816,567,其为了所有目的通过引用全文并入本文;和Queen等人,ProcNatlAcadSciUSA,86:10029-10033(1989)。如本文使用的术语“单克隆抗体”是指单一分子组成的抗体分子制剂。单克隆抗体组成显示对特定表位的单一结合特异性和亲和力。因此,术语“人单克隆抗体”是指显示单一结合特异性的抗体,其具有源自人种系免疫球蛋白序列的可变区和恒定区(如果存在的话)。一方面,人单克隆抗体由杂交瘤产生,该杂交瘤包括与永生化细胞融合的、从具有包含人重链转基因和轻链转基因的基因组的转基因非人动物例如转基因小鼠获得的B细胞。如本文使用的术语“抗原”是指促进抗体生成且可引起免疫应答的物质。它与术语“免疫原”在本公开中可以交换使用。严格说来,免疫原是引起免疫系统的应答的那些物质,而抗原被定义为与特定抗体结合的物质。抗原或其片段可以是与特定抗体接触的分子(即表位)。当利用蛋白质或蛋白质片段免疫宿主动物时,该蛋白质的许多区域可诱导与抗原(该蛋白质上的给定区域或三维结构)特异性结合的抗体的产生(即诱发免疫应答)。如本文使用的术语“人源化抗体”是指其中非抗原结合区和/或抗原结合区中的氨基酸序列已经改变以使得该抗体更接近地类似于人抗体并且仍然保留其原始结合能力的至少一种抗体分子。另外,可使用为生产“嵌合抗体”而开发的技术(Morrison等人,ProcNatlAcadSci,81:6851-6855(1984),通过引用全文并入本文),该技术将来自具有适当抗原特异性的小鼠抗体分子的基因和来自具有适当生物活性的人抗体分子的基因剪接在一起。例如,来自对自身诱导物具有特异性的小鼠抗体分子的基因可以与来自具有适当生物活性的人抗体分子的基因剪接在一起。嵌合抗体是其中不同部分来源于不同的动物物种的分子,例如具有来源于鼠mAb的可变区和人免疫球蛋白恒定区的分子。另外,已开发了用于生产人源化抗体的技术(参见,例如美国专利No.5,585,089和美国专利No.5,225,539,其通过引用全文并入本文)。免疫球蛋白轻链或重链可变区由被称为互补决定区(CDR)的三个高变区打断的“框架”区组成。简单地说,人源化抗体是来自非人类物种的抗体分子,其具有一个或多个来自非人类物种的CDR和来自人免疫球蛋白分子的框架区。可选地,用于单链抗体的生产所描述的技术可以适应于产生针对本发明的免疫原性偶联物的单链抗体。单链抗体通过经由氨基酸桥连接Fv区的重链和轻链片段以得到单链多肽而形成。抗体分子的Fab和F(ab’)2部分可通过公知的方法分别用木瓜蛋白酶和胃蛋白酶对基本完整的抗体分子进行蛋白水解反应来制备。参见,例如美国专利No.4,342,566。Fab’抗体分子部分也是公知的,并且由F(ab’)2部分产生,接着通过例如用巯基乙醇对连接两个重链部分的二硫键进行还原,随后用诸如碘乙酰胺的试剂对得到的蛋白质硫醇进行烷基化。抗体分析许多筛选实验在本领域中已知用于分析目标抗体,以确认其特异性和亲和力并确定这些抗体是否与其它蛋白质交叉反应。术语“特异性结合”或“特异性地结合”是指抗原与其对应抗体之间的相互作用。该相互作用依赖于蛋白质被结合分子识别的特定结构(即抗原或表位)的存在。为了使结合成为特异性的,应当包括目标表位而非背景抗原的抗体结合。一旦产生了抗体,就对它们进行分析以证实它们对于目标抗原是特异性的,并且确定它们是否显示出与其它抗原的任何交叉反应性。进行此类分析的一种方法是如公开号为2004/0126829的美国申请所述的血清筛选实验,该申请的内容特此通过引用并入本文。但是,其它用于质量控制的分析方法在本领域普通技术人员的技能范围内,因此也在本发明的范围内。本发明的抗体或其抗原结合片段、变体或衍生物也可根据其对抗原的结合亲和力来描述或具体说明。抗体对抗原的亲和力可使用任何合适的方法经实验确定。(参见,例如Berzofsky等人,“Antibody-AntigenInteractions”,FundamentalImmunology,Paul,W.E.编,RavenPress:NewYork,N.Y.(1984);Kuby,JanisImmunology,W.H.FreemanandCompany:NewYork,N.Y.(1992);和本文所述的方法)。测得的特定抗体-抗原相互作用的亲和力如果在不同条件(例如盐浓度、pH)下测定则可能发生变化。因此,亲和力和其它抗原结合参数(例如KD、Ka、Kd)的测量优选地用抗体和抗原的标准化溶液以及标准化的缓冲液进行。亲和力结合常数(Kaff)可使用以下公式确定:其中:[mAb]是自由抗原位点的浓度,而[mAg]是如在两种不同抗原浓度(即[mAg]t和[mAg’]t)下测定的自由单克隆结合位点的浓度(Beatty等人,JImmMeth,100:173-179(1987))。用于抗体的术语“高亲和力”是指平衡缔合常数(Kaff)为至少约1×107升/摩尔,或至少约1×108升/摩尔,或至少约1×109升/摩尔,或至少约1×1010升/摩尔,或至少约1×1011升/摩尔,或至少约1×1012升/摩尔,或至少约1×1013升/摩尔,或至少约1×1014升/摩尔或更高。“高亲和力”结合对于因抗体同种型而发生变化。平衡解离常数KD是也用于描述抗体亲和力的术语,且它是Kaff的倒数。平衡解离常数KD是也用于描述抗体亲和力的术语,且它是Kaff的倒数。如果使用KD,用于抗体的术语“高亲和力”是指平衡解离常数(KD)小于约1×10-7摩尔/升,或小于约1×10-8摩尔/升,或小于约1×10-9摩尔/升,或小于约1×10-10摩尔/升,或小于约1×10-11摩尔/升,或小于约1×10-12摩尔/升,或小于约1×10-13摩尔/升,或小于约1×10-14摩尔/升或更低。根据本发明的抗体的生产提供了具有在人类生理免疫应答的过程中产生的那些抗体的特性的抗体,即仅可由人免疫系统选择的抗体特异性。在当前的情况下,这包括对人病原体登革病毒血清型1的应答。在一些实施方案中,本发明的抗体具有在对登革病毒感染的应答过程中产生的那些抗体的特性。在适当配制后,这些抗体可用作预防剂或治疗剂。关于特定病原体,“中和性抗体”、“广谱中和性抗体”或“中和性单克隆抗体”在本文中都可以交换使用,是可中和该病原体在宿主中启动和/或保持感染的能力的抗体。在一些实施方案中,根据本发明产生的单克隆抗体具有中和活性,其中抗体可以在10-9M或更低的浓度(例如10-10M、10-11M、10-12M或更低)下中和。本发明的免疫球蛋白分子可以是免疫球蛋白分子的任何类型(例如IgG、IgE、IgM、IgD、IgA和IgY)、类别(例如IgG1、IgG2、IgG3、IgG4、IgA1和IgA2)或亚类。在一些实施方案中,抗体是抗原结合的抗体片段(例如人),且包括但不限于Fab、Fab′和F(ab′)2、Fd、单链Fv(scFv)、单链抗体、二硫键连接的Fv(sdFv)和包含VL或VH域的片段。抗原结合抗体片段,包括单链抗体,可包含单独的可变区或可变区与以下部分的整体或一部分的组合:铰链区、CH1、CH2和CH3域。本发明中也包括包含可变区与铰链区、CH1、CH2和CH3域的任意组合的抗原结合片段。B细胞分离如本文使用的术语“B细胞”、“B记忆细胞”、“B淋巴细胞”、“B记忆淋巴细胞”、“记忆细胞”、“记忆B细胞”及其变化形式可交换使用,是指体液免疫应答的B细胞。如本领域中所理解的,B细胞是在体液免疫应答(与受T细胞控制的细胞介导的免疫应答相反)中发挥作用的淋巴细胞。B细胞的至少一个功能是在被抗原相互作用激活后生成针对抗原的抗体,执行抗原呈递细胞(APC)的作用,并最终发展为记忆B细胞。B细胞是适应性免疫系统的组分。短语“原代B细胞”在一些实施方案中可以指直接从活生物体(例如人)取得的B细胞。在一些实施方案中,原代B细胞可以在原代细胞培养中培养。原代B细胞可以用本领域技术人员已知的任何方式从受试者得到、获取或采集。在一些实施方案中,原代B细胞从感染了或具有目标抗原的受试者获得。本发明的方法可应用于从供体(例如暴露于传染物如登革病毒的患者)选择的人B细胞所表达的单克隆抗体的鉴别。因此,供体可以是原始的(naive)、接种疫苗的、受一种或多种疾病或感染影响的、已暴露于和/或耐受特定治疗性治疗的、呈现特定临床指征或状态的、非故意地暴露于病原体的,等等。供体的血清同样可用于其对抗原的血清阳性(seropositivity)的初始确定,因为适应性免疫应答的特异性和长期保持(甚至在最后一次暴露于该抗原的数年后)可允许足以选择供体的定性测定。所用的筛选实验的性质和灵敏度在鉴别最合适的供体中是关键的,并且优选地,用来筛选供体血清的实验应当与用来筛选来自永生化抗体分泌B细胞的上清液和设计用来检测具有所需功能活性(即中和活性)的抗体的实验相同。从中纯化细胞的组织或器官的选择可由足量的适当细胞的可获得性来决定。可从新鲜或冷冻的样品中和/或从为了提供足够的起始材料而合并的获自多个个体的样品中获得细胞。使用含有抗体分泌细胞的样品(例如全外周血或血清),可以对一组候选供体进行初步筛选。具体地,可使用用于分离外周血单核细胞(PBMC)的标准分离技术,如梯度离心,从血液或淋巴组织中分离单核细胞。在该分离步骤之后和/或之前,可使用用于检测抗体和抗体分泌细胞的存在的标准技术(例如ELISA、BIACORE、Western印迹法、FACS、SERPA、抗原阵列、细胞培养系统中病毒感染的中和或ELISPOT分析)对血清(或血浆)、细胞培养上清液或细胞(从不同患者、不同组织和/或在不同时间点获得的)样品进行预筛选。本领域中的例子包括,例如,使用ELISPOT来表征已接种供体中的免疫应答(CrottyS等人,2004)、使用抗原微阵列作为对新感染的患者的诊断工具(MezzasomaL等人,2002)和用于测定抗原特异性免疫应答的其它技术(KernF等人,2005)。对治疗靶标的抗体应答的这种初步定性分析允许鉴别具有针对期望的纯化抗原(例如特定重组病毒蛋白质)、相关抗原的混合物(例如从部分纯化的病毒制剂所获得的)或生物测定(例如病毒感染性的中和)表现出较高抗体滴度的B细胞的供体。一旦选择了一个或多个供体,B细胞源可以是脾、血液、淋巴结、骨髓、肿瘤浸润性淋巴细胞、来自慢性感染/炎症部位的淋巴细胞。然而,外周血通常更容易从供体获得、储存并在确定的一段时间内监测针对抗原的血清学反应。例如,从5-50ml外周血开始,可以纯化大约1千万-1亿个PBMC(外周血单核细胞),该数目的细胞可允许在使用本发明的方法永生化后筛选足够大的抗体分泌细胞群体。从生物样品中分离PBMC后,可使用本领域已知的方法,基于其表面上细胞表面标志物和其它蛋白质(如果合适的话)的表达以及细胞的增殖活性、代谢和/或形态学状态,进行抗体分泌细胞的特异性选择。特别地,从人体样品中纯化抗体分泌细胞的各种技术利用了不同的手段和条件进行阳性或阴性选择。通过物理分离表达对于表达和分泌抗体的细胞(例如人B细胞)具有特异性的细胞表面标志物的细胞可以有效地选择这些细胞。具体方案可在本领域中找到(参见,例如CallardR和KotowiczK“HumanB-cellresponsestocytokines”,CytokineCellBiology:ApracticalApproach.BalkwillF.(编)OxfordUniversityPress,2000,17-31页)。该选择可使用特异性结合这些细胞表面蛋白质中的一种并且可连接在固体载体(例如微珠或塑料板)上或用可利用荧光激活细胞分选仪(FACS)检测的荧光染料标记的抗体来进行。例如,人B细胞在EBV永生化前基于其对载体(例如微珠)结合的CD19、CD27和/或CD22微珠的亲和力,或针对与某些同种型特异性抗体缺乏结合亲和力而进行选择(LiH等人,1995,BemasconiN等人,2003;TraggiaiE等人,2004)。如本文所示,CD22-是一种控制与抗原识别和B细胞激活相关的信号转导途径的B细胞限制性跨膜蛋白(NitschkeL,2005)-可用于初始B细胞选择。由于CD22阳性群体含有表达具有不同同种型和特异性的抗体的细胞,其它细胞表面标志物也可用来选择细胞。可选地或者另外地,可通过在基于CD22的选择之外应用基于CD27的选择来获得抗体分泌细胞的特异性富集。已知CD27是具有体细胞突变的可变区基因的人B细胞的标志物(BorstJ等人,2005)。其它标志物如CD5、CD24、CD25、CD86、CD38、CD45、CD70或CD69可用来耗减或富集期望的细胞群体。因此,根据供体暴露于抗原(例如病毒、细菌、寄生虫)的历史、抗体滴度,可使用总B细胞、CD22富集的B细胞或进一步富集的B细胞亚群,如CD27阳性B细胞。B细胞的EBV转化表达具有特定同种型的抗体的选择和刺激的细胞群体可以使用病毒永生化剂进行永生化。不同的永生化剂可以用在抗体分泌细胞上以获得永生化的抗体分泌细胞。在病毒永生化剂中,感染抗体分泌细胞并使其永生化的病毒可优选在本发明的实施中使用。常用的病毒是分组于疱疹病毒γ类中的嗜淋巴细胞病毒。该病毒家族的成员以物种特异性的方式感染淋巴细胞,而且与淋巴增生性疾病和数种恶性肿瘤的发展有关(NicholasJ,2000;RickinsonA,2001)。EBV(EB病毒,也称作疱疹病毒4)和HHV-8(人疱疹病毒8,也称作KSHV,卡波西肉瘤相关疱疹病毒)感染人淋巴细胞并使其永生化。MHV-68(鼠疱疹病毒68)、HVS(疱疹病毒Samiri)、RRV(恒河猴棒状病毒)、LCV(灵长类动物淋巴细胞隐病毒)、EHV-2(马疱疹病毒2)、HVA(蛛猴疱疹病毒)和AHV-1(狷羚疱疹病毒1)是具有在它们之间保守的共同遗传特征及在不同哺乳动物宿主细胞中的类似致病变效应的其它致癌的嗜淋巴细胞疱疹病毒。这些病毒可以在本发明的实施中使用。除了使用完整病毒以外,含有特定病毒蛋白质的重组DNA构建体也已成功地用于对B细胞进行永生化(DamaniaB2004;KilgerE等人,1998)。含有病毒基因的载体可转导到细胞中,有时利用逆转录病毒系统或包装细胞系,其提供反向形成此类病毒样颗粒的所有必要因素,也可用于本发明的方法中。EBV介导的永生化是由于EBV表达的蛋白质而涉及B细胞的永生化的复杂过程,并且由EBV与宿主细胞蛋白质之间的相互作用来调节(SugimotoM等人,2004;BishopGE和BuschLK,2002)。如果需要的话,可通过测定特定EBV蛋白和转录物如EBNA2、EBNA1、LMP2、LMP1或EBER的表达来追踪永生化过程(Thorley-LawsonDA,2001)。可通过PCR、免疫荧光、Western印迹法或允许检测感染细胞中的EBVDNA和蛋白质的其它方法来检测这些蛋白质(SchleeM等人,2004;ParkCH等人,2004;HummeS等人,2003;KonishiK等人,2001;HaanK等人,2001)。转化的B细胞的筛选和分离在一些实施方案中,可从转化的和/或活化的B细胞中筛选出具有期望的抗原特异性的细胞,然后可以由阳性细胞产生单个B细胞克隆。筛选步骤可通过ELISA、组织或细胞(包括转染的细胞)的染色、中和试验和/或本领域已知用于鉴定所需抗原特异性的多种其它方法中的一种来进行。该试验可基于简单的抗原识别来选择,或者可另外基于期望的功能来选择,例如中和性抗体而不仅是抗原结合抗体。在一些实施方案中,从阳性细胞混合物中分离单个克隆的克隆步骤可使用有限稀释、显微操作、通过细胞分选的单细胞沉积和/或通过本领域已知的其它任何方法来进行。在一些实施方案中,使用有限稀释进行克隆。在一些实施方案中,克隆的B细胞来源于已使用EBV转化结合抑制宿主对活化剂介导的增殖信号的固有应答而永生化的B细胞。在一些实施方案中,本发明提供了永生化B细胞的生产,该B细胞产生具有期望的抗原特异性的抗体。此类B细胞可以用多种方式使用,例如作为单克隆抗体的来源、作为编码目标单克隆抗体的核酸(DNA或mRNA)的来源、用于递送至受试者进行细胞治疗、作为治疗剂或药物。在一些实施方案中,可使用本领域已知的已知方法,针对目标抗体筛选培养中的激活B细胞的上清液。进行筛选以鉴别一种或多种能够与目标抗原结合的单克隆抗体。这样的筛选可对培养上清液和/或纯化的抗体进行。或者,可使用来自活化和/或永生化B细胞的培养上清液和/或纯化的抗体进行筛选。另外,当目标是交叉反应性抗体时,可以测定单克隆抗体与两种或更多种不同抗原交叉反应的能力。此外,在一些实施方案中,可能希望筛选具有某些功能特性(例如中和活性)的抗体。由本发明产生的单克隆抗体的结合特异性例如可通过免疫分析如通过免疫沉淀或其它体外结合分析如放射免疫分析(RIA)或酶联免疫吸附分析(ELISA)来测定。可使用的筛选方法的代表性一般类别包括但不限于(a)抗体捕获分析、(b)抗原捕获分析和(c)功能性筛选。在抗体捕获分析中,抗原可以与固相结合,使待测试单克隆抗体与该抗原结合,通过洗涤去除未结合的抗体,然后检测结合的抗体,例如通过特异性识别该抗体的二级试剂如标记的抗体。对于抗原捕获分析,可直接标记抗原。在一个实施方案中,待测试单克隆抗体可结合在固相上,然后与任选标记的抗原反应。或者,可在待测试单克隆抗体与固相结合之前允许通过免疫沉淀形成抗体-抗原复合物。一旦抗体-抗原复合物与固相结合,就可通过洗涤去除未结合的抗原,并可通过检测该抗原而鉴定阳性物。存在各种用于鉴别具有所需活性的单克隆抗体的功能性筛选。在本公开中,如实施例中所述的,一种这样的筛选是中和分析。重组表达本发明的方法也用于从选择的B细胞克隆获得抗体的核酸和/或对其进行测序;并利用该核酸生成可表达目标抗体的宿主细胞。在一些实施方案中,可对编码期望的抗体的核苷酸序列进行测序,此后将其应用于异源表达系统例如293细胞或CHO细胞中。在一些实施方案中,抗体可通过从编码目标抗体的B细胞克隆获得一种或多种核酸(例如重链和/或轻链基因),并为了允许目标抗体在宿主中表达而将该核酸插入到宿主细胞中而重组表达。例如,美国专利No.4,816,567中描述了使用重组DNA方法产生抗体。为了重组产生抗体,分离编码该抗体的核酸,并插入到可复制载体中以供进一步克隆(DNA扩增)或用于表达。编码单克隆抗体的DNA容易使用常规程序(例如,通过使用能够与编码抗体重链和轻链的基因特异性结合的寡核苷酸探针)分离并测序。可使用的载体通常包括但不限于以下一种或多种:信号序列、复制起点、一个或多个标记基因、增强子元件、启动子和转录终止序列。此类表达系统成分的例子在例如美国专利No.5,739,277中公开。适合于在此处克隆或表达所述载体中的DNA的宿主细胞是原核细胞、酵母或更高级的真核细胞(参见,例如美国专利No.5,739,277)。药物组合物本文公开的主题提供包含根据本发明产生的抗体的药物组合物。在一些实施方案中,提供了包含转化的和/或活化的B细胞的药物组合物。在一些实施方案中,药物组合物可包含使用本文公开的方法产生的一种或多种单克隆抗体。在一些实施方案中,本文公开的主题的单克隆抗体及转化的和/或活化的B细胞都可包含在药物组合物中。在一些实施方案中,根据本公开产生的一组单克隆抗体可包含在药物组合物中。在一些实施方案中,可以包含根据本公开产生的单克隆抗体和/或B细胞以及一种或多种另外的药剂例如抗病毒药物或止痛药。在一些实施方案中,药物组合物还可含有用于施用抗体的药学上可接受的载体或佐剂。在一些实施方案中,载体对于人体中使用来说是药学上可接受的。载体或佐剂本身不应当诱导对接受该组合物的个体有害的抗体的产生,并且不应当是毒性的。合适的载体可以是大的、缓慢代谢的高分子如蛋白质、多肽、脂质体、多糖、聚乳酸、聚乙醇酸、聚合氨基酸、氨基酸共聚物和非活性病毒颗粒。可使用药学上可接受的盐,例如无机酸盐如盐酸盐、氢溴酸盐、磷酸盐和硫酸盐,或有机酸盐如乙酸盐、丙酸盐、丙二酸盐和苯甲酸盐。治疗组合物中的药学上可接受的载体另外可含有液体如水、盐水、甘油和乙醇。此外,辅助物质如湿润剂或乳化剂或pH缓冲物质可存在于此类组合物中。此类载体使药物组合物能够配制为片剂、丸剂、糖锭剂、胶囊、液体、凝胶、糖浆、浆液和悬浮液以供患者摄入。本文公开的主题的组合物可进一步包含便于组合物制备和施用的载体。可使用任何合适的递送媒介物或载体,包括但不限于微胶囊,例如微球或纳米球(Manome等人(1994)CancerRes54:5408-5413;Saltzman和Fung(1997)AdvDrugDelivRev26:209-230)、糖胺聚糖(美国专利No.6,106,866)、脂肪酸(美国专利No.5,994,392)、脂肪乳剂(美国专利No.5,651,991)、脂质或脂质衍生物(美国专利No.5,786,387)、胶原(美国专利No.5,922,356)、多糖或其衍生物(美国专利No.5,688,931)、纳米悬浮液(美国专利No.5,858,410)、聚合胶束或偶联物(Goldman等人(1997)CancerRes57:1447-1451和美国专利No.4,551,482、5,714,166、5,510,103、5,490,840和5,855,900)和多核糖体(美国专利No.5,922,545)。可使用本领域已知的方法将抗体序列偶联到活性剂或载体上,包括但不限于碳二亚胺偶联、酯化、高碘酸钠氧化后进行还原性烷基化,和戊二醛交联(Goldman等人(1997)CancerRes.57:1447-1451;Cheng(1996)Hum.GeneTher.7:275-282;Neri等人(1997)Nat.Biotechnol.15:1271-1275;Nabel(1997)VectorsforGeneTherapy.InCurrentProtocolsinHumanGenetics,JohnWiley&Sons,NewYork;Park等人(1997)Adv.Pharmacol.40:399-435;Pasqualini等人(1997)Nat.Biotechnol.15:542-546;Bauminger&Wilchek(1980)Meth.Enzymol.70:151-159;美国专利No.6,071,890;和欧洲专利No.0439095)。本发明的治疗组合物在一些实施方案中包括含有药学上可接受的载体的药物组合物。合适的制剂包括水性和非水性无菌注射溶液,其可含有抗氧化剂、缓冲剂、抑菌剂、杀菌性抗生素和使得该制剂与预期接收者的体液等渗的溶质;以及水性和非水性无菌悬浮液,其可包含悬浮剂和增稠剂。该制剂可以存在于单位剂量或多剂量容器例如密封的安瓿和小瓶中,并且可以在冷冻或冷冻干燥(冻干)条件下储存,其仅需在使用前即时加入无菌液体载体例如注射用水。一些示例性的成分是:SDS,其在一些实施方案中为0.1-10mg/ml,在一些实施方案中为约2.0mg/ml;和/或甘露醇或另一种糖,其在一些实施方案中为10-100mg/ml,在一些实施方案中为约30mg/ml;和/或磷酸盐缓冲盐水(PBS)。可以考虑所讨论的制剂的类型而使用本领域常规的其它任何试剂。在一些实施方案中,载体是药学上可接受的。在一些实施方案中,载体对于人体中使用而言是药学上可接受的。本发明的药物组合物可具有5.5-8.5、优选6-8、更优选约7的pH。pH可通过使用缓冲剂来维持。组合物可以是无菌和/或无热原的。组合物对于人体而言可以是等渗的。本文公开的主题的药物组合物可以在气密容器中提供。药物组合物可包含有效量的一种或多种如本文所述的抗体。在一些实施方案中,药物组合物可包含足以治疗、改善或预防预期的疾病或病症或者显示可检测的治疗效应的量。治疗效应也包括身体症状的减轻。对于任何特定受试者的精确有效量将取决于他们的体形大小和健康状况、病症的性质和程度以及选择用于施用的治疗剂或治疗剂组合。对于给定情况的有效量通过如本领域普通技术人员所进行的常规实验来确定。治疗方案:药代动力学本发明的药物组合物可以以多种单位剂型施用,这取决于施用方法。典型抗体药物组合物的剂量是本领域技术人员所熟知的。这样的剂量实际上一般是建议性的,并且根据具体治疗情况或患者的耐受性进行调整。足以实现这一点的抗体量被定义为“治疗有效剂量”。对于该应用有效的剂量计划以及量,即“给药方案”,将取决于多种因素,包括疾病或病症的阶段、疾病或病症的严重程度、患者健康的一般状态、患者的身体状态、年龄、药物制剂和活性剂浓度等。为患者计算给药方案时,也考虑施用模式。给药方案还必须考虑药代动力学,即药物组合物的吸收速率、生物利用度、代谢、清除率等。参见,例如最新的Remington’s;Egleton,Peptides18:1431-1439,1997;Langer,Science249:1527-1533,1990。对于本发明而言,治疗有效量的包含抗体的组合物含有约0.05-1500μg蛋白质,优选约10-1000μg蛋白质,更优选约30-500μg,最优选约40-300pg,或这些值之间的任意整数。例如,本发明的抗体可以以约0.1μg到约200mg,例如约0.1μg到约5μg、约5μg到约10μg、约10μg到约25μg、约25μg到约50μg、约50μg到约100μg、约100μg到约500μg、约500μg到约1mg、约1mg到约2mg的剂量向受试者施用,任选地在例如1周、2周、3周、4周、两个月、三个月、6个月和/或一年后给予强化剂量。应当理解,对于任意特定患者的具体剂量水平取决于多种因素,包括所使用的特定抗体的活性、年龄、体重、一般健康、性别、饮食、施用时间、施用途径和排泄速率、药物组合和进行治疗的具体疾病的严重程度。施用途径包括但不限于口服、局部、皮下、肌肉内、静脉内、皮下、真皮内、透皮和真皮下。根据施用途径,每剂的体积优选为约0.001-10ml,更优选约0.01-5ml,最优选约0.1-3ml。组合物可在单剂量治疗中施用或在多剂量治疗中,按计划和在适合于受试者的年龄、体重和状况、所使用的具体抗体制剂和施用途径的一段时间内施用。试剂盒本发明提供包含根据本公开产生的抗体的试剂盒,其可用于例如上文所述的治疗应用。该制品包含带有标签的容器。合适的容器包括例如瓶子、小瓶和试管。容器可由多种材料制成,如玻璃或塑料。容器容纳包含对治疗应用有效的活性剂的组合物,例如如上所述的。组合物中的活性剂可包含抗体。容器上的标签指明该组合物用于特定疗法或非治疗应用,而且还可指明体内或体外应用(例如如上所述的应用)的说明。用于实现本发明的具体方面的以下实施例仅为了说明性目的提供,并非意在以任何方式限制本发明的范围。实施例方法与材料伦理学声明获得了知情同意,并且所有程序均按照国立大学伦理审查委员会批准的方案(NUS-IRB号为06-196)进行。细胞和病毒C6/36细胞和BHK-21细胞如以前所述进行培养(28)。除EHI和PVP159株以外的所有登革病毒株均从新加坡诺华热带疾病研究所(NITD)获得。EHI株从新加坡环境健康研究所(EHI)获得,而PVP159(DENV1/SG/07K3640DK1/2008)从EDEN患者群组获得(29)。B细胞的克隆B细胞的分离和永生化如以前所述进行(10)。培养15天后,通过ELISA和PRNT针对DENV特异性抗体对上清液进行筛选。ELISA结合分析用小鼠4G2抗体以5μg/ml包被96孔平底板(Maxisorp板,Nunc)过夜。用PBS/Tween-200.01%洗涤板三次。不同的DENV株按1×105pfu以50μl/孔加入,并进一步孵育2h。用PBS/Tween-200.01%洗涤板三次。向板中加入HM14C10,再孵育1小时。用PBS/Tween-200.01%洗涤板三次。加入抗人IgG偶联的HRP(Pierce,新加坡),并孵育1h。加入TMB底物(GEhealthcare,新加坡),并使用0.1M硫酸来终止反应。重组HM14c10的产生来自B细胞的RNA用RNA提取试剂盒(Qiagen)来提取。重组抗体的克隆和表达如以前所述进行(30)。抗体依赖性增强分析登革病毒(5×102pfu/ml)用培养基预孵育,然后向105个K562细胞加入单个单克隆抗体(HM4G2、HM14c10或HM14c10N297Q)或HM14c10单克隆抗体的亚类(IgG1、IgG2、IgG3或IgG4)。一小时后,用PBS充分洗涤细胞以除去未结合的病毒和单克隆抗体。另外48h后,收获上清液,并通过对BHK-21细胞的噬斑试验测定病毒滴度。小鼠体内实验AG129小鼠缺乏IFN-α/β和-γ受体(31)。按照实验动物管理和使用委员会的建议(IACUC方案号:018/11)处理小鼠。在图21中提供了详述HM14c10与PBS处理的对照相比的预防和治疗应用的示意图。处死小鼠,并通过建立的噬斑试验来量化病毒血症(32)。时移共焦活细胞成像所有的时移活细胞显微镜检查都在使用Plan-Apochromat100×1.4数值孔径(N.A.)透镜的倒置A1Rsi共焦显微镜(尼康,日本)上进行。用在安装在室支架(尼康,日本)上的25mm玻璃盖玻片(MarienfeldGmbH,Germany)上生长的未固定的活BHK细胞进行活细胞成像。细胞在实验前1天以4×104/孔的密度接种,且在补充了10%FCS的RPMI1640中培养。为了同时检测AlexaFluor-488标记的抗体和AlexaFluor-647标记的DEN1病毒,氩离子激光器的488nm光线和633-nm氦氖激光器的光线经HFTUV/488/633分束器定向,并使用NFT545分束器结合用于检测AlexaFluor-488的505-530带通滤波器以及用于检测AlexaFluor-647的650长通滤波器来检测荧光。以30秒间隔以1帧/秒(fps)捕获图像30-60分钟。所有活细胞成像实验都使用在37℃下在5%CO2显微镜笼式培养箱系统(OkoLab,意大利)中孵育的细胞进行。通过尼康成像软件(NIS)elementsC软件(64比特,版本3,SP7/build547)[尼康,日本]分析和处理图像。细胞内荧光的定量通过测量活细胞内荧光的相对水平来评估抗体对DENV1的胞吞作用的影响。用相应的抗体处理后,使用A1Rsi共焦显微镜在三个独立实验中随机获取至少100个细胞的图像。然后使用NISElements软件(尼康,日本)的“目标区域”[ROI]功能人工地单独划分细胞的胞内区域,并使用该软件的ROI统计功能测量各细胞内AlexaFluor-488的相对荧光水平。使用MicrosoftExcel对各细胞群计算平均值、标准差和studentt-检验。来自用DEN1感染的未处理细胞群的荧光被标准化为100%,并用来与抗体处理的感染细胞进行比较。cryoEM登革病毒(PVP159株)如以前所述准备(3)。将病毒与FabHM14c10以1∶1的摩尔比混合,于37℃下孵育30分钟,再于4℃下孵育2小时。然后将所得复合物在液态乙烷中在涂覆有连续碳薄层的镂空碳网格上速冻。在下述条件下用300kVFEITitanKrios对病毒颗粒进行成像:电子剂量,放大倍率47,000,散焦范围1μm-3μm。用4K×4KGatanCCD照相机记录图像,得到/像素的像素尺寸。分别采用EMAN(33)程序套件中的程序boxer和ctfit将总计5,566个颗粒装盒(box)并确定对比传递函数参数(contrasttransferfunctionparameter)。采用多通道模拟退火(multi-pathsimulatedannealing,MPSA)方案(34)来确定颗粒的定向。用西尼罗病毒作为初始模型(26)。采用EMAN中的make3d程序生成三维图。如通过0.5的傅里叶壳系数截止值(fouriershellcoefficientcutoff)确定的,发现最终图的分辨率为分辨率。DENV1融合后E蛋白晶体结构(18)作为刚性体不能很好地配合到cryoEM密度图中,因此将E蛋白中的结构域散开,然后单独配合。随后通过使用Chimera(35)中的“图像配合”功能来优化该分子到cryoEM图中的配合(设定为4σ轮廓水平)。为创建HM14c10可变区的同源性模型,选取具有最佳序列匹配的结构(PDB代码2GHW),并采用Modeller(19)中的方法创建同源性模型。将同源性模型的重链和轻链在Fab的两个可能定向上单独配合到cryoEM图中(设定为3σ轮廓水平)(图19)。实施例1:从康复期DENV1感染患者分离强中和性的DENV1特异性抗体14c10。鉴定、亚克隆并扩增了一组B淋巴细胞细胞系,其分泌对DENV1有血清型特异性结合和中和活性的抗体。这些细胞系中的一个,BCL-14c10,产生与其它细胞系相比具有明显更强结合活性和中和活性的IgG(图14A)。使用该细胞系作为用于PCR扩增和重组人IgG1表达的免疫球蛋白基因模板来源(图14B(a))。一种重组人抗体(HM)14c10具有与亲代BCL-14c10相当的对DENV1的结合活性(图14B(b))。HM14c10中和并结合DENV1,而不中和并结合DENV2、3或4(图14C),并且显现出强中和活性,在体外的PRNT50为0.328μg/ml(图11A)。已提出,当亚中和浓度的抗体和DENV形成与携带Fc受体的细胞相结合的复合物时出现与DHF及DSS发生相关联的ADE活性。这导致病毒吸收及促炎性细胞因子和趋化因子的分泌增加(11)。我们采用已建立的体外试验(12)使用表达FcγR的髓单核细胞系K562,对HM14c10及人源化抗黄病毒单克隆抗体HM4G2的ADE活性进行了比较。HM4G2具有跨血清型的结合活性,并靶向DENV1-4上的E-DII的保守融合环(13)。我们观察到HM14c10在亚中和浓度下显现出DENV1感染的一定同型增强,但对不与之结合的DENV2、3或4无增强活性。与之相比,HM4G2在亚中和浓度下介导所有这四种血清型的增强(图11B)。为了研究K562FcγRs对观察到的HM14c10的同型ADE活性的作用,我们将抗体表达为Fab片段,或通过将297位上的天冬酰胺残基(N)置换成谷氨酰胺残基(Q)以去除人IgG1的糖基化位点从而减少FcγR结合(14)。与完整的IgG1对照相比,HM14c10Fab和N297Q突变体均显现出其同型ADE活性的降低(图11C(a))。随后,我们比较了IgG亚类对ADE活性的影响,并观察到与所报道的FcγRIIA对K562的结合活性(15)的部分相关性。ADE活性可如下分级:IgG3>IgG1>IgG2>IgG4,IgG3最高而IgG4最低(图11C(b))。因此,应当指出,尽管这些试验中并未涉及高亲和性FcγR1以及补体成分对病毒中和作用的影响,但该中和性抗DENV抗体的ADE活性表现为依赖于FcγR结合(16)。DENV额外的复杂性在于单一血清型中存在多种基因型。DENV1基因型在其氨基酸组成中可有最高达3%的变化,以前对小鼠抗DENV抗体的报道已经提示保护活性可在基因型之间发生变化(17)。我们比较了HM14c10和HM4G2对代表两种全异的DENV1基因型(I及IV)的多种DENV1临床分离株的结合活性。HM14c10和HM4G2均显现出对所测试的基因型的结合活性,在所有情况下HM4G2都显现出更好的结合特性(图15)。相反,与HM4G2相比,HM14c10对所有测试的分离株/基因型显现出更优的中和活性(图11D)。实施例2:HM14c10结合四级结构依赖性表位。给定抗体与DENV之间相互作用的确切性质必定蕴含着解释中和作用的关键。为了确定这一点,将FabHM14c10:DENV1复合物的冷冻电子显微镜(cryoEM)结构解析至的分辨率(图12A)。在完全占据的情况下,120个拷贝的FabHM14c10与病毒表面上所有可及的180个拷贝的E蛋白结合。为了确定HM14c10在E蛋白上的足迹,将DENV1E蛋白晶体结构配合到cryoEM密度图中(图16和表1)。分辨率为的cryoEM图显示HM14c10Fab和E蛋白之间清晰的密度连接,这允许对相互作用界面处的E蛋白残基进行鉴别(图12B和图17)。HM14c10所识别的表位依赖于病毒的四级结构。HM14c10的两个Fab与病毒不对称单元中的三个E蛋白结合(图12C和D)。每个抗体跨越两个相邻的E蛋白而结合,其中一半表位在E-DIII上,而另外一半在E-DI和相邻E蛋白的E-DI-E-DII铰链上。为了理解Fab与E蛋白的相互作用,通过采用Modeller(19),以参比人抗体结构(PDB代码2GHW)为基础建立HM14c10可变区的同源性模型(图18)。然后将该同源性模型的轻链和重链的可变区配合到cryoEM密度中。虽然两链的结构相似,但存在提供与密度更好的相关性的不同的配合(图19A和B)。Fab-E蛋白界面的分析提示,重链和轻链的所有互补决定区(CDR)都参与了相互作用(图S6C)。表1.DENV1E蛋白结构域配合到HM14c10:DENV1cryoEM密度中。aE蛋白位置的命名见图12。b首先将登革1E蛋白结构域叠加到成熟登革2病毒的cryoEM结构的E蛋白位置上(27)。c登革1E蛋白结构域配合到HM14c10:DENV1cryoEM图中(设定为4σ的轮廓水平)通过使用Chimera(35)中的“图像配合”功能来优化。不对称单元中两个HM14c10Fab的结合足迹并不相同(图12D),两个界面有十二个氨基酸是共同的,而四个氨基酸是独特的(表2)。不同DENV1分离株之间表位残基的序列比较表明大部分残基是保守的(图20A),这与观察到的HM14c10的中和活性一致。相反地,这些残基在其它DENV血清型或西尼罗病毒(WNV)中不是保守的(图20B)。表2.DENV1E蛋白上的FabHM14c10表位。*被FabHM14c10(I)和HM14c10(II)结合的两个表位中共同的残基以粗体表示。实施例3:时移共聚显微镜检揭示HM14c10的中和机制。抗体可通过多样的机制中和病毒感染,包括抑制病毒对内涵体膜的附着或融合,或通过阻断由病毒诱导的表面糖蛋白的构象变化(20,21)。为了理解HM14c10中和DENV1的机制,使用时移共焦显微镜来追踪荧光标记的活DENV对细胞的感染(22)(图13和21A)。当BHK细胞与DENV1和同种型对照Mab(非DENV结合的)一起孵育时,病毒在多个(主要是核周)细胞内区室中并生(图14A(a))。HM4G2的中和浓度诱导细胞外间隙中病毒聚集体的形成,但这些也被成功地内化,这证明HM4G2并不抑制病毒附着/内化(图13A(b))。相比之下,HM14c10诱导形成较小的聚集体,但却有效地阻断了附着,一小时后大部分的小病毒颗粒仍保留在细胞外间隙中(图13A(c))。与同种型对照相比,HM4G2延迟了细胞内病毒的积累(图13B,上图和中图)。HM14c10:DENV1复合物不能进入细胞,但可以看到其偏离了细胞表面(图13B,下图)。对在所有三种条件下内化的荧光DENV1的程度进行定量(图13C)。这些数据提示HM14c10抑制DENV1的主要模式是通过阻断病毒对宿主细胞的附着。实施例4:HM14c10在体内显现出强的预防和治疗活性。DENV在具有免疫能力的啮齿类动物中不是天然病原体,有可能在I/II型IFN受体缺陷的AG129小鼠中诱导剂量依赖性的病毒血症。我们向这些小鼠皮下(模型I,图21B(a))或膜膜内(模型II,图21B(b))注射未修饰的DENV1,然后在3-4天后对病毒血症分别进行量化(20)。利用代表完全不同的基因型(EHI-D1基因型I与Westpac基因型IV)的两种DENV1临床分离株来确定HM14c10的体内效能。在两种模型中,当于DENV1感染前24小时或感染后48小时给予小鼠时,HM14c10阻止了疾病(图13D)。观察到病毒血症显著减少的HM14c10最低浓度为每只小鼠0.6μg(或160pM),这是其它任何已报道的抗DENV抗体治疗制剂所无法匹敌的体内效能。讨论最近关于由DENV感染引起的体液应答的报告(23,24)表明,占主导地位的抗体大多数为DENV血清型交叉反应性的,具有弱中和活性。还表明,尽管E-DIII抗体在人血清所有组成成分(repertoire)中极少,但其能对抗DENV感染而进行保护(23,24),这与鼠抗体对DENV的应答的研究是一致的(7)。所鉴定的人抗体主要是对病毒E蛋白的DI和DII特异性的。观察到少数所鉴定的抗体与整个病毒结合,而不与重组E蛋白结合,这提示了对四级结构依赖性表位的特异性(23)。在本研究中,我们已分离并完全表征了抗DENV血清型1的强中和性抗体。该抗体在体外和体内系统中都具有高度中和性。由于它只与DENV1结合,因此它不会导致其它DENV血清型对髓单核细胞的感染增强。与DENV1复合的FabHM14c10的分辨率cryoEM结构显示了Fab与E蛋白之间结合的细节。该细节水平在以前的抗体-黄病毒复合物的cryoEM结构中并未观察到。HM14c10的足迹跨越E-DIII和相邻E蛋白的E-DI:E-DII(图12D)。一项关于WNV特异性人抗体CR4354的研究也表明该区域是免疫靶标(25)。尽管将与FabCR4354复合的WNV的cryoEM结构解析至较低的分辨率(分辨率)(图22A),但FabCR4354晶体结构的配合产生了假原子解析结构。这允许鉴别相互作用的残基。WNV上的CR4354表位与DENV1上的HM14c10表位的比较(图22B)表明,CR4354的较大部分足迹位于E-DIII上,而HM14c10的大部分相互作用残基位于E-DI上。表位的序列比较表明仅有大约20%的CR4354与HM14c10表位重叠,并且重叠的残基大部分是非保守的(图22C)。尽管CR4354与HM14c10表位并不相同,但这些抗体的结合都能使相邻E蛋白保持在一起,从而锁定病毒结构并阻止生产性感染所必需的构象变化,即病毒对宿主受体的附着以及在宿主细胞胞吞途径中的融合。时移活体成像共聚显微镜检表明,HM14c10抑制DENV对宿主细胞的附着。相比之下,CR4354显示出优先抑制WNV融合,这提示抗体靶向于该区域导致一种以上的抑制机制。已经表明,DENV的表面蛋白质在生理条件下经历不断变化——被称为“呼吸”(21)。有可能呼吸可以在促进病毒对细胞的附着上发挥作用。由于HM14c10与表面E蛋白交联,HM14c10因而可通过阻止表面蛋白质发生呼吸来抑制附着。或者,E-DIII已显示对宿主细胞附着是重要的,因此HM14c10与E-DIII的结合可在空间上阻碍这一过程。尽管HMAbCR4354结合与HM14c10类似的区域,但其并不抑制WNV附着。这暗示引起脑炎的WNV和引起热性疾病的DENV不共有相同的受体结合决定簇。HMAbCR4354证明在低pH下阻止病毒与内涵体膜的融合(25)。因为HM14c10也跨越相邻的E蛋白而结合,因此无法排除HM14c10在融合期间抑制二聚E结构重排成三聚E结构的可能性。同时抑制受体结合和融合的潜能可以解释HM14c10的优越的体内效力。基于WNV(26)和DENV(27)cryoEM结构之间的高度相似性,大部分黄病毒E蛋白具有相似的四级结构。因此,所有黄病毒的表面E蛋白在其感染循环期间可能经历相似的结构重排。靶向于其它黄病毒中与HM14c10或CR4354类似的区域的抗体因而可以是保护性的。由于HM14c10和CR4354抗体是仅有的两种以这种结合活性为特征的抗体,且二者均来自于人类来源,因此表明这种类型的表位可能是广义黄病毒免疫性的决定簇。这对未来疫苗的设计和评价具有重要的意义。最后,考虑到HM14c10具有针对大多数临床DENV1分离株的强中和特征以及极好的体内效力,这种抗体代表了用于治疗DENV1感染患者的优良候选治疗剂。参考文献1.S.B.Halstead,E.J.O′Rourke,Denguevirusesandmononuclearphagocytes.I.Infectionenhancementbynon-neutralizingantibody.JExpMed146,201-217(1977).2.A.B.Sabin,ResearchondengueduringWorldWarII.AmJTropMedHyg1,30-50(1952).3.R.J.Kuhn,W.Zhang,M.G.Rossmann,S.V.Pletnev,J.Corver,E.Lenches,C.T.Jones,S.Mukhopadhyay,P.R.Chipman,E.G.Strauss,T.S.Baker,J.H.Strauss,Structureofdenguevirus:implicationsforflavivirusorganization,maturation,andfusion.Cell108,717-725(2002).4.F.A.Rey,F.X.Heinz,C.Mandl,C.Kunz,S.C.Harrison,Theenvelopeglycoproteinfromtick-borneencephalitisvirusat2Aresolution.Nature375,291-298(1995).5.Y.Zhang,W.Zhang,S.Ogata,D.Clements,J.H.Strauss,T.S.Baker,R.J.Kuhn,M.G.Rossmann,ConformationalchangesoftheflavivirusEglycoprotein.Structure12,1607-1618(2004).6.G.D.Gromowski,A.D.Barrett,Characterizationofanantigenicsitethatcontainsadominant,type-specificneutralizationdeterminantontheenvelopeproteindomainIII(ED3)ofdengue2virus.Virology366,349-360(2007).7.S.Sukupolvi-Petty,S.K.Austin,W.E.Purtha,T.Oliphant,G.E.Nybakken,J.J.Schlesinger,J.T.Roehrig,G.D.Gromowski,A.D.Barrett,D.H.Fremont,M.S.Diamond,Type-andsubcomplex-specificneutralizingantibodiesagainstdomainIIIofdenguevirustype2envelopeproteinrecognizeadjacentepitopes.JVirol81,12816-12826(2007).8.C.M.Midgley,M.Bajwa-Joseph,S.Vasanawathana,W.Limpitikul,B.Wills,A.Flanagan,E.Waiyaiya,H.B.Tran,A.E.Cowper,P.Chotiyarnwon,J.M.Grimes,S.Yoksan,P.Malasit,C.P.Simmons,J.Mongkolsapaya,G.R.Screaton,Anin-depthanalysisoforiginalantigenicsinindenguevirusinfection.JVirol85,410-421.9.W.M.Wahala,A.A.Kraus,L.B.Haymore,M.A.Accavitti-Loper,A.M.deSilva,Denguevirusneutralizationbyhumanimmunesera:roleofenvelopeproteindomainIII-reactiveantibody.Virology392,103-113(2009).10.E.Traggiai,S.Becker,K.Subbarao,L.Kolesnikova,Y.Uematsu,M.R.Gismondo,B.R.Murphy,R.Rappuoli,A.Lanzavecchia,AnefficientmethodtomakehumanmonoclonalantibodiesfrommemoryBcells:potentneutralizationofSARScoronavirus.NatMed10,871-875(2004).11.S.B.Halstead,Neutralizationandantibody-dependentenhancementofdengueviruses.AdvVirusRes60,421-467(2003).12.R.Littaua,I.Kurane,F.A.Ennis,HumanIgGFcreceptorIImediatesantibody-dependentenhancementofdenguevirusinfection.JImmunol144,3183-3186(1990).13.J.T.Roehrig,R.A.Bolin,R.G.Kelly,Monoclonalantibodymappingoftheenvelopeglycoproteinofthedengue2virus,Jamaica.Virology246,317-328(1998).14.J.Lund,G.Winter,P.T.Jones,J.D.Pound,T.Tanaka,M.R.Walker,P.J.Artymiuk,Y.Arata,D.R.Burton,R.Jefferis,etal.,HumanFcgammaRIandFcgammaRIIinteractwithdistinctbutoverlappingsitesonhumanIgG.JImmunol147,2657-2662(1991).15.M.S.Chiofalo,G.Teti,J.M.Goust,R.Trifiletti,M.F.LaVia,SubclassspecificityoftheFcreceptorforhumanIgGonK562.CellImmunol114,272-281(1988).16.E.Mehlhop,C.Ansarah-Sobrinho,S.Johnson,M.Engle,D.H.Fremont,T.C.Pierson,M.S.Diamond,ComplementproteinC1qinhibitsantibody-dependentenhancementofflavivirusinfectioninanIgGsubclass-specificmanner.CellHostMicrobe2,417-426(2007).17.J.D.Brien,S.K.Austin,S.Sukupolvi-Petty,K.M.O′Brien,S.Johnson,D.H.Fremont,M.S.Diamond,Genotype-specificneutralizationandprotectionbyantibodiesagainstdenguevirustype3.JVirol84,10630-10643.18.V.Nayak,M.Dessau,K.Kucera,K.Anthony,M.Ledizet,Y.Modis,Crystalstructureofdenguevirustype1envelopeproteininthepostfusionconformationanditsimplicationsformembranefusion.JVirol83,4338-4344(2009).19.N.Eswar,B.Webb,M.A.Marti-Renom,M.S.Madhusudhan,D.Eramian,M.Y.Shen,U.Pieper,A.Sali,ComparativeproteinstructuremodelingusingModeller.CurrProtocBioinformaticsChapter5,Unit56(2006).20.R.Rajamanonmani,C.Nkenfou,P.Clancy,Y.H.Yau,S.G.Shochat,S.Sukupolvi-Petty,W.Schul,M.S.Diamond,S.G.Vasudevan,J.Lescar,Onamousemonoclonalantibodythatneutralizesallfourdenguevirusserotypes.JGenVirol90,799-809(2009).21.S.M.Lok,V.Kostyuchenko,G.E.Nybakken,H.A.Holdaway,A.J.Battisti,S.Sukupolvi-Petty,D.Sedlak,D.H.Fremont,P.R.Chipman,J.T.Roehrig,M.S.Diamond,R.J.Kuhn,M.G.Rossmann,Bindingofaneutralizingantibodytodenguevirusaltersthearrangementofsurfaceglycoproteins.NatStructMolBiol15,312-317(2008).22.S.L.Zhang,H.C.Tan,B.J.Hanson,E.E.Ooi,AsimplemethodforAlexaFluordyelabellingofdenguevirus.JVirolMethods167,172-177(2010).23.R.deAlwis,M.Beltramello,W.B.Messer,S.Sukupolvi-Petty,W.M.Wahala,A.Kraus,N.P.Olivarez,Q.Pham,J.Brian,W.Y.Tsai,W.K.Wang,S.Halstead,S.Kliks,M.S.Diamond,R.Baric,A.Lanzavecchia,F.Sallusto,A.M.deSilva,In-depthanalysisoftheantibodyresponseofindividualsexposedtoprimarydenguevirusinfection.PLoSNeglTropDis5,e1188.24.M.Beltramello,K.L.Williams,C.P.Simmons,A.Macagno,L.Simonelli,N.T.Quyen,S.Sukupolvi-Petty,E.Navarro-Sanchez,P.R.Young,A.M.deSilva,F.A.Rey,L.Varani,S.S.Whitehead,M.S.Diamond,E.Harris,A.Lanzavecchia,F.Sallusto,ThehumanimmuneresponsetoDenguevirusisdominatedbyhighlycross-reactiveantibodiesendowedwithneutralizingandenhancingactivity.CellHostMicrobe8,271-283.25.B.Kaufmann,M.R.Vogt,J.Goudsmit,H.A.Holdaway,A.A.Aksyuk,P.R.Chipman,R.J.Kuhn,M.S.Diamond,M.G.Rossmann,NeutralizationofWestNilevirusbycross-linkingofitssurfaceproteinswithFabfragmentsofthehumanmonoclonalantibodyCR4354.ProcNatlAcadSciUSA107,18950-18955.26.S.Mukhopadhyay,B.S.Kim,P.R.Chipman,M.G.Rossmann,R.J.Kuhn,StructureofWestNilevirus.Science302,248(2003).27.W.Zhang,P.R.Chipman,J.Corver,P.R.Johnson,Y.Zhang,S.Mukhopadhyay,T.S.Baker,J.H.Strauss,M.G.Rossmann,R.J.Kuhn,Visualizationofmembraneproteindomainsbycryo-electronmicroscopyofdenguevirus.NatStructBiol10,907-912(2003).28.C.Y.Huang,S.Butrapet,D.J.Pierro,G.J.Chang,A.R.Hunt,N.Bhamarapravati,D.J.Gubler,R.M.Kinney,Chimericdenguetype2(vaccinestrainPDK-53)/denguetype1virusasapotentialcandidatedenguetype1virusvaccine.JVirol74,3020-3028(2000).29.J.G.Low,E.E.Ooi,T.Tolfvenstam,Y.S.Leo,M.L.Hibberd,L.C.Ng,Y.L.Lai,G.S.Yap,C.S.Li,S.G.Vasudevan,A.Ong,EarlyDengueinfectionandoutcomestudy(EDEN)-studydesignandpreliminaryfindings.AnnAcadMedSingapore35,783-789(2006).30.B.J.Hanson,A.C.Boon,A.P.Lim,A.Webb,E.E.Ooi,R.J.Webby,PassiveimmunoprophylaxisandtherapywithhumanizedmonoclonalantibodyspecificforinfluenzaAH5hemagglutinininmice.RespirRes7,126(2006).31.M.F.vandenBroek,U.Muller,S.Huang,M.Aguet,R.M.Zinkernagel,Antiviraldefenseinmicelackingbothalpha/betaandgammainterferonreceptors.JVirol69,4792-4796(1995).32.G.K.Tan,J.K.Ng,S.L.Trasti,W.Schul,G.Yip,S.Alonso,Anonmouse-adapteddenguevirusstrainasanewmodelofseveredengueinfectioninAG129mice.PLoSNeglTropDis4,e672(2010).33.S.J.Ludtke,P.R.Baldwin,W.Chiu,EMAN:semiautomatedsoftwareforhigh-resolutionsingle-particlereconstructions.JStructBiol128,82-97(1999).34.X.Liu,W.Jiang,J.Jakana,W.Chiu,AveragingtenstohundredsoficosahedralparticleimagestoresolveproteinsecondarystructureelementsusingaMulti-PathSimulatedAnnealingoptimizationalgorithm.JStructBiol160,11-27(2007).35.E.F.Pettersen,T.D.Goddard,C.C.Huang,G.S.Couch,D.M.Greenblatt,E.C.Meng,T.E.Ferrin,UCSFChimera--avisualizationsystemforexploratoryresearchandanalysis.JComputChem25,1605-1612(2004).36.Kohler和Milstein.Continuouscultureoffusedcellssecretingantibodyofredefinedspecificity.Nature,1975.256,pp495-497,37.Rosen,A.;Gergely,P.;Jondal,M.;Klein,G.和Britton,S.PolyclonalIgproductionafterEpstein-Barrvirusinfectionofhumanlymphocytesinvitro.Nature,1977.267,p.52-54,Steinitz,M.;Klein,G.;Koskimies,S.和Makel,O.EBvirus-inducedBlymphocytecelllinesproducingspecificantibody.Nature,1977.269,p.420-422,38.Gubler,D.J.,Epidemicdengue/denguehemorrhagicfeverasapublichealth,socialandeconomicprobleminthe21stcentury.TrendsMicrobiol,2002.10(2):p.100-3.39.Mackenzie,J.S.,D.J.Gubler和L.R.Petersen,Emergingflaviviruses:thespreadandresurgenceofJapaneseencephalitis,WestNileanddengueviruses.NatMed,2004.10(12Supp1):p.S98-109Gubler,D.J.,Citiesspawnepidemicdengueviruses.NatMed,2004.10(2):p.129-30.40.Pinheiro,F.P.和S.J.Corber,Globalsituationofdengueanddenguehaemorrhagicfever,anditsemergenceintheAmericas.WorldHealthStatQ,1997.50(3-4):p.161-9.41.Ooi,E.E.,K.T.Goh和D.J.Gubler,Denguepreventionand35yearsofvectorcontrolinSingapore.EmergInfectDis,2006.12(6):p.887-93.42.Edelman,R.,Denguevaccinesapproachthefinishline.ClinInfectDis,2007.45Suppl1:p.S56-60.43.ZhangW,ChipmanPR,CorverJ,JohnsonPR,ZhangY,MukhopadhyayS,BakerTS,StraussJH,RossmannMG,KuhnRJ.Visualizationofmembraneproteindomainsbycryo-electronmicroscopyofdenguevirus.NatStructBiol,2003.10(11):p.907-912.虽然已经描述和说明了本发明的特定方面,但是应当认为这些方面仅仅是对本发明的说明,而不是限制如根据所附权利要求书所解释的本发明。本说明书中所引用的所有出版物和专利申请都为了所有目的通过引用全文并入本文,犹如各单个出版物或专利申请特别地且单独地指出为了所有目的通过引用而并入。尽管出于清楚理解的目的,已通过说明和举例的方式对前述发明进行了详细描述,然而对于本领域普通技术人员而言,在本发明的教导下,在不背离所附权利要求书的精神或范围的情况下,对本发明做出特定改变和修改是显而易见的。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1