玉米锌铁调控转运体ZmZIPs基因及其应用的制作方法

文档序号:13704930阅读:405来源:国知局
本申请是申请日为“2014-05-30”,申请号为“201410240908.X”,发明创造名称为“玉米锌铁调控转运体ZmZIPs基因及其应用”的分案申请。技术领域本发明涉及从植物中分离的金属离子转运体基因,尤其涉及从玉米中分离的与锌铁的吸收、转运或储存有关的调控转运体ZmZIPs基因,本发明进一步涉及调控转运体ZmZIPs基因在调控植物吸收、转运或储存锌或铁能力,促进胚和胚乳的发育或成熟以及增加粮食作物种子锌铁含量中的应用,属于植物金属离子调控转运体基因的分离和应用领域。

背景技术:
锌和铁是生物体所必需的微量元素,在植物的生长发育过程中有着重要作用(WintzH,FoxT,WuYY,etal.ExpressionprofilesofArabidopsisthalianainmineraldeficienciesrevealnoveltransportersinvolvedinmetalhomeostasis.TheJournalofbiologicalchemistry2003,278(48):47644-47653.)。锌是生物体300多种酶和重要蛋白质的结构辅助因子(HaydonMJ,CobbettCS.AnovelmajorfacilitatorsuperfamilyproteinatthetonoplastinfluenceszinctoleranceandaccumulationinArabidopsis.Plantphysiology2007,143(4):1705-1719.)。锌不仅参与机体的各种代谢,在生物膜稳定和基因表达调控等生理机能中也担负着重要的角色(MathewsWR,WangF,EideDJ,etal.DrosophilafearofintimacyencodesaZrt/IRT-likeprotein(ZIP)familyzinctransporterfunctionallyrelatedtomammalianZIPproteins.TheJournalofbiologicalchemistry2005,280(1):787-795.)。适量增加植物体内锌的含量可提高作物产量,而锌的缺乏会导致叶绿素、脂质、蛋白、质膜的氧化破坏,植物体内锌离子的过度积累又会对植物产生毒害。铁在细胞呼吸、光合作用和金属蛋白的催化反应过程中发挥重要作用,是重要的电子传递体,因此,铁元素在原核和真核生物的生命活动中具有不可替代的功能。另外,细胞内过高的Fe3+/Fe2+氧化还原势会导致超氧化合物的产生,对细胞造成伤害(BriatJF,LebrunM.Plantresponsestometaltoxicity.Comptesrendusdel'AcademiedessciencesSerieIII,Sciencesdelavie1999,322(1):43-54.)。因此,严格控制植物体内金属离子的平衡是至关重要的。参与锌铁吸收的蛋白主要有三类,都是以蛋白家族形式存在的,包括:ZIP,即锌调控转运体(Zinc-regulatedtransporter,ZRT)和铁调控转运体(Iron-regulatedtransporter,IRT)。酵母功能互补实验显示ZIP家族基因能够转运包括Zn2+、Fe2+、Cu2+、Cd2+在内的多种金属离子(ColangeloEP,GuerinotML.Putthemetaltothepetal:metaluptakeandtransportthroughoutplants.Currentopinioninplantbiology2006,9(3):322-330.)。ZIP一般由309-476个氨基酸残基组成,有8个潜在的跨膜结构域和相似的拓扑结构,第3和第4跨膜区之间有一长的可变区,可变区位于胞内,其C、N末端位于胞外,该区富含组氨酸残基,可能与金属的结合、转运有关(GuerinotML.TheZIPfamilyofmetaltransporters.BiochimBiophysActa2000,1465(1-2):190-198.)。目前在拟南芥、水稻、蒺藜、苜蓿、大豆、野生型二粒小麦、葡萄等植物中鉴定出ZIP基因并对其功能进行了研究。在拟南芥中发现16个ZIP家族基因,AtIRT1是通过酵母互补实验分离得到的第一个ZIP功能基因,其主要在根部表达,且该基因的过表达可导致镍的过度积累(EideD,BroderiusM,FettJ,etal.Anoveliron-regulatedmetaltransporterfromplantsidentifiedbyfunctionalexpressioninyeast.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica1996,93(11):5624-5628;HenriquesR,JasikJ,KleinM,etal.Knock-outofArabidopsismetaltransportergeneIRT1resultsinirondeficiencyaccompaniedbycelldifferentiationdefects.Plantmolecularbiology2002,50(4-5):587-597;VarottoC,MaiwaldD,PesaresiP,etal.ThemetaliontransporterIRT1isnecessaryforironhomeostasisandefficientphotosynthesisinArabidopsisthaliana.ThePlantjournal:forcellandmolecularbiology2002,31(5):589-599;VertG,GrotzN,DedaldechampF,etal.IRT1,anArabidopsistransporteressentialforironuptakefromthesoilandforplantgrowth.PlantCell2002,14(6):1223-1233;NishidaS,TsuzukiC,KatoA,etal.AtIRT1,theprimaryironuptaketransporterintheroot,mediatesexcessnickelaccumulationinArabidopsisthaliana.Plant&cellphysiology2011,52(8):1433-1442.)。AtIRT2主要在根部表达,定位在囊泡,推测具有细胞内过量金属元素的解毒功能(VertG,BriatJF,CurieC.ArabidopsisIRT2geneencodesaroot-peripheryirontransporter.ThePlantjournal:forcellandmolecularbiology2001,26(2):181-189;VertG,BarberonM,ZelaznyE,etal.ArabidopsisIRT2cooperateswiththehigh-affinityironuptakesystemtomaintainironhomeostasisinrootepidermalcells.Planta2009,229(6):1171-1179.14,15)。AtIRT3能互补锌、铁转运双突变体,过表达AtIRT3会使锌在地上部以及铁在地下部积累(LinYF,LiangHM,YangSY,etal.ArabidopsisIRT3isazinc-regulatedandplasmamembranelocalizedzinc/irontransporter.TheNewphytologist2009,182(2):392-404.)。表达分析显示,AtZIP1、AtZIP5、AtZIP9、AtZIP12和AtIRT3受缺锌诱导,由此推测,这些基因在缺锌条件下可能增强锌的吸收能力(KramerU,TalkeIN,HanikenneM.Transitionmetaltransport.FEBSLett2007,581(12):2263-2272.)。玉米(Zeamays)是中国重要的粮食、饲料和经济作物,增加玉米籽粒中锌、铁等微量元素的含量,对提高饮食或饲料利用效率、促进经济的发展及人体健康尤为重要。目前,已知许多转运蛋白参与了植物体内锌铁离子平衡网络系统,其中ZIP(Zinc-regulatedtransporters,Iron-regulatedtransporter-likeproteins,ZIP)基因家族对锌、铁等二价金属离子的吸收、运输和储存起着重要作用,在拟南芥、水稻、大麦、大豆上,已报道了一些有关ZIP家族基因的研究,但对ZIP家族基因在植物体内具体的作用机制尚未完全了解,而关于玉米的ZIP家族基因的研究报道较少。了解Zn2+、Fe2+在玉米中的吸收、运输方式,分布规律和调节机制,将有助于改善玉米在锌、铁缺乏的环境中的生长发育,为进一步揭示玉米中ZIP家族基因的作用机理奠定基础,为玉米锌、铁高效转基因育种提供候选基因,也为人类锌铁营养提供良好的基础。

技术实现要素:
本发明的目的之一是提供从玉米(Zeamays)中分离的锌铁调控转运体基因;本发明的目的之二是提供锌铁调控转运体基因所编码的蛋白质;本发明的目的之三是将所述的锌铁调控转运体基因应用于调控植物对锌铁等金属离子的吸收、转运或储存,促进胚根和胚芽发育以及胚成熟或者增加粮食作物籽粒中锌铁含量。本发明的上述目的是通过以下技术方案来实现的:从玉米(Zeamays)中分离的锌铁调控转运体ZmZIP1基因,其cDNA序列为(a)、(b)或(c)所示:(a)、SEQIDNo.1所示的核苷酸序列;(b)、编码SEQIDNo.2所示氨基酸的核苷酸序列;(c)、与SEQIDNo.1所示核苷酸的互补序列在严谨杂交条件能够进行杂交的核苷酸,该核苷酸所编码的蛋白质具有锌铁调控转运体的功能。从玉米(Zeamays)中分离的锌铁调控转运体ZmZIP2基因,其cDNA序列为(a)、(b)或(c)所示:(a)、SEQIDNo.3所示的核苷酸序列;(b)、编码SEQIDNo.4所示氨基酸的核苷酸序列;(c)、与SEQIDNo.3所示核苷酸的互补序列在严谨杂交条件能够进行杂交的核苷酸,该核苷酸所编码的蛋白质具有锌铁调控转运体的功能。从玉米(Zeamays)中分离的锌铁调控转运体ZmZIP3基因,其cDNA序列为(a)、(b)或(c)所示:(a)、SEQIDNo.5所示的核苷酸序列;(b)、编码SEQIDNo.6所示氨基酸的核苷酸序列;(c)、与SEQIDNo.5所示核苷酸的互补序列在严谨杂交条件能够进行杂交的核苷酸,该核苷酸所编码的蛋白质具有锌铁调控转运体的功能。从玉米(Zeamays)中分离的锌铁调控转运体ZmZIP7基因,其cDNA序列为(a)、(b)或(c)所示:(a)、SEQIDNo.7所示的核苷酸序列;(b)、编码SEQIDNo.8所示氨基酸的核苷酸序列;(c)、与SEQIDNo.7所示核苷酸的互补序列在严谨杂交条件能够进行杂交的核苷酸,该核苷酸所编码的蛋白质具有锌铁调控转运体的功能。从玉米(Zeamays)中分离的锌铁调控转运体ZmZIP8基因,其cDNA序列为(a)、(b)或(c)所示:(a)、SEQIDNo.9所示的核苷酸序列;(b)、编码SEQIDNo.10所示氨基酸的核苷酸序列;(c)、与SEQIDNo.9所示核苷酸的互补序列在严谨杂交条件能够进行杂交的核苷酸,该核苷酸所编码的蛋白质具有锌铁调控转运体的功能。所述“严谨杂交条件”意指在所属领域中已知的低离子强度和高温的条件。通常,在严谨条件下,探针与其靶序列杂交的可检测程度比与其它序列杂交的可检测程度更高(例如超过本底至少2倍。严谨杂交条件是序列依赖性的,在不同的环境条件下将会不同,较长的序列在较高温度下特异性杂交。通过控制杂交的严谨性或洗涤条件可鉴定与探针100%互补的靶序列。对于核酸杂交的详尽指导可参考有关文献(Tijssen,TechniquesinBiochemistryandMolecularBiology-HybridizationwithNucleicProbes,\Overviewofprinciplesofhybridizationandthestrategyofnucleicacidassays.1993)。更具体的,所述严谨条件通常被选择为低于特异序列在规定离子强度pH下的热熔点(Tm)约5-10℃。Tm为在平衡状态下50%与目标互补的探针杂交到目标序列时所处的温度(在指定离子强度、pH和核酸浓度下)(因为目标序列过量存在,所以在Tm下在平衡状态下50%的探针被占据)。严谨条件可为以下条件:其中在pH7.0到8.3下盐浓度低于约1.0M钠离子浓度,通常为约0.01到1.0M钠离子浓度(或其它盐),并且温度对于短探针(包括(但不限于)10到50个核苷酸)而言为至少约30℃,而对于长探针(包括(但不限于)大于50个核苷酸)而言为至少约60℃。严谨条件也可通过加入诸如甲酰胺的去稳定剂来实现。对于选择性或特异性杂交而言,正信号可为至少两倍的背景杂交,视情况为10倍背景杂交。例示性严谨杂交条件可如下:50%甲酰胺,5×SSC和1%SDS,在42℃下培养;或5×SSC,1%SDS,在65℃下培养,在0.2×SSC中洗涤和在65℃下于0.1%SDS中洗涤。所述洗涤可进行5、15、30、60、120min或更长时间。优选的,本发明从玉米中所分离的锌铁调控转运体ZmZIP1、ZmZIP2、ZmZIP3、ZmZIP7或ZmZIP8基因的cDNA序列分别为SEQIDNo.1、SEQIDNo.3、SEQIDNo.5、SEQIDNo.7或SEQIDNo.9所示的核苷酸序列。本发明目的之二是提供由上述锌铁调控转运体ZmZIPs基因(ZmZIP1、ZmZIP2、ZmZIP3、ZmZIP7或ZmZIP8)所编码的能够吸收、转运或储存锌铁的蛋白质;本发明目的之二是通过以下技术方案来实现的:ZmZIPs基因所编码的锌铁调控转运体,其氨基酸序列为(a)或(b)所示:(a)、SEQIDNo.2、SEQIDNo.4、SEQIDNo.6、SEQIDNo.8或SEQIDNo.10所示的氨基酸序列;(b)、将SEQIDNo.2、SEQIDNo.4、SEQIDNo.6、SEQIDNo.8或SEQIDNo.10所示的氨基酸序列通过一个或多个氨基酸残基的替换、缺失或/和插入而衍生得到的仍具有锌铁调控转运体功能的蛋白变体。所述的“多个”通常意味着2-8个,优选为2-4个,这取决于锌铁调控转运体三维结构中氨基酸残基的位置或氨基酸的种类;所述的“替换”是指分别用不同的氨基酸残基取代一个或多个氨基酸残基;所述的“缺失”是指氨基酸残基数量的减少,也即是分别缺少其中的一个或多个氨基酸残基;所述的“插入”是指氨基酸残基序列的改变,相对天然分子而言,所述改变导致添加一个或多个氨基酸残基。本发明所述的蛋白变体可由遗传多态性或人为操作产生,这些操作方法通常为本领域所了解。例如,可通过DNA的突变来制备锌铁调控转运体的氨基酸序列变体或片段,其中由于诱变或改变多核苷酸的方法为本领域所习知。其中,保守的取代是将一种氨基酸残基替换成具有相似性质的另一种氨基酸。因此,本发明所述的锌铁调控转运体及其编码基因包括天然存在的序列和变体两种形式。“变体”意指基本相似的序列,对于多核苷酸,变体包含天然多核苷酸中一个或多个位点处一个或多个核苷酸的缺失、插入或/和替换。对于多核苷酸,保守的变体包括由于遗传密码的简并性而不改变编码的氨基酸序列的那些变体。诸如此类天然存在的变体可通过现有的分子生物学技术来鉴定。变体多核苷酸还包括合成来源的多核苷酸,例如,采用定点诱变所得到的仍编码SEQIDNo.2所示的氨基酸的多核苷酸变体,或者是通过重组的方法(例如DNA重排等)。本领域技术人员可通过以下分子生物技术手段来筛选或评价变体多核苷酸所编码蛋白的功能或活性:DNA结合活性,蛋白之间的相互作用,瞬时研究中基因表达的激活情况或转基因植物中表达的效应等。从亚细胞定位结果可知,本发明分离的5个ZmZIPs基因(ZmZIP1、ZmZIP2、ZmZIP3、ZmZIP7或ZmZIP8基因)所编码的蛋白定位在质膜与细胞内膜上。为进一步确定细胞内膜的具体定位,本发明选用ERmarker与5个ZmZIPs基因共定位进行拟南芥叶肉原生质体的转化,结果证明这5个ZmZIPs基因均定位在细胞质膜及内质网上。在亚细胞定位的基础上,通过real-timeRT-PCR表达分析发现,正常营养条件下,5个ZmZIPs基因主要在地上部表达,其中,缺锌条件下,ZmZIP8在96h地上部表达上调,ZmZIP3在6h时地上部和地下部表达量都有所升高;在高锌条件ZmZIP7和ZmZIP8在地上部的表达量是逐渐降低的,ZmZIP3在地下部的表达量明显的降低。这些结果表明,ZmZIP3、ZmZIP7和ZmZIP8在幼苗时期对锌的浓度比较敏感。缺铁条件下,ZmZIP7和ZmZIP8在地上与地下的表达量是逐渐增高的,说明ZmZIP7和ZmZIP8对铁的浓度比较敏感。缺铜、缺锰条件下,5个ZmZIPs基因的表达量都没有明显的变化。酵母互补实验表明,本发明所分离的5个ZmZIPs不论在低锌还是在低铁条件下都表现出不同程度的转运锌或铁活性,说明本发明所分离的5个ZmZIPs均具有转运锌铁的功能。目前,已知许多转运蛋白参与了植物体内锌铁离子平衡网络系统,一些蛋白也被应用到植物的转基因研究中,比如在大麦中过表达AtZIP1基因能够增加锌和铁在种子中的含量(RameshSA,ChoimesS,SchachtmanDP.Over-expressionofanArabidopsiszinctransporterinhordeumvulgareincreasesshort-termzincuptakeafterzincdeprivationandseedzinccontent.Plantmolecularbiology2004,54(3):373-385.),同样,过表达OsIRT1基因,水稻中锌和铁的含量在地上部、地下部和种子中都有所提高(LeeS,AnG.Over-expressionofOsIRT1leadstoincreasedironandzincaccumulationsinrice.Plant,cell&environment2009,32(4):408-416.)。然而,在水稻中过表达OsZIP4、OsZIP5、OsZIP8,OsZIP9结果导致过量的锌聚集于根部,降低了植株地上部分的锌含量(LeeS,KimSA,LeeJ,etal.Zincdeficiency-inducibleOsZIP8encodesaplasmamembrane-localizedzinctransporterinrice.Moleculesandcells2010,29(6):551-558;LeeS,JeongHJ,KimSA,etal.OsZIP5isaplasmamembranezinctransporterinrice.Plantmolecularbiology2010,73(4-5):507-517;IshimaruY,MasudaH,SuzukiM,etal.OverexpressionoftheOsZIP4zinctransporterconfersdisarrangementofzincdistributioninriceplants.Journalofexperimentalbotany2007,58(11):2909-2915.)没有达到在籽粒中增加锌含量的目的,因此,这些基因的过表达对水稻籽粒中锌的富集是不利的。这些结果表明,异位过表达对于锌铁的积累与分布可能会起到一定的作用。然而,有关锌铁转运蛋白在籽粒中的研究还很少。因此,本发明提供了一种调控植物吸收、转运或储存锌铁的能力的方法,包括:将本发明ZmZIPs基因可操作的与表达调控元件相连接得到重组植物表达载体;将重组植物表达载体转化到植物中,在植物体中过表达ZmZIPs基因,能够有效调控或改善目标植物对锌铁的吸收、转运或储存的能力。本发明提供了一种解除过量的锌铁对植物体毒害的方法,该方法包括:将本发明ZmZIPs基因可操作的与表达调控元件相连接得到重组植物表达载体;将重组植物表达载体转化到植物中,在植物体中过表达ZmZIPs基因。本发明还提供了一种调控或促进植物种子胚发育的方法,该方法包括:将本发明ZmZIPs基因可操作的与表达调控元件相连接得到重组植物表达载体;将重组植物表达载体转化到植物中,在植物体中过表达ZmZIPs基因;其中,所述的表达调控元件中启动子优选为种子特异性表达的启动子。本发明进一步提供了一种调控或促进种子胚成熟的方法,该方法包括:将本发明ZmZIPs基因可操作的与表达调控元件相连接得到重组植物表达载体;将重组植物表达载体转化到植物中,在植物体中过表达ZmZIPs基因;其中,所述的表达调控元件中的启动子优选为种子特异性表达的启动子。本发明进一步提供了含有所述锌铁调控转运体ZmZIPs基因的重组植物表达载体以及含有该重组植物表达载体的宿主细胞。将本发明所述锌铁调控转运体ZmZIPs基因可操作的与表达调控元件相连接,得到可以在植物中表达该锌铁调控转运体基因的重组植物表达载体。“可操作的连接”指两个或更多个元件之间功能性的连接,可操作的连接的元件可为邻接或非邻接的。例如,该重组植物表达载体可以由5′端非编码区,SEQIDNo.1(或者是SEQIDNo.3、SEQIDNo.5、SEQIDNo.7或SEQIDNo.9中的任一序列)所示的核苷酸和3′非编码区组成,其中,所述的5′端非编码区可以包括启动子序列、增强子序列或/和翻译增强序列;所述的启动子可以是组成性启动子、诱导型启动子、组织或器官特异性启动子;所述的3′非编码区可以包含终止子序列、mRNA切割序列等。合适的终止子序列可取自根癌农杆菌的Ti-质粒,例如章鱼碱合成酶或胭脂碱合成酶终止区。例如,为了使本发明的锌铁调控转运体基因在粮食作物种子进行特异性表达,可以将锌铁调控转运体基因连接在种子特异性表达启动子的下方构建得到重组植物表达载体,将该重组植物表达载体转化受体植物后,锌铁调控转运体基因可以在受体植物的种子里进行特异性表达,达到促进胚根和胚芽发育、促进胚成熟或增加种子锌铁含量或调控胚发育的效果。另外,本领域技术人员可以将ZmZIPs的核苷酸序列进行优化以增强其在植物中的表达。例如。可采用目标植物的偏爱密码子进行优化来合成多核苷酸以增强该基因在目标植物中的表达水平,这些方法均为本领域技术人员所习知。此外,该重组植物表达载体还可含有用于选择转化细胞的选择性标记基因。选择性标记基因用于选择经转化的细胞或组织。所述的选择性标记基因包括:编码抗生素抗性的基因以及赋予除草化合物抗性的基因等。此外,所述的标记基因还包括表型标记,例如β-半乳糖苷酶和荧光蛋白等。所述的“转化”指将基因导入到植物细胞内部这样的方式将多核苷酸或多肽遗传转化到植物中。将所述多核苷酸或多肽引入到植物中的方法为本领域所习知,包括但不限于稳定转化法、瞬时转化法和病毒介导法等。“稳定转化”指被引入的多核苷酸构建体整合至植物细胞的基因组中并能通过其子代遗传;“瞬时转化”指多核苷酸被引入到植物中但只能在植物中暂时性表达或存在。转化方案以及将所述多核苷酸引入植物的方案可视用于转化的植物(单子叶植物或双子叶植物)或植物细胞的类型而变化。将所述多核苷酸转化植物细胞的合适方法包括:显微注射、电穿孔、农杆菌介导的转化、直接基因转移以及高速弹道轰击等。在特定的实施方案中,可利用多种瞬时转化法将本发明的ZmZIPs基因提供给植物。在其它实施方案中,本发明的ZmZIPs基因可通过将植物与病毒或病毒核酸接触来引入到植物中,通常,这样的方法涉及将本发明的ZmZIPs基因构建体引入病毒DNA或RNA分子中。利用常规方法可使已转化的细胞再生稳定转化植株(McCormicketal.PlantCellReports.1986.5:81-84)。本发明可用于转化任何植物种类,包括但不限于:单子叶植物或双子叶植物;优选的,所述的目标植物包括粮食作物、蔬菜或果树等,更优选为粮食作物,例如,可以是玉米、水稻、大麦小麦、高粱、大豆、马铃薯等粮食作物。本发明所涉及到的术语定义除非另外定义,否则本文所用的所有技术及科学术语都具有与本发明所属领域的普通技术人员通常所了解相同的含义。虽然在本发明的实践或测试中可使用与本文所述者类似或等效的任何方法、装置和材料,但现在描述优选方法、装置和材料。术语“重组宿主细胞株”或“宿主细胞”意指包含本发明多核苷酸的细胞,而不管使用何种方法进行插入以产生重组宿主细胞,例如直接摄取、转导、f配对或所属领域中已知的其它方法。外源性多核苷酸可保持为例如质粒的非整合载体或者可整合入宿主基因组中。宿主细胞可为原核细胞或真核细胞,宿主细胞还可为单子叶或双子叶植物细胞。术语“核苷酸”意指单股或双股形式的脱氧核糖核苷酸、脱氧核糖核苷、核糖核苷或核糖核苷酸及其聚合物。除非特定限制,否则所述术语涵盖含有天然核苷酸的已知类似物的核酸,所述类似物具有类似于参考核酸的结合特性并以类似于天然产生的核苷酸的方式进行代谢。除非另外特定限制,否则所述术语也意指寡核苷酸类似物,其包括PNA(肽核酸)、在反义技术中所用的DNA类似物(硫代磷酸酯、磷酰胺酸酯等等)。除非另外指定,否则特定核酸序列也隐含地涵盖其保守修饰的变异体(包括(但不限于)简并密码子取代)和互补序列以及明确指定的序列。特定而言,可通过产生其中一个或一个以上所选(或所有)密码子的第3位经混合碱基和/或脱氧肌苷残基取代的序列来实现简并密码子取代。术语“多肽”、“肽”和“蛋白质”在本文中互换使用以意指氨基酸残基的聚合物。即,针对多肽的描述同样适用于描述肽和描述蛋白,且反之亦然。所述术语适用于天然产生氨基酸聚合物以及其中一个或一个以上氨基酸残基为非天然编码氨基酸的氨基酸聚合物。如本文中所使用,所述术语涵盖任何长度的氨基酸链,其包括全长蛋白(即抗原),其中氨基酸残基经由共价肽键连接。附图说明图1酵母表达载体pFL61的示意图。图2标准Hoagland培养基条件下ZmZIPs的表达模式;S(shoot),R(root)。图3ZmZIPs基因在各种处理条件下的表达模式。图4ZmZIPs基因在玉米胚和胚乳发育过程中的表达模式。图5pRTL2NGFP-ZmZIPs重组载体酶切鉴定;M为1Kb的Marker;1-5分别为pRTL2NGFP-ZmZIP1、ZmZIP2、ZmZIP3、ZmZIP7、ZmZIP8双酶切的结果图6ZmZIPs洋葱表皮细胞中的亚细胞定位;GFP为pRTL2NGFP空载体定位情况;ZmZIP1、ZmZIP2、ZmZIP3、ZmZIP7、ZmZIP8为pRTL2NGFP-ZmZIP1、2、3、7、8的亚细胞定位情况。图7ZmZIPs拟南芥叶肉原生质体中的亚细胞定位;GFP为pRTL2NGFP空载体定位情况;GFP为pRTL2NGFP空载体定位情况;ZmZIP1、ZmZIP2、ZmZIP3、ZmZIP7、ZmZIP8分别为pRTL2NGFP-ZmZIP1、2、3、7、8的亚细胞定位情况。图8pFL61-ZmZIPs及pFL61-OsZIP5、pFL61-OsZIP8、pFL61-OsIRT1正向连接重组载体酶切鉴定;M为1Kb的Marker;1-8依次为pFL61-ZmZIP1、pFL61-ZmZIP2、pFL61-ZmZIP3、pFL61-ZmZIP7、pFL61-ZmZIP8、pFL61-OsZIP5、pFL61-OsZIP8、pFL61-OsIRT1双酶切结果。图9ZmZIPs酵母互补实验结果。图10ZmZIP1、ZmZIP2、ZmZIP3、ZmZIP7和ZmZIP8的植物表达载体示意图。图11ZmZIPs基因在拟南芥中过表达提高拟南芥中锌含量的实验结果;ZmZIP2为转ZmZIP2基因在拟南芥中过表达提高拟南芥中铁或锌含量的实验结果;ZmZIP3为转ZmZIP3基因在拟南芥中过表达提高拟南芥中铁或锌含量的实验结果;ZmZIP7为转ZmZIP7基因在拟南芥中过表达提高拟南芥中铁或锌含量的实验结果;ZmZIP8为转ZmZIP8基因在拟南芥中过表达提高拟南芥中铁或锌含量的实验结果;WT为野生型哥伦比亚种子中铁和锌含量测定的结果。具体实施方式下面结合具体实施例来进一步描述本发明,本发明的优点和特点将会随着描述而更为清楚。但这些实施例仅是范例性的,并不对本发明的范围构成任何限制。本领域技术人员应该理解的是,在不偏离本发明的精神和范围下可以对本发明技术方案的细节和形式进行修改或替换,但这些修改和替换均落入本发明的保护范围内。实验材料1.1植物材料玉米自交系X178由河北农业大学农学院/国家玉米改良中心河北分中心实验室提供,水稻自交系日本晴由北京师范大学生命科学院惠赠。1.2菌株与载体大肠杆菌(E.coli)菌株Mach1-T1和农杆菌(A.tumefacterium)菌株EHA105、GV3101均由本实验室保存。pGEM-Teasy载体购自Promega公司。酵母表达载体pFL61(示意图见图1)、酵母菌株zrt1zrt2ZHY3(MATαade6can1his3leu2trp1ura3zrt1::LEU2zrt2::HIS3),fet3fet4DEY1453(MATa/MATaade2/+can1/can1his3/his3leu2/leu2trp1/trp1ura3/ura3fet3-2::HIS3/fet3-2::HIS3fet4-1::LEU2/fet4-1::LEU2),DY1455(MATaade6can1his3leu2trp1ura3)由南京农业大学张红生教授友情惠赠。实施例1玉米锌铁调控转运体ZmZIPs基因的克隆1、植物材料的处理先把蛭石用Hoagland营养液浸透,将玉米自交系X178种子点播于育苗盘中,上面覆盖上一层干蛭石,在温室(16h光照/8h黑暗,26℃)中培养,12天幼苗长至2叶一心时移入标准Hoagland营养液中生长6天至3叶一心(每3天换一次营养液),3叶一心的玉米幼苗在标准营养液和不加锌、铁、铜、锰、高锌、铁的条件下处理0、6、12、24、48、96h后,分别收取幼苗地上部和根,液氮速冻后于-80℃保存用于总RNA提取。2、玉米总RNA的提取采用Trizol法提取玉米总RNA。3、cDNA的合成(1)去除DNA,按下述配制反应体系:总RNA(1μg/μL)1.0μL,DNAseI(10U/μL)1.0μL,10×DNAseIbuffer1.0μL,DEPCH2O7.0μL,总计10.0μL;37℃30min,加入1μL25mMEDTA,65℃5min终止反应。(2)、加入1μLoligo(dT18),65℃5min;(3)、以上共12μL,再加入以下组分得到反转录体系:5×反应缓冲液4.0μL,RiRT(20U/μL)1.0μL,ReRT(200U/μL)1.0μL,10mMdNTPmix2.0μL,总计:20.0μL;42℃60min,70℃5min,终止反应。4、目的基因的克隆(1)、根据目的基因的ORF框设计引物:以上述步骤3的cDNA为模板,选用ExTaq酶,2×GCIbuffer进行PCR扩增,PCR程序为:95℃预变性4min;94℃变性1min,60℃退火1min,72℃延伸1min,33个循环;72℃延伸10min;(2)、将克隆得到的片段克隆到pGEM-T载体中,转化Mach1-T1菌株;(3)、经酶切鉴定获得阳性的重组质粒,测序得到正确克隆,所克隆的第1个基因命名为ZmZIP1,该基因的cDNA序列为SEQIDNo.1所示,所推导的氨基酸序列为SEQIDNo.2所示;所克隆的第2个基因命名为ZmZIP2,该基因的cDNA序列为SEQIDNo.3所示,所推导的氨基酸序列为SEQIDNo.4所示;所克隆的第3个基因命名为ZmZIP3,该基因的cDNA序列为SEQIDNo.5所示,所推导的氨基酸序列为SEQIDNo.6所示;所克隆的第4个基因命名为ZmZIP7,该基因的cDNA序列为SEQIDNo.7所示,所推导的氨基酸序列为SEQIDNo.8所示;所克隆的第5个基因命名为ZmZIP8,该基因的cDNA序列为SEQIDNo.9所示,所推导的氨基酸序列为SEQIDNo.10所示。实施例2ZmZIPs在幼苗、胚和胚乳中的表达模式将实施例1步骤3中反转录的cDNA稀释10倍作为PCR反应的模板,PCR反应体系如下:cDNA2.0μL,ExTaq0.1μL,2×GCI缓冲液10.0μL,10mMdNTPmix0.8μL,上游引物RTZmZIP1F/RTZmZIP2F/RTZmZIP3F/RTZmZIP7F/RTZmZIP8F(10μM/μL)1.0μL,下游引物RTZmZIP1R/RTZmZIP2R/RTZmZIP3R/RTZmZIP7R/RTZmZIP8R(10μM/μL)1.0μL,ddH2O5.1μL,总计20.0μL;RTZmZIP1F5'-CCTCTCTGCGTTGGTTGCTCT-3'RTZmZIP1R5'-TTGATGGTTGTTTTCTGGTCGT-3'RTZmZIP2F5'-CCACAAATGGCACGAGGTCT-3'RTZmZIP2R5'-CGAAGACGGAGTGGAAGCAAA-3'RTZmZIP3F5'-GCCTCTTGTTGGTGCCCTTA-3'RTZmZIP3R5'-TCAACAATGAACGCTGTAGTGCT-3'RTZmZIP7F5'-ACTAGGTGGGTGCATTGCTCAG-3'RTZmZIP7R5'-TGCCAGCAGATACCGAGTCAA-3'RTZmZIP8F5'-CGTGTCATCGCTCAGGTTCTTG-3'RTZmZIP8R5'-CCCTCGAACATTTGGTGGAAG-3'PCR反应条件:94℃预变性4min;30个循环,每个循环94℃变性45秒,60℃退火1min,72℃延伸1min;最后再延伸72℃10min,降温至16℃,取出PCR产物放入4℃保存。目的基因表达量的检测:实施例1步骤3中反转录的cDNA稀释20倍作为Real-timePCR反应的模板,Actin为内参照,反应体系如下:cDNA5.0μL,SYBRGreenI10.0μL,Rox0.4μL,上游引物ZmActin1F(10μM/μL)0.4μL,下游引物ZmActin1R(10μM/μL)0.4μL,ddH2O3.8μL,总计10.0μL;ZmActin1F5'-ATGTTTCCTGGGATTGCCGAT-3'ZmActin1R5'-CCAGTTTCGTCATACTCTCCCTTG-3'所用程序:95℃2min,95℃15sec,60℃34sec,40个循环,通过ΔΔCt法计算表达量。通过real-timeRT-PCR表达分析发现,正常营养条件下,5个ZmZIPs基因主要在地上部表达,其中,缺锌条件下,ZmZIP8在96h地上部表达上调,ZmZIP3在6h时地上部和地下部表达量都有所升高;在高锌条件ZmZIP7和ZmZIP8在地上部的表达量是逐渐降低的,ZmZIP3在地下部的表达量明显的降低。这些结果表明,ZmZIP3、ZmZIP7和ZmZIP8在幼苗时期对锌的浓度比较敏感。缺铁条件下,ZmZIP7和ZmZIP8在地上与地下的表达量是逐渐增高的,说明ZmZIP7和ZmZIP8对铁的浓度比较敏感。缺铜、缺锰条件下,5个ZmZIPs基因的表达量都没有明显的变化。5个ZmZIPs基因可能参与胚和胚乳的发育(图2、图3和图4)。实施例3ZmZIPs的生物信息学分析ZmZIPs由367-483个氨基酸组成,含有6-9个跨膜结构域,在第3与第4跨膜区之间有一富含组氨酸的可变区,可能和金属离子的结合转运有关。进化树分析显示,ZmZIP1与AtIAR1、OsIAR1进化关系较近。另外,ZmZIP3和ZmZIP4与OsZIP3和OsZIP4形成一个基因簇,ZmZIP2与OsZIP2邻近,和锌转运体OsZIP1,AtZIP2和AtZIP11在一个分支上,ZmZIP5与ZmZIP7在一个分支上,ZmZIP8与OsZIP8,ZmZIP6与OsZIP6进化关系较近,这些结果显示,本发明所分离的5个ZmZIPs可能是锌铁转运体。实施例4ZmZIPs的亚细胞定位1、融合表达载体的构建根据ZmZIPs基因的序列设计引物,引物序列如下:ZmZIP1GF5'-GAATTCATGCGCCGCCAAAGCCT-3'EcoRIZmZIP1GR5'-TCTAGATTCTACCAGAGAAATGCCTAGAGCG-3'XbaIZmZIP2GF5'-GAATTCATGGCCCGCGCCACCAA-3'EcoRIZmZIP2GR5'-TCTAGAGGTGTCCCATATCATGACGACGG-3'XbaIZmZIP3GF5'-GAATTCATGGGAGCTGTGAAGCATAC-3'EcoRIZmZIP3GR5'-TCTAGATGCCCATATAGCAAGCATGGACAT-3'XbaIZmZIP7GF5'-GAATTCATGGTTCTCGCCGGCCTC-3'EcoRIZmZIP7GR5'-TCTAGAAGCCCATATTGCAAGTGATGACATAG-3'XbaIZmZIP8GF5'-GAATTCATGGCCATGAGGCCACGC-3'EcoRIZmZIP8GR5'-TCTAGAGGCCCACTTGGCCAGCAT-3'XbaI加入合适的酶切位点,并且基因3’端去除终止密码子,以克隆基因时连接到pGEM-T载体上测序正确的质粒为模板,选用ExTaq酶与2×GCIbuffer进行PCR扩增,PCR程序为:95℃预变性4min;94℃变性1min,60℃退火1min,72℃延伸1min,33个循环;72℃延伸10min。扩增片段经1%琼脂糖凝胶电泳回收后克隆到pGEM-T载体中,转化大肠杆菌菌株Mach1-T1,经LB培养基(IPTG、X-gal、Amp)得到阳性克隆,提质粒、酶切和测序验证;以克隆基因时连接到pGEM-T载体上测序正确的质粒为模板,选用ExTaq酶与2×GCIbuffer进行PCR扩增,扩增片段经1%琼脂糖凝胶电泳回收后克隆到pGEM-T载体中,测序正确的质粒酶切后,将目的片段构建到pRTL2NGFP载体上,分别命名为pRTL2NGFP-ZmZIP1、pRTL2NGFP-ZmZIP2、pRTL2NGFP-ZmZIP3、pRTL2NGFP-ZmZIP7、pRTL2NGFP-ZmZIP8,图5为酶切鉴定图。2、用相应的酶切pRTL2NGFP载体与不同的酶切后的基因片段,经T4DNA连接酶连接,转化Mach1-T1菌株,提质粒酶切鉴定筛选出正确重组体大提质粒用于基因枪转化洋葱表皮。3、基因枪微弹的制备4、用基因枪进行洋葱表皮转化从定位结果可知5个ZmZIPs(ZmZIP1、ZmZIP2、ZmZIP3、ZmZIP7或ZmZIP8)均定位在质膜与细胞内膜上(图6)。为进一步确定细胞内膜的具体定位,选用ERmarker与ZmZIPs共定位进行拟南芥叶肉原生质体的转化,结果证明5个ZmZIPs均定位在细胞质膜及内质网上(图7)。实施例五酵母互补实验1、酵母表达载体的构建根据目的基因序列加入合适的酶切位点设计引物:ZmZIP1YF5'-GCGGCCGCATGCGCCGCCAAAGCCT-3'NotIZmZIP1YR5'-GCGGCCGCTTATTCTACCAGAGAAATGCCTAGAGCG-3'NotIZmZIP2YF5'-TACGTAATGGCCCGCGCCAC-3'SnaBIZmZIP2YR5'-TACGTATCAGGTGTCCCATATCATGACG-3'SnaBIZmZIP3YF5'-CCCGGGATGGGAGCTGTGAAGCATACATTG-3'SmaIZmZIP3YR5'-GGTACCCTATGCCCATATAGCAAGCATGGAC-3'KpnIZmZIP7YF5'-TACGTAATGGTTCTCGCCGGCCTC-3'SnaBIZmZIP7YR5'-TACGTATCAAGCCCATATTGCAAGTGATGACATAG-3'SnaBIZmZIP8YF5'-TGCCATGGCCATGAGGCCAC-3'ZmZIP8YR5'-CTAGGCCCACTTGGCCAGCATG-3'OsZIP5YF5'-CCCGGGGAGCCATCGGCGATGGCGA-3'SmaIOsZIP5YR5'-GAGCTCGTGATGGTCACTCACTCATCACGCC-3'SacIOsZIP8YF5'-GCGGCCGCATGAGGACGAACACCACC-3'NotIOsZIP8YR5'-GCGGCCGCCCTCTACATTAGTCCCTGAG-3'NotIOsIRT1YF5'-GCGGCCGCCCCGGGATGGCGACGCCGCGGA-3'NotI,SmaIOsIRT1YR5'-GCGGCCGCCCCGGGTCACGCCCACTTGGCCATG-3'NotI,SmaI以克隆基因时连接到pGEM-T载体上测序正确的质粒为模板,选用ExTaq与2×GCIbuffer进行PCR扩增,PCR程序为:95℃预变性4min;94℃变性1min,60℃退火1min,72℃延伸1min,33个循环;72℃延伸10min。扩增片段经1%琼脂糖凝胶电泳回收后克隆到pGEM-T载体中,转化大肠杆菌菌株Mach1-T1,经LB培养基(IPTG、X-gal、Amp)得到阳性克隆,提质粒、酶切和测序验证,测序正确的质粒酶切后,将目的片段构建到pFL61载体上,命名为pFL61-ZmZIP1、pFL61-ZmZIP2、pFL61-ZmZIP3、pFL61-ZmZIP7、pFL61-ZmZIP8及pFL61-OsZIP5、pFL61-OsZIP8和pFL61-OsIRT1,图8为酶切鉴定图。用NotI酶切pFL61载体与酶切后的ZmZIPs片段经T4DNA连接酶连接,转化Mach1-T1菌株,提质粒酶切鉴定筛选出正确重组体大提质粒用于转化酿酒酵母。2、电击转化法转化酵母(1)、从YPD平板上挑取zrt1zrt2ZHY3、fet3fet4DEY1453和DY1455的单菌落于20mL的YPD液体培养基中,28℃摇床培养约24h;(2)、吸取以上2%体积的菌液转接到100mL的YPD培养基中继续扩繁约4-5h,待菌液OD600为1.2-1.5时即可制备感受态;(3)、将菌液收集到50mL的离心管中,4℃,5,000rpm,离心5min,倒掉上清;(4)、加入等体积的去离子水,冰上重悬菌体,4℃,5,000rpm,5min离心,倒掉上清;(5)、加入1/2体积的去离子水,冰上重悬菌体,4℃,5,000rpm,5min离心,倒掉上清;(6)、加入10mL的1M山梨醇溶液,冰上重悬菌体,4℃,5,000rpm,5min离心,倒掉上清;(7)、加入450-600μL的山梨醇溶液,用去头的枪头轻吸,重悬菌体;(8)、按照每个1.5mL的离心管里加入约100μL的感受态为准,分装;(9)、在每管感受态中加入适量的DNA(10μL左右,c≥200ng/μL),冰上放置1-2min,之后吸到预冷的电击杯中,不要有气泡;(10)、电击转化,立即加入约800μL,1M的预冷的山梨醇溶液,重悬菌体;(11)、从电击杯中吸出菌体,涂布SD/Ura-平板;(12)、SD平板上28℃培养约6天可长出肉眼可见的菌斑。3、酵母阳性克隆的鉴定(1)、取1.5mL酵母培养物,9,000rpm离心30秒,尽可能的吸弃上清,收集酵母细胞;(2)、加入600μLSorbitolbuffer,轻柔吹打充分重悬细胞,加入80U的Lyticase,充分颠倒混匀,37℃温育30min消化细胞壁,中间颠倒数次;(3)、13,000rpm离心1min,尽可能吸弃上清,加入250μL溶液YP1重悬菌体沉淀,涡旋震荡至彻底悬浮;(4)、加入250μLYP2溶液,轻柔地翻转,使菌体充分裂解,室温放置4min;(5)、加入350μLYP3溶液,轻柔地翻转,充分混匀时会出现白色絮状沉淀,冰上静置3-5min,13,000rpm离心5min,小心吸取上清液。(6)、将上一步所得上清液加入吸附柱AC中(吸附柱放入收集管中),12,000rpm离心30-60秒,倒掉收集管中的废液;(7)、加入500μL去蛋白液PD,12,000rpm离心30-60秒,弃废液;(8)、加入500μL漂洗液WB(已加无水乙醇),12,000rpm离心30-60秒,弃废液;(9)、加入500μL漂洗液WB,12,000rpm离心30-60秒,弃废液;(10)、将吸附柱AC放回空收集管中,13,000rpm离心2min,除去漂洗液;(11)、取出吸附柱AC,放入一个干净的离心管中,在吸附膜的中间部位加50μL洗脱缓冲液EB(65-70℃水浴),室温放置2min,13,000rpm离心1min。(12)、以抽提的1μLDNA为模板,基因的两端引物为PCR扩增引物,进行PCR扩增验证目的基因,验证正确的菌液,加入25%的甘油于-80℃保存。4、酵母互补实验结果将pFL61、pFL61-ZmZIP1、pFL61-ZmZIP2、pFL61-ZmZIP3、pFL61-ZmZIP7、pFL61-ZmZIP8、pFL61-OsZIP5、pFL61-OsZIP8、pFL61-OsIRT1质粒分别转化到酵母突变株zrt1zrt2ZHY3和fet3fet4DEY1453中,pFL61为阴性对照,OsZIP5、OsZIP8(LeeS,KimSA,LeeJ,etal.Zincdeficiency-inducibleOsZIP8encodesaplasmamembrane-localizedzinctransporterinrice.Moleculesandcells2010,29(6):551-558;LeeS,JeongHJ,KimSA,etal.OsZIP5isaplasmamembranezinctransporterinrice.Plantmolecularbiology2010,73(4-5):507-517;IshimaruY,MasudaH,SuzukiM,etal.OverexpressionoftheOsZIP4zinctransporterconfersdisarrangementofzincdistributioninriceplants.Journalofexperimentalbotany2007,58(11):2909-2915.)为锌转运体的阳性对照,OsIRT1(LeeS,AnG.Over-expressionofOsIRT1leadstoincreasedironandzincaccumulationsinrice.Plant,cell&environment2009,32(4):408-416.)为铁转运体的阳性对照,pFL61转化野生型菌株DY1455作为另一阳性对照,转化后鉴定为阳性的酵母菌在SD液体培养基中培养,酵母菌液分别稀释4个浓度(OD600=1、0.1、0.01、0.001),然后取5μL点在低锌、低铁和正常SD的培养基中,低锌培养基(SD培养基加入0.4mMEDTA、0.4mMEDTA和250μMZnSO4、0.4mMEDTA和300μMZnSO4),低铁培养基(SD培养基加入50mMMES、50mMMES和50μMFeCl3、50mMMES和100μMFeCl3)酵母互补参照Lin,Y.F的试验(LinYF,LiangHM,YangSY,etal.ArabidopsisIRT3isazinc-regulatedandplasmamembranelocalizedzinc/irontransporter.TheNewphytologist2009,182(2):392-404.)方法进行,28℃培养,6天观察试验结果。实验结果显示,在低锌条件下,加有250μMZnSO4的培养基中能明显观察到DY-pFL61(野生型)、Z-ZmZIP1、Z-ZmZIP2、Z-ZmZIP3、Z-ZmZIP7、Z-ZmZIP8、Z-OsZIP5、Z-OsZIP8、Z-OsIRT1比空载体Z-pFL61长势好,并且,Z-ZmZIP1、Z-ZmZIP2、Z-ZmZIP3、Z-ZmZIP7、Z-ZmZIP8与已经报道的水稻OsZIP长势相当。在低铁条件下,D-ZmZIP1、D-ZmZIP2、D-ZmZIP3、D-ZmZIP7、D-ZmZIP8比空载体D-pFL61长势好,但是没有已经报道的D-OsIRT1的转运活性强(图9);ZmZIP1、ZmZIP2、ZmZIP3、ZmZIP7或ZmZIP8不论在低锌还是在低铁条件下都表现出不同程度的转运活性,说明ZmZIP1、ZmZIP2、ZmZIP3、ZmZIP7或ZmZIP8具有转运锌铁的功能。实验例1ZmZIPs基因在拟南芥中过表达提高拟南芥种子中铁和锌含量的实验将ZmZIP1、ZmZIP2、ZmZIP3、ZmZIP7以及ZmZIP8基因分别与组成型35S启动子控制的植物表达载体pBI121相连接构建得到ZmZIP1、ZmZIP2、ZmZIP3、ZmZIP7和ZmZIP8基因重组植物表达载体(图10);将构建的重组植物表达载体分别转化到拟南芥中,鉴定获得阳性的转ZmZIP1、ZmZIP2、ZmZIP3、ZmZIP7和ZmZIP8基因拟南芥;将阳性的转ZmZIPs基因拟南芥与野生型哥伦比亚在相同的载培条件下培养,收获转ZmZIPs基因拟南芥种子和野生型种子,分别测定转ZmZIPs基因拟南芥种子和野生型拟南芥种子中铁或锌的含量;称取一定量的种子材料经微波消解,定容,用ICP-MS方法进行锌铁含量的测定;每批测定200mg种子,测定三批,取三批数据的平均值。测定结果见图11。从图11的结果可见,在拟南芥中过表达ZmZIP1、ZmZIP2、ZmZIP3、ZmZIP7或ZmZIP8基因均能够不同程度的提高种子中铁或锌含量。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1