组合式造粒机的制作方法

文档序号:12214510阅读:381来源:国知局
组合式造粒机的制作方法与工艺

本发明主要属于湿物料造粒原理和设备组合工艺,尤其是涉及采用供热的网状齿面轧制机为单元的组合式造粒机,该组合式造粒机可用于高湿物料,浆、糊状、膏状、饼状、块状物料,尤其适用于上述混合物料的造粒干化项目;应用于环保、冶金、轻工、化工、食品、医药、饲料、农(林、牧、渔)业产品加工等领域,对其含水量较高的膏、糊、浆、饼、条、块状物料进行造粒并获得干化(干燥),本发明的组合式造粒机还可对城市、工业污泥进行造粒并获得干化(干燥)。



背景技术:

随着新材料(原料)的不断涌现,对干燥的要求不断提高;城市污泥、工业污泥的减量化、无害化工作以及工业化生产中,干化又作为一个必不可缺的处理阶段,其中能源消耗作为干化过程中主要消耗指标,尤为众人关注。

环保行业的污泥干化过程中,如何在保证安全洁净的前提下,最大限度地降低能源消耗;同样在化工、医药、食品、矿产、冶炼等行业中,如何将高湿物料(膏、浆、糊状、饼、块状)尤其是混合物料采用最低的耗能,完成造粒及干燥工艺要求、提高单台产量,已经是众多科技工作者研究的课题。

在污泥干燥(化)行业,有很多公司采用高压板框深度脱水达到60%含水率后再干化的工艺,并且高压板框深度脱水后存在物料含水率不均匀现象。由于物料局部的粘结性,锤式粉碎机很容易造成堵塞现象,无法正常进行工作。使现有的造粒机不能处理含水率高(75%~90%)的软性物料,也不能在含水率低的(30%~75%)硬性、不均匀、粘稠状态下使用。

由于污泥运输过程(尤其是发展中国家和地区)的管理欠缺,导致污泥运输被人工辅助时或车载过程会参杂异物(如砖头、瓦砾、石子、螺栓、螺帽、金属器件等),这些硬性异物在两轧制机转筒相对运动中必然卡死,造成设备过载停机和轧制机转筒变形,并且,清理修复工作非常繁琐和脏臭,严重影响正常生产,失去了造粒机自动运行的优势条件。

在干燥工段前,都设置机械脱水系统。由于机械脱水(尤其是:叠螺机、离心机、带式压滤等)的工作状态的变化、物料本身性质的差异(尤其是:制药菌丝体工艺过程染菌罐出来的菌丝体),造成机械脱水后的污泥含水率偏差很大、状态偏差也很大。有时像稀浆糊状就直接进入造粒系统,这样的稀糊状物料在造粒机两轧制机转筒的缝隙间,没有经过换热面的接触就直接流到底部产生堵塞,严重影响正常运行,并且,清理工作非常繁重。



技术实现要素:

本发明的目的是提供一种组合式造粒机,由加热的轧制机作为基础,采用简单的、轧制机转筒表面设有众多径向环形槽和多头螺旋槽交替网状排列的(含单独径向环形槽)加热的轧制机为单元,组合成能将膏、浆、糊状、饼、块状的湿粘物料或混合物料,在消耗很低的动能和最少的热能的条件下,同时直接淬取、干燥成不规则的近似中间有很多空隙的单体颗粒的组合式造粒机。

为了实现本发明的目的,提出以下技术方案:

一种组合式造粒机,包括多层组合箱体、进料暂存料仓、轧制单元、供热系统和动力系统,所述多层组合箱体的最上层配置有排气口、最下层配置有进气口和底部支撑架,所述进气口为设置在支撑架上;所述多层组合箱体采用箱内气体排出、密闭负压调控引风、真空抽出或敞开散发的方式排除多层组合箱体内产生的湿热气体;所述多层组合箱体的各层箱体由多层造粒机连接法兰连接固定,箱体的数量能够随意增减;

所述进料暂存料仓安装在多层组合箱体的上部,盛放湿物料;所述进料暂存料仓与多层组合箱体的第一层箱体通过进料暂存料仓连接法兰连接固定密封;

所述轧制单元为2层或2层以上的轧制机构成,每层轧制机具有1组或1组以上的轧制机转筒,组合成一个单独的轧制机层;各层轧制机安装在所述多层组合箱体内并上下排列;

在进料仓底部轧制单元的第一层轧制机转筒上设置弹性剥离架或弹性剥离片,用于隔离湿物料内的硬性异物并阻尼特种物料快速进入轧制机;

所述轧制机转筒表面设有径向环形槽或多头螺旋槽交替网状排列,形成犬牙交错格局,通过相对两轧制机转筒差速运行在交错犬牙间形成相对运动,将粘性、块状物料便捷地拉扯成蓬松的颗粒;

除所述第一层轧制机外的每层轧制机转筒间装有阻尼器,防止物料从轧制机转筒缝隙间直通;

所述供热系统包括在每层轧制机的轧制机转筒上设置的回转接头,配合排气口、最下层的进气口提供三种供热形式,分别为:蒸汽、导热油和热气体;蒸汽和导热油为间接换热热源,热气体为直接换热热源;

所述动力系统包括动力组合和传动系统,所述动力组合由一组或多组的减速机和电动机组合,所述传动系统由链轮、齿轮或传动轴构成,所述传动速度由自动控制系统、传动链进行分层控制或设定比例传输。

进一步地,所述多层组合箱体上设置挡料板,所述挡料板分别安装在每层轧制机的两侧,其中一侧的挡料板加长与所述多层组合箱体内壁接触,上下层的加长挡料板相互错开,与最下层的进气口和排气口配合形成湿热气体排出的通道。

进一步地,每个轧制机转筒下方设置清理刀片,清理径向网状齿槽或单独径向齿槽的槽内残留物料。

进一步地,所述多层组合箱体是由多个独立的,具有统一安装尺寸的模块化箱体构成,每个多层组合箱体安装一层轧制机,按照上下层组装,形成组合式造粒机。

进一步地,在所述组合式造粒机顶层轧制机的多层组合箱体的一侧侧位安装的排气口连接引风机,将废、湿气体排出机外;当热源采用热气流时,在相应层的同层两侧或交叉侧位开设进、排气口。

进一步地,所述组合式造粒机每层轧制机的每组轧制机转筒直径、有效长度、齿槽形状、尺寸可以相同也可以不同;各层轧制机轧转筒数量相同也可以不同。

进一步地,所述组合式造粒机的下一层轧制机齿面线速度和容积流速比其上一层轧制机的轧制机转筒对应的齿面线速度和容积流速度大,其余相邻层轧制机网状齿槽或单独径向齿槽的轧制机转筒对应的齿面线速度和容积流速根据物料各含水阶段的体积特征做调整。

进一步地,所述弹性刀架内夹角θ为60~180°,弹性刀架与轧制机转筒外圆表面的间隙τ为2~10mm,一般取5mm;所述轧制机转筒的脱模角γ为5~90°。

进一步地,所述轧制机转筒直径D为150~2000mm,一般取300mm;转筒的多头螺旋轴向齿面的多头螺旋角ψ的设计角度为20~45°,深度V为径向齿面深度b的30%~80%;转筒上的齿轮的齿数不同也可以相同;所述轧制机转筒的直径和对数相同或不同,各层轧制机中间的轧制缝隙在垂直方向上垂直排列或错位排列。

进一步地,所述轧制机转筒的啮合面为网状齿槽或单独径向齿槽的啮合面或平面接合面,所述网状齿槽或单独径向齿槽的啮合面的齿槽形状为半圆形或平底形;所述清理刀片齿顶尖点到轧制机转筒轴心连线与轧制机转筒轴心的垂直对称中心线的夹角α为5~135°;齿片底面与齿尖点处齿底或外圆面的切线的夹角β为0~30°。

本发明有益技术效果:

本发明应用浆、糊、膏状软体的自重力进行重复造粒,实现了颗粒物料内的水份最大限度的表面化,极大地提高物料干燥动力,为节约干燥热能、降低动力消耗、延长设备使用寿命提供可靠保证;本发明的结构简单,操作方便,摩擦小,效率高;利用物料本身的软、粘、稠、透气性差等对干燥不利的特性,转变为我们组合造粒的有利条件;在很小的仅需使用传动轧制机本身的动力、加上很小部分齿转筒表面的近似滑动拉扯齿部边缘物料(很小区域)低速、差速扯动磨擦力的情况下,使得膏、糊、浆、饼、块状物料直接变成表面干化并有裂纹的相互不粘连的、中间带有很多孔隙的单体颗粒。经过组合多次重复,可实现物料内的水份最大限度的表面化,极大地提高物料干燥动力,使其更加便利于后续的干燥过程,从而降低动能、热能消耗;并能够在重复造粒中形成中间有很多空隙的颗粒形状,增加了颗粒的透气性,更有利于颗粒内部水份快速蒸发。

本发明采用简易的弹性刀架(或挡料器/板),在力学的作用下,将干燥软性物体中间夹杂的硬性异物剥离或剔除,当硬性异物集聚到一定量后,人工很容易将被剥离呈现出的硬性异物排出,是解决软、湿、粘物体中硬性异物分拣的最直接、简便的方法,确保系统正常运行。

本发明应用多头螺旋槽和众多径向齿槽,形成网状斜齿切割面,不仅能够顺利地蚕食块状、饼状物料,同时,由于多头螺旋槽的排列还均衡了扯动力,避免了工作冲击惯性,让设备受力均衡更趋稳定,获得低功率运行;相对于原来光滑径向环形齿槽,本发明形成犬牙交错格局,便于在使用很低动力的情况下切碎较硬的块状物料。多头螺旋槽交替网状排列的齿尖,可以造成齿尖不在轧制机转筒母线上有序排列,而是延螺旋线排列,这样,在切入物料时,可以避开脉冲受力的现象,保持转筒受力柔性均衡。

本发明应用简单的低功率、低速、差速扯动对块状物进行拉扯造粒,杜绝了由于板框压滤机进料口局部潮湿的物料在高速粉碎机粘结堵塞无法长期正常运行的状况,便于轻松扯碎块状物料,为运行低电耗创造了必要条件;两轧制机转筒差速运行可以造成两齿面的速度差,避开“硬性物料挤压过程”形成扯动态势。配合多头螺旋槽交替网状排列的齿尖的作用,硬性物料在极低的动能情况下就被扯碎。扯碎和硬性挤压破碎有本质的力学区别,两轧制机转筒同速时对软物料的挤压会形成物料的滑移,不会造成硬性物料挤压过程的体积收缩形成强大的扭矩导致设备故障。使造粒机适用更广泛的物料软特性的污泥。

本发明采用每层对滚的轧制机转筒间装有阻尼器:阻尼器对小型颗粒物产生运动干涉,强迫其参与大颗粒、大块状物进行混合造粒,均衡物料在造粒机内的上下流动速度,让更多的已经成型的细小颗粒重复参与造粒,使得成品颗粒更具有孔隙特征,获得品质更高的、孔隙更多的、湿度均匀的、不规则的、比表面积更大的颗粒,增强了颗粒成品的成型率、孔隙率,为加速蒸发提供更好的形体条件,彻底杜绝了堵塞故障。设置阻尼器还能够使所有的物料均经过两轧制机转筒的换热面,在两轧制机转筒缓慢转动中进入造粒区域,延长了物料总体停留时间,增强干燥强度,换热效率得到有效提高,稀糊状物料能够全部实现蒸发干燥。

上述改进,提高了本发明的适应性,完成了含水率从≥75%拓展到了≥30%类似污泥的物料软硬特性都能够同时进入完成造粒。不仅拓展了软、硬物料的广泛适应性,更降低了设备运行动能消耗、提高了设备使用寿命、降低了设备设计强度、减少了设备投资、降低了设备维护成本。

附图说明

图1是本发明组合式造粒机的单组轧制转筒的断面示意图(侧视);

图2是本发明组合式造粒机的单组轧制转筒的配对示意图(俯视);

图3是本发明组合式造粒机的单组轧制转筒的三维示意图(斜视);

图4是本发明组合式造粒机的单组轧制转筒的三维示意图(俯视);

图5是本发明组合式造粒机的单组轧制转筒齿尖的三维放大图;

图6是本发明组合式造粒机的单组多层结构示意图;

图7是本发明组合式造粒机的多组多层结构示意图;

图8显示转筒矩形网状齿槽;

图9显示转筒网状齿啮合状况;

图10显示转筒锥形网状齿槽。

附图标记:

01进料暂存仓 02第一层轧制机

03排气口 04回转接头

05清理刀片 06轧制机转筒

07挡料板 08第二层轧制机

09条形物料 10第n层轧制机

11多层组合箱体 12进气口

13半干颗粒 14弹性剥离架

15硬性异物 16支撑架

17 阻尼器 18湿物料

19平底形齿槽 20轧制机转筒壁

21 啮合成型槽 22热源介质

23进料暂存料仓连接法兰 24多层造粒机连接法兰。

具体实施方式

为使本发明的目的、技术方案和优点更加清楚明白,以下结合附图和具体实施例,对本发明进一步详细说明。

实施例1

本发明是以带有网状螺旋槽(或单独径向齿槽)的转筒的轧制机为基础而组合的新型造粒设备。当轧制机的转筒正向和反向转动时,置于齿面的边缘局部的物料由于差速网状齿槽扯动,可以将块状、饼状物料撕裂扯碎成小颗粒;当物料为软性(如浆、膏、糊状)物料时,因重力和局部齿顶的磨擦力的作用,随着齿的转动被扯入转筒的轴向沟槽中并继续向下运动直至进入啮合槽中自然形成条状物或颗粒物。针对不同物料可选择设计合理的转筒直径以满足吸入磨擦力和条状成形力的矢量和的平衡,使得条状或颗粒成形力为最小。

在每层成对的轧制转筒的中间设置阻尼器,杜绝小颗粒直通而不参与混合重复造粒的可能,延长物料停留时间、增强单位蒸发强度、制造更多孔隙的颗粒。

针对有些软体中有不规则硬块的杂质(如河道污泥中的砖块、瓦砾),设置不同的轧制机转筒直径和弹性剥离架(弹性剥离片或挡料器/板),利用作用与反作用力,弹开硬颗粒,使其起到分拣剥离的功效。

与此同时,传入轧制机转筒内腔的热源(蒸汽或导热油等)经轧制机转筒壁传导、在空载区域时,轧制机转筒壁吸收内部热源(或热空气供给的热能)储存的能量瞬间传导给上述物料表面。由于温差大,热传导速度快,被接触物料表面急剧受热,条状颗粒表面迅速被升温,并且由于急热出现了物料表皮与啮合齿槽面之间形成蒸汽膜的爆炸裂纹和表皮脆化、体积急剧收缩等现象,使条形物料在重力的作用下从齿槽中自然脱出。由于物料的透气性差,条形物料在槽中表面受热时形成的高压蒸汽膜,具有隔离条形颗粒与槽底面的能力,并且由于网状齿槽或单独径向齿槽的沟槽设有脱模角,表面干化脆化的条形(颗粒)状物料在重力作用下,自然脱出沟槽,完成第一步成形表面干化、脆化过程。

上述具有裂纹的表皮脆化的干燥的条状物或颗粒物由于物料粘度大(或其它特性),所含水份(溶剂)可能有一部分是分子结构中的内含水(结晶水或其它),导致颗粒内部水份(或溶剂)向外部转移的能力较差,同时转筒非接触物料区域的高温热辐射、对流,使得上述脱离齿槽的物料表面仍在受热继续蒸发,因此在短时间内,脆化的表皮不会被反潮,在落下后进入第二层轧制机的转筒被扯进齿槽前,表面仍然为独立的干化、脆化、裂化的表面。第二层轧制机转筒的齿面线速度和容积流速比第一层轧制机的转筒高,当已成形长条进入第二层轧制机转筒齿槽后,由于线速度或体积流速增大,长条被拉断,并自由落在第二层轧制机转筒上,这种自由落体导致长条状无规则分布在第二层轧制机转筒齿面上,被第二层轧制机齿转筒切断形成短的条状或无规则颗粒,这些物体在第二层转筒齿槽前被微挤压力破碎后,原先的硬壳破碎进入颗粒中间、原颗粒中间的软物料包裹着硬壳,在转筒齿槽中表面被急剧加热,在齿面、底、侧同样可以形成高压蒸汽膜产生隔离并脆化、裂化、硬化物料表面,当成形颗粒运动到底部由于重力的作用脱离齿沟。如上所述,当进入第三层轧制机齿型对轧制机转筒时,条状更短,颗粒更为均匀,颗粒表面得到了更好地脆化、裂化、硬化。

根据需要,上述轧制机在上、下位置可以设置多层和多组,以满足处理能力、表面干化造粒、分离大硬块状物(如砖、石)等要求。

上、下层轧制机运行的外圆线速度、网状齿槽或单独径向齿槽的齿面线速度和容积流速是确保运行的关键:正常情况下,相邻下层轧制机的外圆线速度、齿面线速度和容积流速必须比上层的略大,使得下层齿面足以吸纳上层体积流量和扯断上层下落的条状物料,便利造粒;对于行成条状物料(造粒)表面干燥后体积急剧收缩的物料,可以根据体积收缩实际情况,适度提高下层外圆线速度、齿面线速度和容积流速;

造粒过程中,通过上层和下层的外圆线速度、网状齿槽或单独径向齿槽的齿面线速度和容积流速差扯断长条状物料后条状物料随机落入下层轧制机转筒面而被切断重新形成新的条状物料(短条状物料或颗粒);

上述过程中,条状物料(或颗粒)外表面与轧制机转筒外表面接触瞬间热传导、表面急剧吸收热量蒸发,每次都可以得到表面干化、脆化、裂化的外表面;再传入下层时,原来干化、脆化、裂化的外表面被卷入新条状物料(颗粒)的内部,原来内部的水分被破裂出来成为表面急剧吸收热量蒸发的新表面,通过多层多次的重复急剧吸收热量、扯断、切断、表面蒸发干燥,逐步形成不规则的、近似中间有很多空隙的、比表面积很大的颗粒;同时,轧制机转筒表面被配套的刮刀及时清理,确保轧制机转筒表面的换热效率和蓄热、放热效率。

当被造粒干燥物料内可能混入硬性异物(河道淤泥、污水厂污泥、选矿等),在组合式造粒机第一层的上部安装了弹性刀架(或挡料器/板),这样,软物料由于重力压强被压入轧制机齿槽内,硬性异物(砖块、瓦砾、石子、螺帽、螺栓、金属和非金属器皿、碎片等)被阻挡在弹性刀架或挡料器/板的上方,随着轧制机转筒的运动,硬性异物的表面软物料被剥离,有可能被嵌入轧制机转筒与挡料器/板缝隙的硬性异物,在运动中,由于作用与反作用力同时产生,硬性异物被弹性刀架(或挡料器/板)弹力作用下,不断地弹离缝隙区域,硬性异永远在弹性刀架(或挡料器/板)上方浮动,到达一定量时,可以停机清理。简单的技术解决了世界难题。

本发明的造粒机的转筒均设置活动齿槽形状的刀片,以清理沟槽或表面残留的物体,使得表面保持工作状态。

下面配合附图和所给出的实施例,就有关本发明的组合式造粒机结构详细说明如下。

参看图6,图6是本发明组合式造粒机的单组多层结构示意图;

本发明所提供的单组多层结构的组合式造粒机包括一个进料暂存仓01、第一层轧制机02、第二层轧制机08、第n层轧制机10、多层组合11,动力系统、造粒机支撑架16等主要部件,其中,多层组合箱体11为多层箱体通过多层造粒机连接法兰24固定连接,多层组合箱体11也可以为单层箱体。在设备的多层组合箱体11上配置有排气口03、进气口12、轧制机转筒06和挡料板07;在每层轧制机的轧制机转筒06上设置回转接头04、清理刀片05;在第一层轧制机的转筒06上设置弹性剥离架(或弹性剥离片)14,在后续的每层轧制机的转筒06上设置阻尼器17,进料暂存料仓连接法兰23和多层造粒机连接法兰24完成组合式造粒机的配置。

进料暂存仓01被安装在设备多层组合箱体11的上部,将湿物料18布满第一层轧制机02、使轧制机始终保持在满负荷的工作状态,组合式造粒机内部保持良好负压,并隔断第一层轧制机02上部,避免空气被吸入。进料暂存仓01还设置料位传感器(图中未示),将料位信号送入自控系统,由物料输送系统完成对料仓物料的及时补充,保持料层始终保持不低于最少厚度层。

一套单组多层结构的组合式造粒机通常至少有2层或2层以上的轧制机层组成。每层轧制机有1组轧制机转筒06,组合成一个单独的运行层;所有轧制机转筒06均安装了通用的回转接头04作为热源输入、出的重要部件;所有轧制机转筒06均安装了配套的清理刀片05作为清理网状齿槽或单独径向齿槽的槽内残留物料的重要部件;轧制机转筒06的直径、网状齿槽或单独径向齿槽的槽形式和尺寸可以相同或不同;在组合式造粒机整体设计中,设计原则是让从上层轧制机转筒下落到第一层到第二层间的物料能够及时地被相邻下层轧制机转筒及时输送下去。由于第一层物料自重形成的压力大、湿度高、质地软;第二层物料自重压力小,湿度减少,质地也渐硬,当相对运动的轧制机转筒形成的过流缝隙面积相同时,第一层下落的物料体积比第二层大,因此,第二层的体积流速必须比第一层大。后续下层的物料自重形成的压力基本相等,则需要根据物料体积变化特征,在确保相邻上层过流的物料能够足以被下层带走而绝不产生阻塞的情况下,降低速比,提高轧制机转筒热交换效率。

在第一层后续的每层轧制机转筒06上设置阻尼器17,增强蒸发强度、阻滞小颗粒的直通、提高颗粒孔隙率、降低干燥热能消耗。

在第一层的上部安装了弹性刀架(或弹性剥离架/片)14,这样,软物料由于重力压强被压入轧制机齿槽内,硬性异物15被阻挡在弹性刀架14的上方。随着轧制机转筒的运动,硬性异物15的表面软物料被剥离,有可能被嵌入轧制机转筒06与弹性刀架14缝隙的硬性异物15在运动中,在弹性刀架14的弹力作用下,被阻隔(弹跳)在弹性刀架14上方浮动,到达一定量时,弹跳力转变为脉冲动力(扭矩)信号(仪表控制系统完成)输出,提醒操作工进行停机清理。

正常情况下,第二层轧制机08转动时轧制机转筒06外围齿面线速度和容积流速则高于第一层轧制机02的转动时外围齿面线速度和容积流速;齿面线速度和容积流速是指相对运动的轧制机转筒间齿与齿间的间隙的面积和轧制机转筒切向线速度的乘积,也就是相对运动的轧制机转筒间间隙的体积流量。第n层轧制机10转动时,轧制机转筒外围齿面线速度和容积流速则高于第(n-1)层轧制机转筒的转动时外围齿面线速度和容积流速;增速的多少取决于被造粒物料造粒干燥过程的体积特性。组合式造粒干燥过程的物料堆积体积从上到下一般均有体积膨胀区、体积相持区和体积减少区等3个部分组成,当体积减少明显时,下层轧制机转动时轧制机转筒外围齿面线速度和容积流速则低于上层轧制机转筒的转动时外围齿面线速度和容积流速。这些,都将根据物料不同水分阶段的体积特性而定。和通常轧制机一样,其下(侧)端安装清理刀片05,及时将轧制机齿内物料清理。

所有轧制机转筒均可安装热源供给、输出机构的回转接头04,以源源不断供给热能。

本发明提供三种供热形式,分别为:蒸汽、导热油和热烟气(或热气体);蒸汽和导热油均为间接换热热源,热烟气(或热气体)为直接换热热源。蒸汽为洁净能源,导热油为循环能源。

设备多层组合箱体11可以单层或多层组合,一般情况下每层轧制机安装在一个独立的箱体内,多层上下组合使用。上下层箱体可以按照统一的安装尺寸,以便组合式造粒机能够多层模块化组合起来,便于标准化、规模化生产以及在系统调试过程中对组合式造粒机轧制机层数(换热面积)的增加或减少;特殊情况下,也可以由一个单层箱体完成整套设备多层多组轧制机的安装。在造粒机第一层设置排气口03和支架16上设置最下层的进气口12,可以及时将蒸发出的废气排出,降低箱体内的湿含量、增强工作蒸发动力;每层箱体都包括挡料板07,引导物料进入下层轧制机工作。设计的适合位置时,挡料板07延长成为内部气体的导流板,组合后的整体箱体内的气流在导流板的引导下,按照一定的设计流向逐步穿过各轧制机层,将已经蒸发的水汽带走,增强干燥动力。

多层组合箱体最下端连接支撑架16。支撑架16的设有进气口12;造粒机支撑架16还可以由下游设备支撑构成(如盘式干燥机构件),在这种情形下,造粒机排出的颗粒无需输送系统可以直接进入下游设备继续干燥;补充的气体或热源也可以由下端设备接口直接提供。

多层组合箱体11内气体排出方式可以是密闭负压调控引风,也可以是真空抽出或敞开散发形式。若需补充进气时,可以设置空气预热系统。若需的控制造粒机内气体某元素含量时,可以设置相应的监控系统。或者也可以由闭路循环系统中设置旁通以排出蒸发气体。

组合式造粒机的传动(图6中未示出):轧制机转筒06的一端安装了回转接头04,另一端将安装动力传动机构(如齿轮、链轮、传动轴、减速机和电动机等),一般情况下,每台组合式造粒机由1组动力(减速机和电动机组合)通过链轮、齿轮或传动轴将整台设备传动运行起来,也可以由多组(含2组以上)动力进行传动,传动速度由自动控制系统根据物性线速度、网状齿槽或单独径向齿槽的齿面线速度和容积流速的特性需要进行分段控制。

图7是本发明组合式造粒机的多组多层结构示意图;在每一层上包括多组轧制机转筒(每一对轧制机转筒为一组),形成多个轧制面,同时也增加进料暂存仓01的容量,提高湿物料输送和轧制效率,适应不同需要。

所述的轧制机转筒的布局可以是单列多层(如n层),如图6所示;也可以是多列(m列)多层(n层),如图7所示。

轧制机转筒的外圆直径D1、D2、……Dn:转筒的直径可以相同,即D1=D2=……=Dn,也可以是随机值。

转筒外圆直径D根据物料硬度、流动特征决定,直径大了,第一层条状物料机对轧制机转筒的物料压缩量就大,产生阻力就大、消耗功率就高;直径小了,造粒机单轧制机转筒换热面积就小,同样蒸发能力的设备也因轴棍增多而显得配套复杂,实际效能降低。因此,轧制机转筒外圆直径的设计必须满足在较低动力消耗的前提下,顺利完成条状物料(物料带状输出)成型,达到节能降耗、完成造粒干燥任务的目标。

D的尺寸范围可以在150~2000mm范围内,通常采用300mm(实际轧制机转筒外径尺寸值需减除ε)。

D可以是随机值,即,在同层的条状物料轧制机转筒的直径尺寸可以不一样,在不同层的条状物料轧制机转筒的直径尺寸也可以不一样,这样组合的造粒机,同样可以满足生产需求。

在条状物料机层数多的情况下,为减轻主动轴负荷,可以设置多个动力源;

对于粘结性较小的物料,当上下层条状物料机对数、直径相同时,条状物料机中间的轧制缝隙上下层必将垂直在一条垂直线上,导致物料垂直穿过条状物料机层而没有在下面层中进行热交换,影响传热造粒效果,所以,要错位布置。转筒对数不同或轧制机转筒直径不同都可以将条状物料机中间的轧制缝隙在垂直方向上错位,下落的物体可以布置在轧制机转筒上起到传热效果。

图1-3是单组轧制转筒的结构示意图,其中图1为单组轧制转筒的断面示意图(侧视),表明了从断面理解,当较硬物料进行造粒时,采取N1<N2速度不等,左边的转筒起到缓慢送料和留扯物料的状况,右边的转筒起到拉扯物料作用,左右转筒的相对运动完成了拉扯块、饼状物料的作用;当被造粒的为均匀软性物料时,可以采取N1=N2;

图4是单组轧制转筒的三维示意图(俯视);,表明了配对时的工作状态;

图5是单组轧制转筒齿尖的三维放大图,表明了立体直观状态;

图8-图10显示本发明轧制机转筒网状齿槽或单独径向齿槽的构造和啮合状况示意图。图中21为啮合成型槽,22为热源介质,20为轧制机转筒壁;a为径向齿宽、b为齿深、c为齿底圆中心到齿面的距离、R为齿底圆半径、V为多头螺旋槽深度、W为多头螺旋槽宽度;

其中,γ为脱模角,脱模角将根据物料粘度、湿度、硬度和物料内可能存在的硬砂砾等特性决定,一般取值5~90°;

δ为啮合齿尖轴向间隙,ε为啮合齿尖径向间隙,δ和ε根据物料硬度、粘度、流动特征决定,目的是保证在切剖、拉扯成型(条状物料状)的基础上,有足够的间隙,以保证轧制机转筒受热热膨胀所引起的运动干涉现象。

α为齿顶尖点与轧制机转筒轴心连线与轧制机转筒轴心的垂直对称中心线的夹角,取值5~135°,夹角是根据组合式造粒机各层的排列和摩擦压力角决定的,处于边缘的轧制机转筒,在箱体安装空间可能的情况下,加大角度,一般采用105°;处于每层箱体中间的轧制机转筒,由于在箱体安装空间的限制,角度只能布局在5~45°,一般采用15°;

β为齿片底面与齿尖点处齿底(外圆)面的切线的夹角,取值0~30°,一般采用15°,给定一个摩擦压力角,使得刀片能够顺利地清除槽中的物料。

θ为弹性刀架内夹角,取值60~180°根据软物料内可能存在的需要剔除的硬性异物的特征,决定夹角的大小。

τ为弹性刀架与轧制机转筒04外圆表面的间隙。一般根据软物料内可能存在的需要剔除的硬性异物的大小特征,决定间隙的大小。范围为2~10mm,一般取5mm。

以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步的详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1