包括碎片纤维素纤维的粉末金属混合物的制作方法

文档序号:5117353阅读:399来源:国知局
专利名称:包括碎片纤维素纤维的粉末金属混合物的制作方法
技术领域
本发明涉及一种新颖的粉末金属混合物,其中与粘合剂和润滑剂组合的颗粒铁金属粉末常规上被模制成具有任意形状和尺寸且具有足够的生坯强度以从模具中脱模的物件,其中所述物件在不刻划模具并且不产生太多的热量而使得润滑剂在压紧配件上产生气泡的情况下被模制。
背景技术
自从发现粉末形状的适当磨碎的金属颗粒与也为磨碎形式的粘合剂和润滑剂混合的混合物能被压紧并烧结以生产具有任意形状和尺寸的物件以来,用于器具、车辆和机器的各种金属配件的大规模生产的需要已推动粉末冶金技术的发展。在这项技术中,“粉末金属混合物”指的是大量颗粒,其每一者的平均当量直径(average equivalentdiameter)小于150μm(微米),其中优选地其最大尺寸(金属颗粒通常为最大)优选地具有小于75μm的平均当量直径,最小金属颗粒具有约25μm的平均当量直径,且非金属添加剂通常具有小于50μm的平均当量直径。因为粉末金属颗粒的形状可能不规则,所以颗粒的当量直径指的是其被假设为具有相等体积的球体时的直径。根据经烧结或经烧结并热处理的铁物件的所要物理性质,添加一大批粉末添加剂。这些添加剂中最常用的是润滑剂和/或粘合剂,接下来是石墨和例如镍、铜、钼、锰、铬、钴的金属和/或例如硫化物、磷化物和其类似物的有机金属或金属化合物,其在被烧结和/或热处理时与粉末金属形成合金。本发明中术语“粉末金属混合物”指的是铁金属颗粒的混合物,其中铁(Fe)存在的量大于90%,其余成分为添加剂,例如润滑剂、粘合剂(视需要)(其可与所述润滑剂相同或不同)和合金成分(例如石墨和金属),其每一者存在的量少于以总混合物(包括粉末)重量计的2%(重量%)。术语“润滑剂”指的是颗粒粉末,其尺寸不大于约100μm,且其平均当量直径通常在约5μm到25μm的范围内;在本发明中,润滑剂经改良以基本上由一与碎片纤维素纤维掺合的润滑剂粉末构成,所述润滑剂粉末例如常规上用于制造粉末金属的压紧块,且平均长度小于150μm,优选地小于20μm,且其直径在约1μm到20μm的范围内。
实用粉末混合物的最重要的标准是其均质性,没有均质性的话,压紧金属配件的成分中将具有不可接受的差异,不仅在配件与配件之间,而且在一配件自身内部。术语“配件”可与更正式的术语“物件”交换地使用。此均质性不仅包含单位体积粉末的质量中颗粒的分布,而且包含粉末混合物的容积密度(被测量为“霍尔(Hall)表观密度”)和流动特性(被测量为“霍尔流率”)。表观密度是单位体积的非压紧粉末的质量。如在ASTM B-212(“金属粉末和粉末冶金产品的标准测试方法”中的金属粉末工业协会“MPIF”测试方法04)中阐述的来测量霍尔表观密度。流率被量化为具有标准重量的粉末流经一霍尔流量计所需的时间。霍尔流率由ASTM B-213(MPIFS测试方法03)规定。容积密度和流动的差异将导致“填充”和压紧配件的尺寸的差异,所述“填充”是在混合物被压紧之前填入模槽中的粉末混合物的量。在较小程度上,缺少均质性反映在压紧配件(尤其是模制配件的敏感部分(例如齿轮的齿状物)中)的生坯强度的差异。
主要因为充分生坯强度是通过增加压紧压力来获得的,所以生坯强度作为一重要问题仅在以下情况中引起注意其中压紧或模制压力已过高而明显地缩短了模具的使用寿命,和/或当在不能预防压坯被碰撞(即使不是强有力地碰撞)的条件下被从模具中脱模或被自动输送到烧结炉时,被损坏的压紧配件的数目令人担忧。
生坯强度被测量为打破未经烧结的压坯(标准长方形棒)所要的压力,如在ASTMB-312(MPIF测试方法15)中阐述。
虽然术语“粘合剂”和“润滑剂”似乎用于在待压紧的粉末金属掺合物中专门执行不同功能,但实际上,相同功能可由一单一成分执行,虽然与由不同高度专业化材料执行相比,每一功能可能达到更大或更小程度。确切地说,乙撑双硬脂酰胺(“EBS”)有时被称为“粘合剂”,虽然其还可用作为润滑剂;且金属皂和蜡通常被称为“润滑剂”,虽然其还可以用作粘合剂。术语“掺合物”指的是铁金属粉末,包括所有基本上被均质地分散且适合被压紧的成分。“铁”金属粉末意指这样一种粉末,其中金属颗粒主要含有元素铁(Fe),通常至少75%的Fe。粘合剂将石墨和合金组份的颗粒粘合到金属颗粒的表面上。润滑剂降低了当粉末受到剪切或被压时所产生的摩擦力;因此,具有润滑剂颗粒的金属粉末比没有润滑剂的金属粉末更容易流动;并且,金属颗粒上添加有润滑剂的粉末混合物可在模具中在压力下被压紧,且如果压坯具有足够的生坯强度,那么其可在使得模具配件上具有更少磨损和撕裂的情况下从模具中脱模。
通常,接着烧结所述生物件。烧结棒的强度被测量为“横向断裂强度”(“TRS”),其使用一标准TRS夹具来测量,如ASTM B-528(MPIF测试方法41)中描述。如果所述TRS令人满意,那么抗张强度一般也令人满意。根据粉末金属和添加剂的混合物(物件自其模制)的成分和其最终用途,其可接受进一步加工工序,例如定型/冲制、再烧结、热处理和其他工序。
认识到金属、粘合剂和/或润滑剂的组份粉末和一或多种额外添加剂在尺寸、密度和形状上不同,通过选择具有类似尺寸和形状的颗粒并在使用所述粉末混合物之前充分混合各种颗粒来将均质性问题最小化。在此机制中,显然任何关于将植物性材料的有机纤维与其他颗粒混合的想法被迅速驱除,无论纤维在另外方面是多么有利。
此外,至今已可得到平均长度不小于70μm的粉碎纤维素纤维,因为要将其进一步粉碎通常会导致形成一纤维压紧层。虽然这些粉碎纤维的长度与用于可压紧粉末混合物的金属颗粒的平均当量直径的尺寸范围相同,但是如果混合物将用于压紧和烧结配件的大规模生产,那么添加少达以总粉末混合物重量计的2%的量的这些纤维也会导致不可接受的体积或表观密度和流动特征。含有150μm或更长的纤维的粉末金属混合物的不良物理性质可归因于纤维所占的体积和其个体形状的不规则性。
另一方面,将很好地认识到由粉末混合物中的较小颗粒提供的表面面积相对于由较大颗粒提供的面积的增加损害了粉末混合物的“流动性”或流动特征,从而导致需要一段更长时间来填充模具且造成压紧配件中非均质性的额外风险。虽然在实验室中压紧大约一打配件时这种流动性并不成问题,但在生产设备中所述问题可能是重要的,因为在这种情况下单位时间内可产生的配件数目是一个决定性因素。
另一个重要问题(近年来其已显得突出)在于(特别是)石墨的“粉化”程度,以及在烧结过程中硬脂酸锌(通常被用作润滑剂)汽化的有害副作用。为了解决后一个问题,特别需要清洁烧结炉和其烟道,随着包括蜡和金属皂的大量其他润滑剂的揭示所属领域正在增生。为了最小化或排除硬脂酸锌的使用,在美国专利第6,511,945号中揭示了与寡聚酰胺组合的聚环氧乙烷;且EBS或多羧酸酰胺蜡被用作为粘合剂,但是制造均质粉末混合物通常需要加热蜡以使其均匀地分布为金属颗粒上的涂层,如分别在Storstrom等人的美国专利第5,480,469号和Vidarsson等人的美国专利第6,573,225号中揭示。为了改进润滑作用,美国专利第6,413,919号使用两种众所周知的润滑剂的组合,其中每一润滑剂凭借其自身能力是有效的,其中一种是脂肪酸单-或双-酰胺(例如EBS),另一种是金属皂(例如硬脂酸锌),并且依靠处理所述混合物来形成由一种润滑剂组成并涂覆有另一种润滑剂的核心。虽然广泛建议使用纤维素衍生物作为粘合剂(见美国专利第5,480,469号),并且也建议使用纤维素酯树脂和羟烷基纤维素树脂(见美国专利第6,573,225号),但是显然这些化合物在物理上与纤维素纤维无关且没有相似化学性质。

发明内容
提供一种具有任意形状和尺寸的物件,其是由以下材料模制而成(i)铁金属粉末,其平均颗粒尺寸小于约150μm(30筛目美国标准筛系列);(ii)颗粒状、可流动润滑剂,其平均颗粒尺寸小于约50μm、优选地小于30μm;和(iii)纤维素纤维,以天然棉纤维(棉属(gossypium)的种子毛)为例,其长度在约1cm到2cm的范围内且直径在约5到20μm的范围内,其已被粉碎成平均长度小于70μm、优选地小于30μm的纤维的微米级部分(微粉化)。所述物件由粉末金属混合物模制而成,其中润滑剂和微粉化纤维共同以一约0.01重量%到小于2重量%范围内的量存在,每一者优选地以一小于混合物重量计的1%的量存在。虽然大部分纤维的直径不会因粉碎而减小,但有相当数目的纤维碎片(在5重量%到40重量%的范围内)的平均长度在2μm到20μm的范围内,且在1重量%到20重量%的范围内的纤维碎片的平均长度在1μm到10μm的范围内且其平均直径在0.5μm到5μm的范围内。优选地,在被微粉化后,90%的纤维小于25μm,最优选地小于10μm,其中间值在约8μm到12μm的范围内,且平均值在约9μm到15μm的范围内,如在Microtrac标准范围颗粒分析器(Microtrac Standard Range ParticleAnalyzer)中所测量得到。
鉴于依赖于蜡和/或金属皂的固有的众所周知的润滑性与雾化润滑剂的球形的组合来提供最高流率和表观密度(在前述′919专利中),因而特别料想不到纤维素的碎片纤维(一种不具有润滑性且具有较低表观密度的材料)能与一已知润滑剂组合且生产纤维改良润滑剂(在本文中被称为“改良润滑剂”或更方便地被称为“纤维润滑剂”),其不但基本上与不具有纤维的润滑剂具有相同的物理性质,而且还产生了具有基本上类似的表观密度的掺合物和具有更好生坯强度的压块。
虽然在上文指定的尺寸范围和量中的微粉化纤维素纤维(通过粉碎较长的纤维而得到)其自身不对粉末金属掺合物提供明显的润滑性,但其可与任何适于提供可压紧粉末金属混合物(无论低合金钢或不锈钢,还是预合金铁粉末)的润滑剂一起使用;优选地,调整纤维素纤维与润滑剂的比率以提供“改良润滑剂”或“纤维润滑剂”,其与粉末金属掺合,为所选择的生配件产生一掺合物,所述掺合物具有由模具的生产要求规定的霍尔表观密度和流率的规格。由纤维润滑剂压紧形成的生配件提供的生坯强度比在相同条件下由相同润滑剂(与纤维润滑剂存在相同量但不具有纤维)压紧形成的另一配件的生坯强度更高,且同时满足烧结配件的硬度和TRS预定规格。“低合金”粉末意指基于铁的粉末,其含有0.5重量%到5重量%的石墨和0.1%到25%的一种从由Ni、Cu、Cr、Mo、Mn、P、Si、V和W构成的组中选出来的元素。“不锈钢”意指具有很多种成分但总是含有较高百分比的铬(约8%到约25%)、通常0到12%的Ni和0到约0.5%的C(碳)的抗腐蚀钢。“预合金”意指铁以使其与一种或一种以上合金元素大体上均质地互相混合的方式被熔化处理。低合金钢配件通常由比铬或镍少得多的量的其他元素制成,其中铜的使用量高于Mn、Mo、Si、V、P和W,高达5%,且Mn、Mo、Si、V、P和W的使用量通常小于约2%。
铁金属粉末可从前述任何基于铁的粉末中选择。通常,铁金属粉末为雾化粉末或从海绵铁中取得,其颗粒的尺寸范围经选择以满足烧结最终产品的规格。虽然可使用任何常规上使用的蜡制润滑剂(例如EBS),但是一种优选润滑剂是市售为聚合低碳烯烃氧化物或氧化聚烯烃均聚物或共聚物的微粉化聚烯烃蜡,其中所述烯烃具有2到4个碳原子;最优选的是氧化微粉化聚烯烃均聚物蜡。由于少于0.1重量%的纤维本身与润滑剂相比并不具有明显优点,因此所使用的纤维润滑剂的量优选地在0.25重量%到1重量%的范围内,且润滑剂/纤维的重量比在约1∶2到10∶1的范围内,优选地在1∶1到4∶1的范围内。
揭示一种用于制造均质粉末金属混合物的方法,其包含将平均当量颗粒直径小于约150μm的金属颗粒与包括存在量小于以混合物重量计的2%的改良润滑剂和所属领域中常规上所使用的粘合剂、加工助剂和添加剂(视需要而定)在内的添加剂混合一段充分时间以产生以下规格(i)霍尔表观密度在数值上比由不具有纤维素纤维的常规润滑剂制得的相同粉末金属混合物获得的霍尔表观密度小不小于10%;且(ii)霍尔流率为至少25sec/50g混合物,其中所述改良润滑剂基本上由优选地平均当量颗粒直径小于50μm的润滑剂和平均长度小于70μm的纤维素纤维组合构成。优选地,所述霍尔表观密度在数值上大于由不具有纤维素纤维的常规润滑剂制得的相同粉末金属混合物获得的霍尔表观密度。
在由小于2重量%的常规润滑剂制得的粉末金属混合物(该混合物的霍尔流率低得无法接受,为小于25sec/50g)中,添加重量份相等但至少0.1重量%的微粉化纤维素纤维(其自身提供具有可忽视润滑性的混合物)(以便使得纤维和润滑剂一起的存在量小于以混合物重量计的2%)将产生一种掺合物,其不仅具有所要的霍尔表观密度和流率,而且导致比省略纤维素纤维时更高的生坯强度。一种商业上可用的铁粉末金属掺合物(其包括小于2重量%的改良润滑剂,其中包括0.1重量%到小于1重量%的微粉化纤维素纤维,结合0.1重量%到小于1重量%的常规的优选为聚合的润滑剂)具有2.7到3.5g/cc范围内、优选地2.9到3.3g/cc范围内的霍尔表观密度和25到35sec/50g、优选地29到33sec/50g的霍尔流率。流动太慢或根本不流动的掺合物通常毫无困难地流过粉末箱的导管;例如可能由一些纤维/润滑剂的重量比在填充模槽时遇到的这种微小困难可通过使用导管上的摇动构件(例如机械或声波振动器)来解决。通常通过加深常规上与表观密度较高的掺合物一起使用的模槽来补偿由所述新颖改良润滑剂获得的略微较低的表观密度。
与当量直径小于约50μm的微粉化聚烯烃蜡颗粒组合的如本文所定义的微粉化纤维素纤维是一种新颖合成物的成分,发现所述新颖合成物不仅是例如硬脂酸锌的金属皂或脂肪酸单-或双-酰胺的替代物(全部或部分),而且提供比可由相等重量的不具有纤维素纤维的润滑剂获得的生坯强度更高的生坯强度。当含有所述改良润滑剂的所模制的生铁粉末金属物件在常规烧结炉的无氧条件下被烧结时,不需要像烧结含硬脂酸锌的物件的情况那样频繁地清理炉的烟道。微粉化纤维还可以与例如石墨的无机润滑剂组合,纤维的功能部分在于代替其他情况下所使用的石墨的一部分,或者与例如硬脂酸锌的金属有机化合物组合,纤维的功能部分在于代替其他情况下所使用的金属有机化合物的一部分。



具体实施例方式
关键是要使用微粉化的纤维素纤维。我们所说的纤维素纤维是指主要为纤维素材料的纤维,所述纤维素材料例如大麻、黄麻、棉花、木材、剑麻、竹子、玉米杆和其类似物,其可产生直径小于约20μm的单个纤维。虽然这些纤维素纤维中的任何一者均可被粉碎成小于约75μm的平均长度,但其在受到一足以使得被曝露的纤维变得高度易碎的量的γ射线、X射线或电子束照射后更容易地被微粉化为更小尺寸范围的碎片,如前述′712专利所揭示,所述揭示内容如同在本文完全阐述的那样以引用的方式并入到该处。人们相信当30到100MR(百万拉德(MegaRad))范围内的剂量输送到大量纤维素纤维时,其表面结构也以以下方式被改良促进粉末金属混合物在被曝露的粉碎纤维与常规有机润滑剂的同样小或更小的颗粒混合时的流动。最优选的是可在不改变其分子结构的情况下被漂白的纤维素纤维。认识到在从中收获纤维素的原材料的生长时期中,每一纤维的直径随着纤维素层在纤维的细胞壁上的积累而变得更厚;需要使用具有平均直径的原纤维,以便在粉碎所述纤维后,至少50重量%具有小于70μm的平均长度和小于10μm的直径。“原材料”意指未经化学处理来改变纤维素分子结构的纤维,即,相对于其他多糖的纤维素或聚纤维二糖的独特结构被保持且不被衍生化。最优选的是已受到前述剂量范围内的电子束照射的纤维素纤维,所述纤维之后在一高速旋转切断机(例如811型系列直进式成粒机)或在喷射式分级碾磨机(例如30型旋转喷射或24型)中被粉碎,且具有约1到小于50μm的范围内的平均长度和约1到10μm的范围内的平均直径,优选地平均长度在约1到20μm的范围内且平均直径在约1到5μm的范围内,且最优选地平均长度在约1到10μm的范围内且平均直径在约1到3μm的范围内。这些粉碎的经电子束照射的纤维的在较小尺寸范围内的这些尺寸很大程度上取决于纤维素纤维的来源和在其被粉碎之前单个纤维的尺寸以及其在被粉碎时纤维自身之间的碰撞程度。
任何常规粉末金属润滑剂可用于粉末金属混合物,且特别受到青睐的润滑剂是那些以2.7到3.5g/cc范围内的霍尔表观密度和29到35sec/50g范围内的霍尔流率浸透掺合物的润滑剂。常用润滑剂从由金属皂和蜡(特别是聚(低碳)烯烃蜡和氧化聚(低碳)烯烃均聚物和共聚物、脂肪酸双酰胺和脂肪酸单酰胺)构成的组中选出。优选的蜡是Epolene牌蜡,其型号为E-10,14,15,16,17,20,43;G-3003和G-3015;E-14,20,43;C-10,13,16,17,18;N-10,11,14,15,20,21,30,34,3,可从Eastman Chemical公司购得和Acumist牌蜡,其型号为A-6,12,18,45;B-6,9,12,18;C-5,12,18;D-5,9;1106,1112,1204,1306,3105,3205,可从Honeywell公司购得。蜡的特定选择取决于特定金属粉末的物理特征、其将被压紧和脱模的条件以及压紧配件将被烧结的条件。
含有与微粉化纤维素纤维组合的润滑剂的掺合物经常规制备,而无需额外加工工序。所述成分经过混合,直到形成基本上均质的掺合物为止,且用所述掺合物填充其中将模制配件的模槽;接着掺合物由一锤体压紧,所述锤体配合地且紧密地密接在模槽中,且施加足够的压力(通常在约300到900Mpa(43,500psi或43.5Ksi或21.75Tsi,tons/in2)到1000Mpa(130,500psi或130.5Ksi或65.25Tsi)的范围内),以形成生配件;接着所述生配件以不足以损坏模制配件的完整性的峰值脱模力从模具中脱模,所述力在约453.6到2041.2Kgf(千克力)(1,000到4,500lbf(磅力))的范围内。接着生配件在烧结炉中在惰性空气(通常为氮气和/或氢气)中在高温条件下被烧结,其中所述高温条件高到足以使得润滑剂和一些或全部纤维素纤维挥发,并形成烧结金属配件。所述炉封装被一个烧结带密封,所述烧结带以足以提供在炉的热空气(通常具有80%的N2和20%的H2)中的所要时间的速度来移动,在从约1000到2500范围内的区域中烧结带速度在从2.54cm(1″)每分钟到30.5cm(12″)每分钟的范围内。
低合金和预合金配件通常不被热处理,除非其含有足够的石墨来保证热处理。不锈钢配件不被热处理。在下文介绍的大部分说明性实例中,使用平均长度小于10μm和平均直径小于约5μm的纤维素纤维,以避免使得纤维尺寸插入一额外变量。没有测量只含有纤维素纤维而不含润滑剂的掺合物的表观密度和流率,因为当含有0.75重量%的棉纤维的掺合物由7030.77Kg/cm2(50TSI)的压力来压紧时,该棒不能以可接受量的力从模槽中脱模,这表明纤维素纤维不提供明显的润滑性;因此,具有纤维而不具有润滑剂的掺合物不会是有用的。另外,只使用基本成分来制造每一掺合物以便集中纤维素纤维的结果效能。为了集中所有掺合物中的纤维素纤维的作用,避免使用石墨,除非必须需要石墨来提供烧结配件的所要性质。
实例由下列实例进一步说明本发明,其中术语份指的是重量份,除非另外指出。所有结果都是被同样执行的测试的具有统计价值的数字(通常至少三个)的平均值。不希望下列实例为限制性的,而是希望其只说明本发明范畴内的一些实施例。
实例1-7对使用Hoeganaes Ancorsteel 1000B作为原料生铁和各种润滑剂(有些与棉纤维组合)的MPIF F-0000成分的霍尔表观密度和霍尔流率的估算,其中每一润滑剂或组合具有以(总混合物)重量计的0.75%在以下表1中,每个样品被制备为11b粉末金属混合物(“掺合物”),其是通过在直径约8em(3英寸)和约30.5cm(12″)长的圆筒中彻底混合成分来掺合的。手动滚动圆筒30sec,即在平台上前后平移的同时围绕其纵向中心轴旋转;接着头尾相覆翻转圆筒30sec,即围绕其中心水平轴头尾相覆旋转;接着用手在多个轴上摇动圆筒30sec。接着再次重复这个进行了超过约90sec的程序以确保大体上的均质性。接着估算每种掺合物的霍尔表观密度。润滑剂P-105(内部规定牌号)是一种市售微粉化Acumist聚烯烃蜡,其熔点在约137℃到138℃(279-281)的范围内,在掺合物1中该蜡单独使用,而在掺合物2、3和4中该蜡与不同比例的微粉化棉纤维一起使用。在掺合物5和6中,使用广泛使用的润滑剂硬脂酸锌和EBS(每一者都单独使用);且在掺合物7中,0.56%的纤维与0.19%的EBS一起使用,与掺合物3中与聚烯烃蜡一起使用时的比例相同。
表1

*粉末不流动通过漏斗,除非其被摇动从上述数据中很明显地看出因为掺合物不流动,单独使用的微粉化聚烯烃蜡没有实际使用价值。其余掺合物满足经认可的霍尔表观密度和流率标准,其理想地分别在2.9到3.3g/cc和27到36sec/50g的范围内。与EBS和硬脂酸锌相比,具有棉纤维的掺合物的霍尔表观密度介于EBS与硬脂酸锌的霍尔表观密度之间;且其霍尔流率比两者都好;具有相同比例的棉纤维的掺合物#4和#7大体上具有相同表观密度和流率,无论润滑剂是EBS还是硬脂酸锌,这表明对选择常规、优良的润滑剂基本上没有敏感性。
然而,应注意到,具有0.75%的P-105润滑剂的掺合物(不能容易地流动通过漏斗)的表观密度为3.00g/cc,其基本上与具有等量EBS的表观密度相同;然而,虽然碎片纤维素纤维的表观密度比金属粉末的表观密度小得多,但在P-105由棉纤维替代的每种情况下,表观密度出乎意料地增加;且这个增加在EBS的一部分由棉纤维替代时也是明显的。显然,在流率大于35sec/50g的快速流动的粉末中添加0.25重量%到1重量%范围内的量的纤维润滑剂将对流动造成微不足道的影响,且将不会对其产生不利影响,但是人们不希望把纤维润滑剂添加到流率为30sec/50g的Ancorsteel 1000B金属粉末中以改良流率;也不希望进行添加来增加掺合物的表观密度。
接着以7030.77Kg/cm2或50TSI(吨/平方英尺)来把每种掺合物压紧成标准测试棒,每一者为3.175cm(1.25″)长×1.27cm(0.5″)宽×0.635cm(0.25″)厚,以估算每一润滑剂对可压缩性和生坯强度的作用。此后,在1121℃(2050)下80%氮气/20%氢气的气氛中在常规烧结炉中一移动烧结带上烧结所有棒,且估算所述烧结棒的性质。
将了解到,所使用的润滑剂和纤维的组合量以及纤维与润滑剂的比例将取决于被压紧的特定粉末金属混合物和烧结配件的(待满足的)规格。组合量或一种组份相对于另一种组份的比例太高或太低将导致掺合物的表观密度和流率超出所要参数。一般来说,当组合量小于0.5重量%或大于1.5重量%时,掺合物在生产过程中不是十分有用的;因此,组合量优选地不大于1.5重量%,且更优选地不大于1重量%。
估算由上表1中数字标志的掺合物制得的棒的生坯密度、生坯强度和需要用来把棒从模槽中脱模的峰值脱模压力。接着在装备有烧结带的烧结炉中烧结所述棒,所述烧结带以8.9cm(3.5″)每秒的速度移动穿过具有连续较高温度的区域以提供在炉的97%N2/3%H2的热空气中的所要时问,在穿过648.9℃(1200)、760℃(1400)、1121℃(2050)和112℃(2050)的四个主要温度区域时烧结带速度在从2.54cm(1″)/min到30.5cm(12″)/min的范围内。每个区域的长度接近3米(7′7″)。
测量至少三个样品的烧结密度、烧结TRS、烧结表观Rockwell F硬度(HRF)和烧结尺寸一致性(DC),并求出其平均值。在下表2中给出结果表2

在上表中,7+K Kg/cm2指的是7,030.8Kg/cm2压力=50tons/in2(TSI),且Mpa指的是兆帕斯卡,其中1Mpa=1000Kpa。
从上述结果中明显地看出掺合物#4(其中组合物包括相对于润滑剂量较大重量比例的棉纤维)提供不仅具有最高生坯强度、TRS和硬度(HRF)而且还具有最佳尺寸一致性(DC)(即,最小变形)的烧结棒。
与EBS和硬脂酸锌相比,具有棉纤维的掺合物的生棒具有相似生坯密度和所要峰值脱模压力(用测压仪测量得)。
实例8-11估算一纤维润滑剂,其为50%的微粉化聚烯烃蜡润滑剂(“蜡”)和50%的微粉化棉纤维的组合,其在两种标准粉末金属合成物中总共存在0.75重量%为了比较在(i)MPIF F-0000铁粉末金属和(ii)MPIF FC-0208粉末金属中纤维润滑剂的作用与常规雾化AcrawaxEBS润滑剂的作用,制备了四种掺合物。对于MPIFF-0000,我们使用Hoeganes Ancorsteel 1000原料生铁;且对于MPIF FC-0208,我们使用(Hoeganes Ancorsteel 1000原料生铁+2%铜+0.8%石墨)。
首先,在一实验室双锥鼓掺合器中把两组物质分别与独立组MPIF F-0000粉末金属和MPIF FC-0208粉末金属搅匀,以产生两个4.5Kg(10lb)组大体上均质的掺合物(#8和#10),每一者含有0.75重量%的EBS。
在掺合器中把粉末金属的两个额外组(每一者具有相同重量)与相等重量分的Acumist微粉化聚烯烃蜡和棉纤维掺合,以产生两种混合物(#9和#10),每一者含有0.75重量%的纤维润滑剂。测量在至少三个样品中每一掺合物的霍尔表观密度和流率并求出其平均值;在下表3中给出结果表3

*粉末不会流动通过霍尔漏斗,除非其被摇动(“不流动”条件)由纤维润滑剂制成的样品的不流动条件可能是所使用的掺合程序造成的,且程序中的变化可能是获得流动所必须的。应注意到,不流动条件不能与在生产设备中获得的流动相关联,在生产设备中从粉末金属进料斗出来的导管的公称直径通常至少为2.54cm(1″)。另外,应注意到,具有改良润滑剂的表观密度比具有EBS的表观密度低0.08-0.09g/cc,但是并未超出F-0000的常规限制(2.90-3.20g/cc)的范围;掺合物#9的表观密度比掺合物#8的表观密度低小于3%;且掺合物#11的表观密度比掺合物#10的表观密度低小于4%。在生产用压机的模槽中通常能容许这些小差异。
接着使用四种掺合物中的每一者在2812Kg/cm2(20TSI)到8436Kg/cm2(60TSI)范围内的压力下制造标准棒,测试所述棒的TRS、可压缩性(生坯密度)、生坯强度和烧结性质。接着在20TSI到60TSI范围内的压力下把所有棒压紧成标准测试棒,且在装备有烧结带的烧结炉中烧结所述棒,所述烧结带以8.9cm(3.5″)每秒的速度移动穿过具有连续较高温度的区域以提供在炉的97%N2/3%H2的热空气中的所要时间,在穿过648.9℃(1200)、760℃(1400)、1121℃(2050)和1121℃(2050)的四个主要温度区域时烧结带速度在从2.54cm(1″)/min到30.5cm(12″)/min的范围内。求在至少三个样品上所作测量的平均值,并做记录。
在下表4和表5中,阐述由使用等量润滑剂(0.75重量%)的相同-0000粉末获得的比较结果,且其中一种润滑剂是AcrawaxEBS,另一种是Acumist聚烯烃蜡和微粉化棉纤维的50/50组合。
在下列表6和表7中,阐述由使用等量润滑剂(0.75重量%)的相同FC-0208粉末获得的比较结果,其中一种润滑剂是AcrawaxEBS,且另一种是Acumist聚烯烃蜡和微粉化棉纤维的50/50组合。
表4-MPIF F-0000+0.75%EBS

10tons/in2(TSI)=1406.16Kg/cm2压力Mpa指的是兆帕斯卡,其中1Mpa=1000KPa平均脱模压力的范围从20TSI下的1125lbf到60TSI下的1650。
表5-MPIF F-0000+0.75%(纤维+聚烯烃蜡)

10tons/in2(TSI)=1406.16Kg/cm2压力,Mpa指的是兆帕斯卡,其中1Mpa=1000KPa表6-MPIF FC-2008+0.75%EBS

10tons/in2(TSI)=1406.16Kg/cm2压力Mpa指的是兆帕斯卡,其中1Mpa=1000KPa
表7-MPIF FC-2008+0.75%(纤维+聚烯烃蜡)

10tons/in2(TSI)=1406.16Kg/cm2压力Mpa指的是兆帕斯卡,其中1Mpa=1000KPa平均脱模压力在2812Kg/cm2(20TSI)下的408.3Kgf(900lbf)到Kg/cm2(60TSI)下的930.1Kgf(2050lbf)的范围内。
从上表4到表7所阐述的结果中可明显地看到,由改良润滑剂制得的F-0000棒比由EBS制得的棒具有略微较低的可压缩性,而由FC-02108制得的棒具有大体上相同的可压缩性。
由改良润滑剂制得的F-0000棒具有大大增加的生坯强度,比由EBS制得的棒的生坯强度好平均36%,而不管压紧压力如何;且F-0208棒的生坯强度高了51%。生坯强度上的这种改进确保抵抗在模制和脱模配件的压力下破裂;且抵抗配件在生坯状态下被处理时的刻痕、碎裂和破裂。
峰值脱模压力,即起始模制配件离开模槽的运动所需的力,基本上与在典型模制压力下模制得的掺合物#8和#9的棒相同,但是在更极端压力下所模制得的棒所需的力更高。然而,对于从掺合物#10和#11制得的棒而言,峰值脱模压力基本上相同或者较低,而不管模制压力如何。
平均脱模压力,即保持配件移动离开模槽所需的力,对于F-0000棒的每一者一律较高,但对于F-0208棒则大体上相同或较低。
由改良润滑剂制得的F-0000棒的生长相对于由EBS制得的棒的生长异常地低,在极端压力下尤其明显;由FC-0208制得的棒具有正常的烧结密度和尺寸变化,其非常类似于由EBS制得的棒的烧结密度和尺寸变化。
TRS(其从为估算强度而在受控条件下对烧结棒执行的三点测试中获得)对于在较低压力下制得的F-0000棒是正常的,但对于在较高压力下制得的棒却降低了;但对于FC-0208棒而言,对于每种润滑剂获得的TRS值大体上类似。
由改良润滑剂在较低模制压力下制得的F-0000棒的表观硬度是正常的,但相对于由EBS在较高压力下制得的棒的硬度却降低了;对于F-0208棒,表观硬度对于两种润滑剂在所有模制压力下都大体上相同。
实例12-14估算两种组成物,其在一标准316不锈钢粉末金属组成物中具有不同比例和不同量的微粉化聚烯烃蜡润滑剂(“蜡”)与微粉化棉纤维的组合,一种组成物存在1.0重量%的量,另一种存在0.75重量%的量为了比较掺合物#13和#14中的纤维润滑剂的作用和1重量%的常规雾化AcrawaxEBS润滑剂(掺合物#12)的作用,(其每一者都在Hoeganaes 316L粉末中),类似地制备所述三种掺合物。
首先,在一实验室双锥鼓掺合器中把较小量的EBS润滑剂与一组316L粉末掺合,以产生一0.907Kg(2lb)组的含有1.0重量%的EBS的大体上均质的掺合物(#12)。
在掺合器中把316L粉末的两个额外组(每组具有相同重量)掺合,以制造掺合物#13和#14。#13含有0.67%纤维/0.33重量份的Acumist;且#14含有0.56%纤维和0.19%Acumist,所以掺合物#13和#14分别含有1.0重量%和0.75重量%的纤维润滑剂。测量至少三个样品中的每一掺合物的霍尔表观密度和流率并求出其平均值;在以下表8中给出结果表8

*粉末不会流动通过霍尔漏斗,除非其被摇动显然,具有纤维润滑剂的掺合物的表观密度比具有EBS的掺合物的表观密度低约0.15g/cc。如早先指出的那样,表观密度中的此微小差异在生产设备中是容许的;如果需要极端精确性,那么可将模槽做得更深。应注意到,掺和物#14的流率大体上随纤维润滑剂含量中的仅一微小降低而增加。
接着使用所述三种掺合物中的每一者在从2812Kg/cm2(20TSI)到8436Kg/cm2(60TSI)范围内的压力下制造标准棒,测试所述棒的TRS、可压缩性(生坯强度)和烧结性质。接着在20TSI到60TSI范围内的压力下把所有棒压紧成标准测试棒,且在装备有烧结带的烧结炉中烧结所述棒,所述烧结带以8.9cm(3.5″)每秒的速度移动穿过具有连续较高温度的区域以提供在炉的100%H2的热空气中的所要时间,在穿过648.9℃(1200)、760℃(1400)、1287.8℃(2350)和1287.8℃(2350)的四个主要温度区域时烧结带速度为3.5″/min。求在至少三个样品上所作测量的平均值,并做记录。
在下表9、10和11中,阐述由掺合物#12、13和14中的每一者获得的比较结果。
表9-316-L+1.0%EBS

10tons/in2(TSI)=1406.16Kg/cm2压力Mpa指的是兆帕斯卡,其中1Mpa=1000KPa表10-316-L+1.0%纤维润滑剂

10tons/in2(TSI)=1406.16Kg/cm2压力Mpa指的是兆帕斯卡,其中1Mpa=1000KPa表11-316-L+0.75%纤维润滑剂

10tons/in2(TSI)=1406.16Kg/cm2压力Mpa指的是兆帕斯卡,其中1Mpa=1000KPa注意,含有纤维润滑剂的掺合物的生坯强度高得惊人,而不管模制压力如何。
从前述数据中还可以明显地看出,具有纤维润滑剂的掺合物的可压缩性通常比具有EBS的掺合物的可压缩性低约0.15g/cc;纤维润滑剂含量降低到0.75%展示出在较高压力下生坯密度的改进。峰值脱模压力的差异在生产设备中并不重要。棒的烧结密度一般与生坯密度的差异一致。在相同密度下,与具有EBS的掺合物相比,尺寸变化的收缩百分比对于含有纤维润滑剂的掺合物来说更小;且具有相同烧结密度的棒的TRS和表观硬度大体上相同。
以此提供相关主题的大体揭示并详细描述新颖改良润滑剂和粉末金属混合物,且以具有制造和使用本发明的最佳模式的特定实施例来说明本发明,应了解将不因为所说明和描述的特定实施例来强加任何不适当的限定,且确切地说,不将本发明限制于本文阐述的细节的盲目依附中。
权利要求
1.一种粉末金属组成物,其包含铁金属粉末和改良润滑剂,所述改良润滑剂基本上由润滑剂粉末和碎片纤维素纤维构成,所述碎片纤维素纤维具有小于150μm的平均长度和在约1μ到20μ范围内的直径,所述改良润滑剂以小于所述组成物重量计的2%的量存在,所述混合物具有(i)在数值上比由不具有所述纤维素纤维的常规润滑剂制得的相同粉末金属混合物获得的霍尔表观密度小不小于10%的霍尔表观密度;和(ii)为至少25sec/50g混合物的霍尔流率。
2.如权利要求1所述的组成物,其中所述润滑剂粉末是从由脂肪酸单酰胺、脂肪酸双酰胺、金属皂和聚烯烃蜡构成的组中选出。
3.如权利要求1所述的组成物,其中所述纤维素纤维具有在从约1μ但小于70μ范围内的平均长度和在从2.7g/cc到3.5g/cc范围内的霍尔表观密度。
4.一种包括润滑剂的粉末状铁金属混合物,所述混合物具有小于25sec/50g混合物的霍尔流率,改进包含微粉化纤维素纤维,所述微粉化纤维素纤维具有在约1μ但小于70μ范围内的平均长度和在约1μ到20μ范围内的直径,所述润滑剂和纤维总共以小于所述粉末金属混合物重量计的2%的量存在,润滑剂/纤维素的比例在1∶2到10∶1的范围内。
5.一种用于制造均质铁粉末金属混合物的方法,其包含把金属颗粒和改良润滑剂组合,其中所述金属颗粒具有小于约150μm的平均颗粒直径,所述改良润滑剂基本上由总共以小于所述混合物重量计2%的量存在的润滑剂和纤维素纤维构成,所述润滑剂具有小于50μm的平均颗粒当量直径(average equivalent diameter),所述纤维素纤维具有小于70μm的平均长度;和将所述混合物混合一段足够长的时间以产生下列规格(i)霍尔表观密度在数值上比由不具有所述纤维素纤维的常规润滑剂制得的相同粉末金属混合物获得的霍尔表观密度小不小于10%;且(ii)霍尔流率为至少25sec/50g混合物。
6.如权利要求5所述的方法,其中所述霍尔表观密度大于由不具有所述纤维素纤维的常规润滑剂制得的相同粉末金属混合物获得的霍尔表观密度。
7.一种适合用于粉末金属物件的改良润滑剂,所述改良润滑剂基本上由与纤维素纤维组合的润滑剂构成,其中所述润滑剂从由无机化合物、金属有机化合物和蜡构成的组中选出,所述润滑剂具有小于50μm的平均颗粒直径,所述纤维素纤维具有小于70μm的平均长度,润滑剂和纤维的重量比在约1∶2到10∶1的范围内。
全文摘要
本发明提供一种包含润滑剂粉末的粉末金属混合物,所述润滑剂粉末常规上与碎片纤维素纤维一起以少于以混合物重量计2%的量产生粉末金属配件。所述碎片纤维素纤维的平均长度小于150微米,且其直径在约10到20微米的范围内。在纤维中加入润滑剂提高了通过压紧所述混合物而制得的配件的生坯强度,并改进了尺寸一致性。
文档编号C10M159/02GK1902017SQ200480040351
公开日2007年1月24日 申请日期2004年2月24日 优先权日2004年1月14日
发明者布鲁斯·安东尼·塔瓦雷斯, 巴特·热罗姆·纳尔逊 申请人:里克特-恩提公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1