一种NiO多孔薄膜的制备方法

文档序号:5285484阅读:320来源:国知局
专利名称:一种NiO多孔薄膜的制备方法
技术领域
本发明属于无机纳米材料技术领域,具体涉及一种NiO多孔薄膜的制备方法。
背景技术
纳米NiO是一种重要的无机功能材料,在陶瓷、热敏元件、催化剂、磁性材料、电致变色材料、气敏传感器、超级电容器等领域都显示出极其广阔的应用前景。其中在部分应用领域中(如气敏传感器和超级电容器),纳米NiO是以薄膜形式存在的。近年来,纳米NiO 多孔薄膜的可控构筑引起了科研工作者的广泛关注。这归因于与拥有相同化学组成的致密膜层相比,纳米多孔膜由于具有发达的孔隙结构和更高的比表面积,从而使得其功能的发挥在很大程度上得到了强化。迄今为止,文献报道用来制备MO多孔薄膜的方法主要有电化学沉积法、溶胶-凝胶法等。电化学沉积法的优点是易于大面积成膜,通过控制电位(或电流)及溶液组成等因素可以控制薄膜的组成,通过控制沉积时的电量还可以控制薄膜的厚度和表面形貌,但其存在的主要缺点是(1)由于生成的薄膜内部含有较多的水分,因此通常比较疏松,与基体的结合性较差;( 工艺条件要求十分精确和苛刻。溶胶-凝胶法制备多孔MO薄膜的工艺较为成熟,通常结合模板剂(硬模板或软模板)的辅助来实现,其突出的优点是薄膜物质的化学组成计量比易于控制,且不需要昂贵的设备仪器,但其存在如下缺陷(1)工艺流程长,步骤繁琐;( 凝胶的热处理过程中容易出现制品的开裂;C3)常使用有机溶剂或采用高温焙烧以脱除模板,但脱模不彻底引入的杂质残留会造成MO多孔薄膜在使用时的性能恶化,大量有机试剂的使用一方面对环境不友好,另一方面会造成制造成本的偏高,高温焙烧脱模则易造成组成薄膜的MO晶粒异常长大,从而使得薄膜比表面积的急剧降低。因此,如何克服现有制备NiO纳米多孔薄膜工艺的缺陷,发展简单的制备方法来获取具有高比表面积和发达孔道,且与基体结合牢固的MO多孔薄膜是其实用化的一个前提。

发明内容
本发明所要解决的技术问题在于针对上述现有技术的不足,提供一种制备条件温和,不涉及到高温高压环境,制备成本低,操作简单,环境友好的NiO多孔薄膜的制备方法。 采用该方法制备的MO多孔薄膜与基体材料M基片无明显的界限,两者之间结合强度高, 避免了采用其它方法制备的NiO多孔薄膜在长期使用过程中的变形、粉化和脱落问题,增强了其循环稳定性能。为解决上述技术问题,本发明采用的技术方案是一种MO多孔薄膜的制备方法, 其特征在于,该方法包括以下步骤(1)对Ni基片进行预处理,所述预处理的过程为先将Ni基片机械加工成20mm 50mmX IOmm 40mmX Imm的片状基片,然后将片状基片依次用150#、600#和1000#砂纸打
磨光亮,再将打磨后的片状基片依次经乙醇超声除油和去离子水清洗后自然风干;
(2)以步骤(1)中经预处理后的Ni基片为阳极,Pt片为阴极,硝酸水溶液为电解液,在搅拌电解液状态下,施加5V 25V电压进行5min 30min的阳极氧化处理;(3)将步骤O)中经阳极氧化处理后的Ni基片取出,用去离子水冲洗,自然风干, 得到具有非晶态MO多孔薄膜的M基片;(4)将步骤(3)中所述具有非晶态NiO多孔薄膜的Ni基片置于马弗炉中焙烧,得到Ni基结晶态立方相NiO多孔薄膜。上述步骤(1)中所述Ni基片的存在形式为致密Ni板、泡沫Ni板或采用粉末冶金方法获得的多孔M板。上述步骤(1)中所述Ni基片的质量纯度为99. 5%以上。上述步骤⑵中所述硝酸水溶液中硝酸的浓度为0. 05mol/L 0. 50mol/L。上述步骤O)中所述电解液的温度为35°C 65°C。上述步骤中所述焙烧的温度为300°C 500°C。上述步骤(4)中所述焙烧的时间为Ih 4h。本发明与现有技术相比具有以下优点1、本发明制备条件温和,不涉及到高温高压环境,制备成本低,操作简单,环境友好。2、本发明可以通过控制阳极氧化电压和电解液的浓度,对纳米NiO多孔薄膜的孔径和膜厚进行调控。3、采用本发明方法制备的MO多孔薄膜与基体材料M基片无明显的界限,两者之间结合强度高,避免了采用其它方法制备的MO多孔薄膜在长期使用过程中的变形、粉化和脱落问题,增强了其循环稳定性能。4、采用本发明方法制备的NiO多孔薄膜是在导电性良好的金属M基片表面原位氧化生成的,多孔薄膜的孔径为50nm 240nm,膜厚为60nm 200nm,可以直接作为电极在电化学领域中使用。5、采用本发明方法制备的NiO多孔薄膜可望在NiO基超级电容器电极的制备上得到应用。本发明采用电化学阳极氧化法,以Ni基片为阳极,以钼为阴极,在外加电场的作用下,依靠电解液中的离子刻蚀阳极的金属表面,逐渐积聚成有一定形貌和结构的NiO多孔薄膜。下面通过实施例,对本发明的技术方案做进一步的详细描述。
具体实施例方式实施例1(1)对质量纯度为99. 5%的Ni基片(Ni基片的存在形式为致密Ni板)进行预处理;所述预处理的过程为先将Ni基片机械加工成50mmX IOmm X Imm的片状基片,然后将片状基片依次用150#、600#和1000#砂纸打磨
光亮,再将打磨后的片状基片依次经乙醇超声除油和去离子水清洗后自然风干;(2)以步骤(1)中经预处理后的Ni基片为阳极,Pt片为阴极,0. 50mol/L的硝酸水溶液为电解液,控制电解液的温度为35°C,在搅拌电解液状态下,施加5V电压进行20min的阳极氧化处理;(3)将步骤O)中经阳极氧化处理后的Ni基片取出,用去离子水冲洗,自然风干, 得到具有非晶态MO多孔薄膜的M基片;(4)将步骤(3)中所述具有非晶态NiO多孔薄膜的Ni基片置于马弗炉中,在焙烧温度为500°C的条件下焙烧lh,得到Ni基结晶态立方相NiO多孔薄膜。本实施例制备的M基结晶态立方相NiO多孔薄膜的孔径约为240nm,膜厚约为 IOOnm, NiO多孔薄膜与基体材料M基片无明显的界限,两者之间结合强度高,避免了采用其它方法制备的NiO多孔薄膜在长期使用过程中的变形、粉化和脱落问题,增强了其循环稳定性能;制备的MO多孔薄膜是在导电性良好的金属M基片表面原位氧化生成的,可以直接作为电极在电化学领域中使用。实施例2(1)对质量纯度为99. 5%的Ni基片(Ni基片的存在形式为致密Ni板)进行预处理;所述预处理的过程为先将Ni基片机械加工成30mmX 15mm X Imm的片状基片,然后将片状基片依次用150#、600#和1000#砂纸打磨光亮,再将打磨后的片状基片依次经乙醇超声除油和去离子水清洗后自然风干;(2)以步骤(1)中经预处理后的Ni基片为阳极,Pt片为阴极,0. 35mol/L的硝酸水溶液为电解液,控制电解液的温度为50°C,在搅拌电解液状态下,施加IOV电压进行5min 的阳极氧化处理;(3)将步骤O)中经阳极氧化处理后的Ni基片取出,用去离子水冲洗,自然风干, 得到具有非晶态MO多孔薄膜的M基片;(4)将步骤(3)中所述具有非晶态NiO多孔薄膜的Ni基片置于马弗炉中,在焙烧温度为400°C的条件下焙烧池,得到Ni基结晶态立方相NiO多孔薄膜。本实施例制备的M基结晶态立方相MO多孔薄膜的孔径约为180nm,膜厚约为 120nm, NiO多孔薄膜与基体材料M基片无明显的界限,两者之间结合强度高,避免了采用其它方法制备的NiO多孔薄膜在长期使用过程中的变形、粉化和脱落问题,增强了其循环稳定性能;制备的NiO多孔薄膜是在导电性良好的金属M基片表面原位氧化生成的,可以直接作为电极在电化学领域中使用。实施例3(1)对质量纯度为99. 8%的Ni基片(Ni基片的存在形式为致密Ni板)进行预处理;所述预处理的过程为先将Ni基片机械加工成20mmX IOmm X Imm的片状基片,然后将片状基片依次用150#、600#和1000#砂纸打磨光亮,再将打磨后的片状基片依次经乙醇超声除油和去离子水清洗后自然风干;(2)以步骤(1)中经预处理后的Ni基片为阳极,Pt片为阴极,0.05mol/L的硝酸水溶液为电解液,控制电解液的温度为65°C,在搅拌电解液状态下,施加25V电压进行30min 的阳极氧化处理;(3)将步骤O)中经阳极氧化处理后的Ni基片取出,用去离子水冲洗,自然风干, 得到具有非晶态MO多孔薄膜的M基片;(4)将步骤(3)中所述具有非晶态NiO多孔薄膜的Ni基片置于马弗炉中,在焙烧温度为300°C的条件下焙烧4h,得到Ni基结晶态立方相NiO多孔薄膜。
本实施例制备的M基结晶态立方相NiO多孔薄膜的孔径约为140nm,膜厚约为 160nm, NiO多孔薄膜与基体材料M基片无明显的界限,两者之间结合强度高,避免了采用其它方法制备的NiO多孔薄膜在长期使用过程中的变形、粉化和脱落问题,增强了其循环稳定性能;制备的MO多孔薄膜是在导电性良好的金属M基片表面原位氧化生成的,可以直接作为电极在电化学领域中使用。实施例4(1)对质量纯度为99. 5%的Ni基片(Ni基片的存在形式为采用常规粉末冶金方法获得的多孔M板)进行预处理;所述预处理的过程为先将M基片机械加工成50mm X 40mm X Imm的片状基片,然后将片状基片依次用150#、600#和1000#砂纸打磨光亮,再将打磨后的片状基片依次经乙醇超声除油和去离子水清洗后自然风干;(2)以步骤(1)中经预处理后的Ni基片为阳极,Pt片为阴极,0. 10mol/L的硝酸水溶液为电解液,控制电解液的温度为60°C,在搅拌电解液状态下,施加25V电压进行5min 的阳极氧化处理;(3)将步骤O)中经阳极氧化处理后的Ni基片取出,用去离子水冲洗,自然风干, 得到具有非晶态MO多孔薄膜的M基片;(4)将步骤(3)中所述具有非晶态NiO多孔薄膜的Ni基片置于马弗炉中,在焙烧温度为500°C的条件下焙烧lh,得到Ni基结晶态立方相NiO多孔薄膜。本实施例制备的M基结晶态立方相NiO多孔薄膜的孔径约为80nm,膜厚约为 180nm, NiO多孔薄膜与基体材料M基片无明显的界限,两者之间结合强度高,避免了采用其它方法制备的NiO多孔薄膜在长期使用过程中的变形、粉化和脱落问题,增强了其循环稳定性能;制备的NiO多孔薄膜是在导电性良好的金属M基片表面原位氧化生成的,可以直接作为电极在电化学领域中使用。实施例5(1)对质量纯度为99. 8%的Ni基片(Ni基片的存在形式为采用常规粉末冶金方法获得的多孔M板)进行预处理;所述预处理的过程为先将M基片机械加工成20mm XlOmm X Imm的片状基片,然后将片状基片依次用150#、600#和1000#砂纸打磨光亮,再将打磨后的片状基片依次经乙醇超声除油和去离子水清洗后自然风干;(2)以步骤(1)中经预处理后的Ni基片为阳极,Pt片为阴极,0.05mol/L的硝酸水溶液为电解液,控制电解液的温度为65°C,在搅拌电解液状态下,施加IOV电压进行15min 的阳极氧化处理;(3)将步骤O)中经阳极氧化处理后的Ni基片取出,用去离子水冲洗,自然风干, 得到具有非晶态MO多孔薄膜的M基片;(4)将步骤(3)中所述具有非晶态NiO多孔薄膜的Ni基片置于马弗炉中,在焙烧温度为350°C的条件下焙烧池,得到Ni基结晶态立方相NiO多孔薄膜。本实施例制备的M基结晶态立方相NiO多孔薄膜的孔径约为200nm,膜厚约为 60nm,NiO多孔薄膜与基体材料M基片无明显的界限,两者之间结合强度高,避免了采用其它方法制备的NiO多孔薄膜在长期使用过程中的变形、粉化和脱落问题,增强了其循环稳定性能;制备的MO多孔薄膜是在导电性良好的金属M基片表面原位氧化生成的,可以直接作为电极在电化学领域中使用。
实施例6(1)对质量纯度为99. 7%的Ni基片(Ni基片的存在形式为采用常规粉末冶金方法获得的多孔M板)进行预处理;所述预处理的过程为先将M基片机械加工成40mm X 20mm X Imm的片状基片,然后将片状基片依次用150#、600#和1000#砂纸打磨光亮,再将打磨后的片状基片依次经乙醇超声除油和去离子水清洗后自然风干;(2)以步骤(1)中经预处理后的Ni基片为阳极,Pt片为阴极,0. 50mol/L的硝酸水溶液为电解液,控制电解液的温度为35°C,在搅拌电解液状态下,施加5V电压进行30min 的阳极氧化处理;(3)将步骤O)中经阳极氧化处理后的Ni基片取出,用去离子水冲洗,自然风干, 得到具有非晶态MO多孔薄膜的M基片;(4)将步骤(3)中所述具有非晶态NiO多孔薄膜的Ni基片置于马弗炉中,在焙烧温度为300°C的条件下焙烧4h,得到Ni基结晶态立方相NiO多孔薄膜。本实施例制备的M基结晶态立方相NiO多孔薄膜的孔径约为50nm,膜厚约为 200nm, NiO多孔薄膜与基体材料M基片无明显的界限,两者之间结合强度高,避免了采用其它方法制备的NiO多孔薄膜在长期使用过程中的变形、粉化和脱落问题,增强了其循环稳定性能;制备的NiO多孔薄膜是在导电性良好的金属M基片表面原位氧化生成的,可以直接作为电极在电化学领域中使用。实施例7(1)对质量纯度为99. 5%的Ni基片(Ni基片的存在形式为泡沫Ni板)进行预处理;所述预处理的过程为先将Ni基片机械加工成20mmX40mm X Imm的片状基片,然后将片状基片依次用150#、600#和1000#砂纸打磨光亮,再将打磨后的片状基片依次经乙醇超声除油和去离子水清洗后自然风干;(2)以步骤(1)中经预处理后的Ni基片为阳极,Pt片为阴极,0. 25mol/L的硝酸水溶液为电解液,控制电解液的温度为45°C,在搅拌电解液状态下,施加15V电压进行25min 的阳极氧化处理;(3)将步骤O)中经阳极氧化处理后的Ni基片取出,用去离子水冲洗,自然风干, 得到非晶态的M基MO多孔膜;(4)将步骤(3)中所述非晶态的Ni基NiO多孔膜置于马弗炉中,在焙烧温度为 500°C的条件下焙烧池,得到Ni基立方相NiO多孔薄膜。本实施例制备的M基结晶态立方相NiO多孔薄膜的孔径约为140nm,膜厚约为 150nm, NiO多孔薄膜与基体材料M基片无明显的界限,两者之间结合强度高,避免了采用其它方法制备的NiO多孔薄膜在长期使用过程中的变形、粉化和脱落问题,增强了其循环稳定性能;制备的MO多孔薄膜是在导电性良好的金属M基片表面原位氧化生成的,可以直接作为电极在电化学领域中使用。实施例8(1)对质量纯度为99. 6%的Ni基片(Ni基片的存在形式为泡沫Ni板)进行预处理;所述预处理的过程为先将Ni基片机械加工成50mmX IOmm X Imm的片状基片,然后将片状基片依次用150#、600#和1000#砂纸打磨光亮,再将打磨后的片状基片依次经乙醇超声除油和去离子水清洗后自然风干;
(2)以步骤(1)中经预处理后的Ni基片为阳极,Pt片为阴极,0. 05mol/L的硝酸水溶液为电解液,控制电解液的温度为65°C,在搅拌电解液状态下,施加25V电压进行5min 的阳极氧化处理;(3)将步骤O)中经阳极氧化处理后的Ni基片取出,用去离子水冲洗,自然风干, 得到非晶态的M基MO多孔膜;(4)将步骤(3)中所述非晶态的Ni基NiO多孔膜置于马弗炉中,在焙烧温度为 300°C的条件下焙烧4h,得到Ni基立方相NiO多孔薄膜。本实施例制备的M基结晶态立方相NiO多孔薄膜的孔径约为90nm,膜厚约为 170nm, NiO多孔薄膜与基体材料M基片无明显的界限,两者之间结合强度高,避免了采用其它方法制备的NiO多孔薄膜在长期使用过程中的变形、粉化和脱落问题,增强了其循环稳定性能;制备的NiO多孔薄膜是在导电性良好的金属M基片表面原位氧化生成的,可以直接作为电极在电化学领域中使用。实施例9(1)对质量纯度为99. 8%的Ni基片(Ni基片的存在形式为泡沫Ni板)进行预处理;所述预处理的过程为先将Ni基片机械加工成35mmX20mm X Imm的片状基片,然后将片状基片依次用150#、600#和1000#砂纸打磨光亮,再将打磨后的片状基片依次经乙醇超声除油和去离子水清洗后自然风干;(2)以步骤(1)中经预处理后的Ni基片为阳极,Pt片为阴极,0. 50mol/L的硝酸水溶液为电解液,控制电解液的温度为35°C,在搅拌电解液状态下,施加5V电压进行30min 的阳极氧化处理;(3)将步骤O)中经阳极氧化处理后的Ni基片取出,用去离子水冲洗,自然风干, 得到非晶态的M基MO多孔膜;(4)将步骤(3)中所述非晶态的Ni基NiO多孔膜置于马弗炉中,在焙烧温度为 400°C的条件下焙烧lh,得到Ni基立方相NiO多孔薄膜。本实施例制备的M基结晶态立方相NiO多孔薄膜的孔径约为lOOnm,膜厚约为 120nm, NiO多孔薄膜与基体材料M基片无明显的界限,两者之间结合强度高,避免了采用其它方法制备的NiO多孔薄膜在长期使用过程中的变形、粉化和脱落问题,增强了其循环稳定性能;制备的MO多孔薄膜是在导电性良好的金属M基片表面原位氧化生成的,可以直接作为电极在电化学领域中使用。以上所述,仅是本发明的较佳实施例,并非对本发明做任何限制,凡是根据发明技术实质对以上实施例所作的任何简单修改、变更以及等效结构变化,均仍属于本发明技术方案的保护范围内。
权利要求
1.一种NiO多孔薄膜的制备方法,其特征在于,该方法包括以下步骤(1)对Ni基片进行预处理,所述预处理的过程为先将Ni基片机械加工成20mm 50mmX IOmm 40mmX Imm的片状基片,然后将片状基片依次用150#、600#和1000#砂纸打磨光亮,再将打磨后的片状基片依次经乙醇超声除油和去离子水清洗后自然风干;(2)以步骤(1)中经预处理后的Ni基片为阳极,Pt片为阴极,硝酸水溶液为电解液,在搅拌电解液状态下,施加5V 25V电压进行5min 30min的阳极氧化处理;(3)将步骤(2)中经阳极氧化处理后的Ni基片取出,用去离子水冲洗,自然风干,得到具有非晶态MO多孔薄膜的M基片;(4)将步骤(3)中所述具有非晶态NiO多孔薄膜的Ni基片置于马弗炉中焙烧,得到Ni 基结晶态立方相NiO多孔薄膜。
2.根据权利要求1所述的一种MO多孔薄膜的制备方法,其特征在于,步骤(1)中所述 Ni基片的存在形式为致密M板、泡沫M板或采用粉末冶金方法获得的多孔M板。
3.根据权利要求1所述的一种MO多孔薄膜的制备方法,其特征在于,步骤(1)中所述 Ni基片的质量纯度为99. 5%以上。
4.根据权利要求1所述的一种MO多孔薄膜的制备方法,其特征在于,步骤( 中所述硝酸水溶液中硝酸的浓度为0. 05mol/L 0. 50mol/L。
5.根据权利要求1所述的一种MO多孔薄膜的制备方法,其特征在于,步骤( 中所述电解液的温度为35°C 65°C。
6.根据权利要求1所述的一种MO多孔薄膜的制备方法,其特征在于,步骤(4)中所述焙烧的温度为300°C 500°C。
7.根据权利要求1所述的一种MO多孔薄膜的制备方法,其特征在于,步骤(4)中所述焙烧的时间为Ih 4h。
全文摘要
本发明公开了一种NiO多孔薄膜的制备方法,该方法先对Ni基片进行预处理;然后以预处理后的Ni基片为阳极,Pt片为阴极,硝酸水溶液为电解液,在搅拌电解液状态下,施加5V~25V电压进行5min~30min的阳极氧化处理;接着将经阳极氧化处理后的Ni基片取出,用去离子水冲洗,自然风干,得到具有非晶态NiO多孔薄膜的Ni基片;最后将具有非晶态NiO多孔薄膜的Ni基片置于马弗炉中焙烧,得到Ni基结晶态立方相NiO多孔薄膜。采用该方法制备的NiO多孔薄膜与基体材料Ni基片无明显的界限,两者之间结合强度高,避免了采用其它方法制备的NiO多孔薄膜在长期使用过程中的变形、粉化和脱落问题,增强了其循环稳定性能。
文档编号C25D11/34GK102251267SQ20111018502
公开日2011年11月23日 申请日期2011年7月4日 优先权日2011年7月4日
发明者康新婷, 张文彦, 李广忠, 李纲, 汤慧萍 申请人:西北有色金属研究院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1