具有多层结构的塑料基板及其制备方法

文档序号:6865408阅读:92来源:国知局
专利名称:具有多层结构的塑料基板及其制备方法
技术领域
本发明涉及一种塑料基板及其制备方法,所述基板具有多层结构,并具有小的热膨胀系数、优异的尺度稳定性以及优良的阻气性。

背景技术
尽管用于显示设备、画框、工艺品、容器等的玻璃板的优点在于具有小的线性膨胀系数、优良的阻气性、高透明度、良好的表面光滑度、优异的抗热性和抗化学性等,但由于高密度,使其易碎且重。
近来,液晶显示器、有机发光器件以及电子纸正引起人们不断增长的兴趣,在这些器件中以塑料基板代替玻璃基板的研究正获得势头。塑料基板在重量和设计简易性方面优于玻璃基板。另外,由于其抗冲击,可由连续制造中实现经济优势。
对于用于显示器件的塑料基板,其应具有足够高的玻璃化转变温度以耐受晶体管加工温度和透明电极沉积温度、阻氧气和水蒸气性以防止液晶和有机发光材料的老化、小的热膨胀系数和良好的尺度稳定性以防止由于加工温度的变化导致板的变形、与常规玻璃板相当的机械强度、足以耐受蚀刻加工的抗化学性、高透明度、低双折射率、良好的抗表面划痕性等。
然而,由于不存在满足所有要求的单一的聚合物复合膜(聚合物膜或聚合物-无机材料复合膜),因此在聚合物膜的表面施用几层功能涂层以满足这些要求。一般的涂层为用于减少表面缺陷和提供光滑度的有机平整层、用于阻塞如氧气和水蒸气的气体物质的无机阻挡层,以及用于提供抗表面划痕性的有机或有机-无机硬涂层。具有多层结构的常规塑料基板通过在塑料膜上涂覆无机阻气层以及在该阻气层上涂覆硬涂层而制备。在这样的多层结构中,由于塑料膜和阻气层的线性膨胀系数不同,可能发生塑料膜的变形或无机层的破裂或脱落。因此,能够使各层界面的应力最小化,并粘合各涂层的适当的多层结构的设计是非常重要的。
美国的Vitex系统开发了一种具有优良阻气性的基板,其通过在塑料膜上形成薄单体膜、通过照射紫外线聚合该单体(固化有机层)、并通过喷涂在其上形成薄无机层获得几层有机-无机多层结构。尽管可以通过这种方法制得具有优良阻气性的基板,但显示器所需的低线性膨胀系数的要求仍未满足,并且仍未提出该问题的解决方案。
美国专利第6,465,953号公开了一种在塑料膜上分散能够与氧气和水蒸气反应的吸气剂颗粒的方法,用于对氧气和水蒸气敏感的有机发光器件。该吸气剂颗粒应具有小于发射光特征波长的粒度,并应均匀地分散以便发射光可不分散地透过基板。该方法试图通过在塑料膜上涂覆包含无机材料的阻气层使氧气和水蒸气的流入最小化。然而,难于均匀分布具有100~200nm粒度的纳米颗粒,且塑料膜应足够厚以包含大量能够与氧气和水蒸气反应的吸气剂颗粒。另外,由于无机阻气层直接涂覆在塑料膜上,该阻气层易于随着温度的变化而破裂或脱落。
美国专利第6,322,860号公开了一种用于电子显示应用的塑料基板,该基板如下制备在由挤压制备的具有不大于1mm厚度的聚戊二酰亚胺片的一侧或两侧涂覆可交联涂覆组合物(包括选自包括多功能丙烯酸酯单体或低聚物、烷氧基硅烷等的聚合物及其混合物)、使其光固化或热固化以形成交联涂层、在该交联涂层上涂覆阻气层,如果需要,然后在阻气层上涂覆另一可交联涂层。在特殊情况下,氧气和水蒸气的透过率足够小以用于液晶显示器。然而,未得到代替玻璃基板所需的小的热膨胀系数和优良的尺度稳定性。
美国专利第6,503,634号公开了一种通过在塑料膜上或两片塑料膜之间涂覆有机-无机杂化物(ORMOCER)和二氧化硅制备的多层基板。所得的膜与其涂覆前相比,表现出小于1/30的氧气透过率和小于1/40的水蒸气透过率。尽管由于显著降低氧气和水蒸气透过率,该膜可用于填料,却未提及在热膨胀系数或尺度稳定性中的改进。


发明内容
本发明的目的是提供一种具有多层结构的塑料基板,该基板具有小的热膨胀系数、优异的尺度稳定性以及优良的阻气性,因此能够代替易碎且重的玻璃板。
本发明的另一目是提供一种制备塑料基板的方法,所述基板具有多层结构,可用于需要优良阻气性的显示器件以及多种包装和容器材料。
为了达到上述目的,本发明提供了一种具有多层结构的塑料基板,包括 彼此贴合的塑料膜,和 顺序堆叠于塑料膜两侧的第一有机-无机杂化缓冲层、阻气层和第二有机-无机杂化缓冲层,各层以塑料膜为中心形成对称排列。
本发明还提供制备具有多层结构的塑料基板的方法,包括步骤 a)通过在塑料膜一侧涂覆溶胶态的缓冲组合物并固化,在塑料膜一侧形成第一有机-无机杂化物缓冲层; b)通过在第一有机-无机杂化层上涂覆无机材料,在其上形成阻气层; c)通过在阻气层上涂覆步骤a)的缓冲组合物并固化形成第二有机-无机杂化缓冲层,以制备多层膜; d)制备具有与在步骤c)中获得的相同结构的另一多层膜;以及 e)贴合步骤c)和步骤d)的塑料膜,以便不具多层膜的侧面彼此接触。



图1说明根据本发明具有多层结构的塑料基板的横截面。
图2说明根据本发明制备具有多层结构的塑料基板的过程。
图3~8说明根据比较实施例1~6的塑料基板的横截面。

具体实施例方式 下面给出本发明的详细描述。
本发明的特征在于具有小的线性膨胀系数和优良的尺度稳定性以及阻气性的塑料基板,因此其能够代替显示器件等的玻璃基板,以及制备该基板的方法。
在本发明的塑料基板中,有机-无机杂化缓冲层置于塑料膜和阻气层之间并在阻气层上,以使各层的热膨胀系数的差异最小化,并改善其粘合性。
本发明的塑料基板的特征在于包含多层的对称贴合结构。如果该结构中的任一层的功能未体现,则该基板的功能不能体现。因此,本发明的塑料基板包含如下基本上对称的多种层。
由于本发明的基板具有对称结构,当温度变化时不会弯曲或变形。
根据本发明,具有良好的阻气性、小的热膨胀系数和优异的尺度稳定性的塑料基板,可使用廉价设备仅通过贴合两塑料膜而简单地制备。
下文,本发明的塑料基板将参照展示本发明的优选实施方式的附图进行更加全面的描述。
本发明的塑料基板具有图1所示的结构以及图2所示的制备过程。
本发明的塑料基板具有2个塑料膜层、2个阻气层和4个有机-无机杂化缓冲层的多层结构。
如图1和2所示,本发明的塑料基板100包括被贴合的塑料膜110a、110b、和顺序堆叠在塑料膜两侧的第一有机-无机杂化缓冲层115a、115b、阻气层120a、120b以及第二有机-无机杂化缓冲层125a、125b,各层以塑料膜为中心形成对称排列。在图1和2中,塑料基板100是指贴合在各多层膜100a、100b的塑料膜侧面的对称层的组合,所述多层膜100a、100b以贴合层130为中心彼此贴合。所述第一有机-无机杂化缓冲层降低了塑料膜和阻气层的热膨胀系数的差异。并且,塑料膜对阻气层的粘合性可通过调节有机和无机组分的组成得到改进。另外,可提高对阻气层的粘合性并通过平整塑料膜表面使表面缺陷最小化。
所述阻气层为具有小的线性膨胀系数并阻塞如氧气和水蒸气的气体的密致无机材料层。
所述第二有机-无机杂化缓冲层防止了阻气层的破裂,并通过填充所述阻气层的缺损进一步改进阻气性。另外,当形成透明导电膜时,可通过其优良的平整能力降低电阻。
所述第一有机-无机杂化缓冲层和第二有机-无机杂化缓冲层可通过含有有机硅烷和金属烷氧化物的缓冲组合物的部分水解制备而起作用。
用于本发明的塑料膜可选自包括均聚物、共混聚合物以及包括有机或无机添加剂的聚合物复合物的组。当本发明的塑料基板用于液晶显示器件时,由于薄膜晶体管和透明电极的制造过程涉及200℃或200℃以上的高温,因此应使用具有良好抗热性的聚合物。这种聚合物的实例为聚降冰片烯、芳香富勒烯聚酯、聚醚砜、双酚A聚砜、聚酰亚胺等。当进行基板制造过程温度降至约150℃的研究时,采用如聚乙烯对苯二甲酸酯、聚乙烯萘、多芳基化合物、聚碳酸酯、环烯烃共聚物等的聚合物变为可能。
另外,可采用在聚合物上分散纳米颗粒制得的塑料膜。这种聚合物复合材料的典型实例为聚合物-粘土纳米复合物,由于粘土的小粒度和大长宽比,其在改进机械性能、抗热性、阻气性、尺度稳定性等发面具有优势。为了改进上述性质,在聚合母体中均匀地分散从层结构中被除去的粘土小片是重要的,并且满足这些条件的材料称为聚合物-粘土纳米复合物。可用于聚合物-粘土复合物的聚合物-粘土纳米复合物的实例为聚苯乙烯、聚甲基丙烯酸酯、聚乙烯对苯二甲酸酯、聚乙烯萘、聚丙烯酸酯、聚碳酸酯、环烯烃共聚物、聚降冰片烯、芳香富勒烯聚酯、聚醚砜、聚酰亚胺、环氧树脂、多功能丙烯酸盐等。作为粘土,可使用合成锂皂石、蒙脱土、麦格迪特(magadite)等。
本发明的塑料基板中的塑料膜具有厚度为10~1,000微米(μm)的膜或片形式。所述塑料膜可通过溶液铸膜或膜挤压制备。为了使由温度变化导致的变形最小化,优选在接近玻璃化转变温度下将所制备的聚合物基板退火几秒钟至几分钟。退火后,底层涂料可涂覆在塑料膜表面,或使用电晕、氧气、或二氧化碳等离子体以及紫外-臭氧或活性气体离子束等进行表面处理,以改善涂覆特性或粘合性。
本发明的塑料基板如下制备。将溶胶态的缓冲组合物涂覆于塑料膜一侧并固化,形成第一有机-无机杂化缓冲层。然后,将无机材料沉积涂覆在第一有机-无机杂化缓冲层上形成阻气层。下一步,涂覆并固化另一缓冲组合物形成第二有机-无机杂化缓冲层。从而,获得了多层膜。另一多层膜以下面同样的过程制备。然后,贴合两个多层膜以使没有形成多层膜的塑料膜的侧面彼此接近。
第一有机-无机杂化缓冲层可通过部分水解缓冲组合物形成溶胶态溶液、在塑料膜上涂覆该溶液以及固化基板制得。所述的涂覆可通过旋涂、滚涂、棒涂、浸涂、凹版涂覆、喷涂等进行。固化可通过热固化、紫外固化、红外固化、高频热处理等进行。固化后,所述的有机-无机杂化缓冲层具有0.5~20微米(μm)的厚度,优选2~10μm,更优选1~5μm。
所述的用于制备有机-无机杂化缓冲层的缓冲组合物包括有机硅烷和金属烷氧化物。如果必要,可进一步包括适当的添加剂、溶剂和聚合催化剂。
所述的有机硅烷可为选自包括下列化学式1表示的化合物组成的组的至少一种。当使用一种化合物时,所述有机硅烷化合物应能够交联。
(R1)m-Si-X(4-m) (1) 其中X,可相同或不同,为氢、卤素、C1-12烷氧基、酰氧基、烷羰基、烷氧羰基、或-N(R2)2(其中R2为H或C1-12烷基); R1,可相同或不同,为C1-12烷基、链烯基、炔基、芳基、芳烷基、烷芳基、芳基链烯基、链烯基芳基、芳基炔基、炔基芳基、卤素、取代氨基、酰胺、醛、酮、烷羰基、羧基、巯基、氰基、羟基、C1-12烷氧基、C1-12烷氧羰基、磺酸盐、磷酸盐、丙烯酰氧基、甲基丙烯酰氧基、环氧化物或乙烯基; 氧或-NR2(其中R2为H或C1-12烷基)可插入R1和Si之间得到-(R1)m-O-Si-X(4-m)或(R1)m-NR2-Si-X(4-m);以及 m为1~3的整数。
所述的有机硅烷可选自包括甲基三甲氧基硅烷、甲基三乙氧基硅烷、苯基三甲氧基硅烷、苯基三乙氧基硅烷、二甲基二甲氧基硅烷、二甲基二乙氧基硅烷、二苯基二甲氧基硅烷、二苯基二乙氧基硅烷、苯基二甲氧基硅烷、苯基二乙氧基硅烷、甲基二甲氧基硅烷、甲基二乙氧基硅烷、苯基甲基二甲氧基硅烷、苯基甲基二乙氧基硅烷、三甲基甲氧基硅烷、三甲基乙氧基硅烷、三苯基甲氧基硅烷、三苯基乙氧基硅烷、苯基二甲基甲氧基硅烷、苯基二甲基乙氧基硅烷、二苯基甲基甲氧基硅烷、二苯基甲基乙氧基硅烷、二甲基乙氧基硅烷、二甲基乙氧基硅烷、二苯基甲氧基硅烷、二苯基乙氧基硅烷、3-氨基丙基三乙氧基硅烷、3-缩水甘油丙氧基三甲氧基硅烷、对-氨基苯基硅烷、烯丙基三甲氧基硅烷、N-(2-氨乙基)-3-氨基丙基三甲氧基硅烷、3-氨基丙基三乙氧基硅烷、3-氨基苯基三甲氧基硅烷、3-缩水甘油丙氧基二异丙基乙氧基硅烷、(3-缩水甘油丙氧基)甲基二乙氧基硅烷、3-缩水甘油丙氧基三甲氧基硅烷、3-巯基丙基三甲氧基硅烷、3-巯基丙基三乙氧基硅烷、3-甲基丙烯酰氧丙基甲基二乙氧基硅烷、3-甲基丙烯酰氧丙基甲基二甲氧基硅烷、3-甲基丙烯酰氧丙基三甲氧基硅烷、正-苯基氨基丙基三甲氧基硅烷、乙烯基甲基二乙氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三甲氧基硅烷及其混合物的组。
所述的金属烷基氧化物可为选自包括下列化学式2表示的化合物的组的至少一种。
M-(R3)Z (2) 其中,M为选自包括铝、锆和钛的组的一种金属; R3,可相同或不同,为卤素、C1-12烷基、烷氧基、酰氧基或羟基;以及 Z为3或4的整数。
所述的填充物可为至少一种选自包括金属、玻璃粉、金刚石粉末、氧化硅(SiOx,其中x为2~4的整数)和粘土的组的材料。所述填充物的实例为金属、玻璃粉、金刚石粉末、氧化硅、粘土(膨润土、蒙脱土、高岭土等)、磷酸钙、磷酸镁、硫酸钡、氟化铝、硅酸钙、硅酸镁、硅酸钡、碳酸钡、氢氧化钡、硅酸铝,及其混合物。
所述的溶剂可为任一常规用于部分水解的溶剂,优选蒸馏水。所述的催化剂亦无特殊限制,优选使用丁氧化铝和丙氧化锆等。
由于根据需要加入,所述填充物、溶剂和催化剂的量不特别限制。
在所述的缓冲组合物中,优选包括20~99.99wt%的有机硅烷,更优选50~99wt%,最优选70~99wt%。包括0.01~80wt%的金属烷基氧化物,更优选少于70wt%,最优选少于20wt%。
在本发明中,第一有机-无机杂化缓冲层的表面光滑度、Ra(averageofroughness,平均粗糙程度)是非常重要的。如果缓冲层没有足够的光滑度,当阻气层发生沉积时会产生缺陷,且阻气性最终消失。因此,光滑度越小,阻气性提高就越大。所述的第一有机-无机杂化缓冲层优选具有约1nm的表面光滑度,更优选小于1nm。本发明的优选实施方式可具有0.5~1.2的表面光滑度(Ra值)。
当无机阻气层120a、120b形成于所得的缓冲层上时,提高了无机材料层对有机-无机杂化缓冲层的粘合性以及阻气性。另外,由于无机材料层具有高模量和小的线性膨胀系数,可改进基板的机械性能。
由于所述的塑料膜具有约为几十至几千级数的氧气和水蒸气透过率,阻气层可通过物理地或化学地在聚合物膜上沉积涂覆一种密致透明的无机材料或具有几纳米厚度的薄金属膜制备,以阻塞氧气和水蒸气。当采用透明无机氧化物层时,如果存在针孔或裂缝,难于有效地阻塞氧气和水蒸气。另外,难于制得具有几纳米厚度的均匀薄金属膜,以及难以获得超过80%的可见光透明度。所得的阻气层具有5~1,000nm的厚度,优选20~500nm,且更优选50~200nm。
所述的无机材料可为选自包括SiOx(其中x为1~4的整数)、SiOxNy(其中各x和y为1~3的整数)、Al2O3和ITO的组的至少一种金属氧化物或金属氮化物。所述的沉积涂覆可通过溅射法、化学沉积法、离子电镀法、等离子体化学沉积法、溶胶-凝胶法等进行。
形成于阻气层上的第二有机-无机杂化缓冲层125a、125b使阻挡层的破裂最小化,并提供对表面的抗化学性和抗划痕性。通过在存在针孔或裂缝的变形部分无机材料层的羟基与缓冲层的羟基的水合作用,其可进一步增进阻气性。堆叠于阻气层上用于第二有机-无机杂化缓冲层的组合物与涂覆在塑料膜上用于第一有机-无机杂化缓冲层的组合物相同。然而,有机硅烷、金属烷基氧化物和填充物的比例以及涂层厚度可不同。
与第一有机-无机杂化缓冲层相同,第二有机-无机杂化缓冲层125a、125b可通过旋涂、滚涂、棒涂、浸涂、凹版涂覆、喷涂等在聚合物膜上涂覆溶胶态的溶液,并通过热固化、紫外固化、红外固化或高频热处理将其固化而形成,。固化后,缓冲层具有0.5~20微米(μm)的厚度,优选2~10μm,更优选1~5μm。
在本发明中,所述的第二有机-无机杂化缓冲层的表面平滑度也是重要的。如用于LCD或OLED加工的ITO的器件直接沉积于第二有机-无机杂化缓冲层上,因此如果平滑度高,则由于电流的富集现象器件不能显示基本功能。
目前趋势为作为下一代显示器的OLED较LCD要求更加优良的平滑度。因此,所述的第二有机-无机杂化缓冲层优选也具有约1nm的表面平滑度,更优选少于1nm。本发明的优选实施方式可具有0.5~1.2的表面平滑度(Ra)。
各多层塑料膜可采用丙烯酸粘合剂或热熔法连接,尽管不限于这些方法。当采用粘合剂时,其含量无特殊限制,但优选贴合层的厚度为0.1~10微米(μm)。
如上所述,本发明的塑料基板具有很小的(至多6.5ppm/k)线性膨胀系数,且由于水蒸气透过率小于0.005g/m2/天,阻气性优良。因此,本发明的塑料基板可代替现用于现有技术的显示器件等中的易碎且重的玻璃基板。另外,除了显示器件,本发明的塑料基板可用作需要优良的阻气性的材料。
下文,本发明通过实施例进行更加详细的描述。然而,以下实施例仅用于理解本发明,本发明不局限于它们或被它们所限。
实施例1 具有100微米厚度、通过双轴拉伸挤压将丙烯酸底层涂料涂覆于两侧的PET(polyethylene terephthalate,聚乙烯对苯二甲酸酯,SH38,韩国SK)膜,在150℃对流加热箱中热处理1分钟除去残余应力。所得的膜用于塑料膜。
为了形成第一有机-无机杂化缓冲层,将80.0重量份的蒸馏水加入到包含32.5重量份的四乙氧基硅烷、64.0重量份的3-缩水甘油丙氧基三甲氧基硅烷、0.5重量份的氨基丙基三甲氧基硅烷、2.0重量份的丁氧化铝以及1.0重量份的丙氧化锆的混合物中。部分水解在25℃下进行24小时制备溶胶态的缓冲组合物。将该缓冲组合物棒涂于所述PET膜的一侧上。在50℃下干燥该膜3分钟除去溶剂后,在125℃对流加热箱中进行1小时的胶凝作用。胶凝作用后,采用α分档器测量所述有机-无机杂化缓冲层的厚度。厚度为3微米。通过采用A-tech系统的DC/RF磁控管溅射器,通过浸渍50sccm的氩气在缓冲层上沉积薄氧化硅膜(SiOx,x=1~4的整数),并以1,000瓦的RF功率(13.56MHz)在5毫托的压力下沉积10分钟。当用SEM观测氧化硅膜时,其具有100nm的厚度。将上述缓冲组合物棒涂于氧化硅膜上。在50℃下干燥膜3分钟除去溶剂后,在125℃对流加热箱中进行胶凝作用1小时,形成第二有机-无机杂化缓冲层。由此,制得多层膜(图1和图2中100b)。溶胶作用后,采用α分档器测量该有机-无机杂化缓冲层的厚度。厚度为3微米。
通过AFM室温轻敲模式测得的第二有机-无机杂化缓冲层的表面粗糙度,在50微米×50微米的区域内其不超过0.4nm。
另一多层膜(图1和图2中100a)以相同方法制备。
将含有多功能丙烯酸酯低聚体作为主要成份的粘合剂复合物棒涂于多层膜(100b)的未涂覆的PET表面上。将其与多层膜(100b)贴合。采用DYMAX 2000-EC照射紫外线6分钟以固化该粘合剂复合物。由此,制得具有图1中100结构的塑料基板。
测量了显示器件所需的主要性能,如塑料基板的透明度、浊度、氧气透过率、水蒸气透过率、热膨胀系数以及铅笔划痕硬度。结果示于下表1中。对于所有实施例和比较实施例,测量如下进行 1)透明度根据ASTM D1003采用Virian的紫外分光光度计在380~780nm的可见区内测得。
2)浊度根据ASTM D1003采用Tokyo Denshoku的浊度计TC-H3DPK测得。
3)氧气透过率根据ASTM D 3985采用Mocon的OX-TRAN 2/20在室温下和RH 0%下测得。
4)水蒸气透过率根据ASTM F 1249采用PERMATRAN-W-3/33在室温和RH 100%下测得。
5)热膨胀系数根据ASTM D696采用热-机械分析仪(thermo-mechanical analyzer,TMA)在5gf的压力下同时以10℃升温测得。
6)铅笔划痕硬度根据ASTM D3363在200g负荷下测得。
所有性质均至少测量5次然后平均。
作为参照,实施例1所用的PET膜具有25cc/m2/天/大气压的氧气透过率、4.5g/m2/天的水蒸气透过率以及22.4ppm/k的热膨胀系数。
表1 a)测量范围0.05cc/m2/天/大气压 b)测量范围0.005g/m2/天/大气压 当实施例1制备的塑料基板置于平面上时,未观察到弯曲。因此,如表1所示,塑料基板具有优良的阻气性、小的热膨胀系数以及良好的尺度稳定性。
实施例2 通过电晕(A-Sung)表面处理具有50微米厚度的杜邦kapton聚酰亚胺膜。将与实施例1所用的相同的溶胶态缓冲组合物棒涂于该膜上。在50℃下干燥该膜3分钟除去溶剂后,在200℃对流加热箱中进行胶凝作用30分钟。胶凝作用后,采用α分档器测量缓冲涂层的厚度。厚度为2微米。将薄氧化硅膜通过与实施例1相同的方法沉积于缓冲涂层上。将上述缓冲组合物棒涂在氧化硅膜上。在50℃下干燥该膜3分钟除去溶剂后,在200℃对流加热箱中进行胶凝作用30分钟形成第二缓冲涂层。采用α分档器测得的第二缓冲涂层的厚度为2微米。所得的多层膜与以实施例1相同的方式制备的另一多层膜贴合,以制备具有图1中100结构的塑料基板。
塑料基板的性质如实施例1测量。结果见下表2。
表2 实施例3 采用40.0重量份的四乙氧基甲硅烷、56.5重量份的3-缩水甘油丙氧基三甲氧基硅烷、0.5重量份的氨基丙基三甲氧基硅烷、2.0重量份的丁氧化铝以及1.0重量份的丙氧化锆的材料,以实施例1相同的方式,在塑料膜(PET)上形成第一有机-无机杂化缓冲层。通过在材料混合物中加入60.0重量份的蒸馏水、然后在25℃下部分水解反应24小时制备溶胶态的缓冲组合物。将与实施例1所用的相同的溶胶态缓冲组合物棒涂在PET膜的一侧上。在50℃下干燥该膜3分钟除去溶剂后,在125℃对流加热箱中进行胶凝作用1小时。胶凝作用后,采用α分档器测量所述缓冲涂层的厚度。厚度为2微米。将薄氧化硅以与实施例1相同的方式沉积于缓冲涂层上。将上述缓冲组合物棒涂于氧化硅膜上。在50℃下干燥膜3分钟除去溶剂后,在125℃对流加热箱中进行胶凝作用1小时,以形成第二缓冲涂层。采用α分档器测量该第二缓冲涂层的厚度为2微米。所得的多层膜与以实施例1相同的方式制备的另一多层膜连接,以制备具有图1中100结构的塑料基板。
塑料基板的性质如实施例1测量。结果见下表2。
表3 比较实施例1 通过贴合除了仅在阻气层上涂覆有机-无机杂化缓冲层而没有在PET膜和氧化硅阻气层之间涂覆有机-无机杂化缓冲层外、以与实施例1相同的方式制备的两个多层膜,制备图3中示出的塑料基板。
以与实施例1相同的方式制备涂覆在氧化硅阻气层上的缓冲层。测量所得的塑料基板的性质。结果见下表4。
表4 如表4所见,比较实施例1制备的塑料基板表现出超出测量范围的氧气和水蒸气透过率。由于仅由一个缓冲层组成,其也表现出与22.4相当的大的线性膨胀系数或PET基板自身的热膨胀系数。
比较实施例2 通过贴合除了在PET膜上涂覆第一有机-无机杂化层、然后沉积氧化硅阻气层,而不在阻挡层上涂覆第二有机-无机杂化缓冲层之外采用与实施例1相同的方式制备的两个多层膜,制备图4中示出的塑料基板。
以与实施例1相同的方式制备塑料膜上的缓冲层。测量了所得的塑料基板的性质。结果见下表5。
表5 如表5所见,比较实施例2制备的塑料基板表现出超出测量范围的氧气和水蒸气透过率。由于仅由一个缓冲层组成,其也表现出与22.4相当的大的线性膨胀系数或PET基板自身的热膨胀系数 比较实施例3 通过贴合除了在PET膜上沉积氧化硅阻气层,而不涂覆第一有机-无机杂化缓冲层和第二有机-无机杂化缓冲层之外、采用与实施例1相同的方式制备的两个多层膜,制备图5中示出的塑料基板。
测量了所得的塑料基板的性质。结果见下表6。
表6 如表6所见,比较实施例3制备的塑料基板表现出1.1的氧气透过率和2.0的水蒸气透过率。相对PET膜该值降低更多,然而仍表现出高值。另外,其也表现出相当于22.4的大的线性膨胀系数,或PET基板自身的热膨胀系数。因此,在比较实施例3的情况下,其不适合用于器件的基板。
比较实施例4 通过仅在PET膜上沉积氧化硅阻气层制备图6中示出的塑料基板。测量了所得的塑料基板的性质。结果见下表7。
表7 如表7所见,比较实施例3制备的塑料基板表现出3.1的氧气透过率和3.0的水蒸气透过率。相对PET膜该值降低更多,然而仍表现出高值。另外,也表现出相当于22.4的大的线性膨胀系数,或PET基板自身的热膨胀系数。因此,在比较实施例4的情况下,其不适合用于器件的基板。
比较实施例5 将实施例1中所用的缓冲组合物溶液棒涂于PET膜的一侧上至2.5微米的厚度。如实施例1交联并沉积具有约100nm厚度的氧化硅膜,形成阻气层。缓冲层涂覆、交联和氧化硅膜沉积再重复两次。在最外面的氧化硅膜上,另一缓冲层涂覆至厚度为3微米。在50℃下3分钟除去剩余溶剂后,在125℃下交联1小时制备仅在一侧堆叠的非对称塑料基板(图7)。所得基板测得12cm×12cm。当将其置于平面上时,未向上弯曲,所以中心区距表面约3cm。性质测量结果见下表4。尽管氧气和水蒸气透过率优良,然而热膨胀系数未改进。因此,在比较实施例5的情况下,其不适合用于器件的基板。
表8 比较实施例6 用于实施例1的PET浸于含有0.3重量份的多功能甲基丙烯酸光引发剂的溶液中。通过以10cm/min的速度提高膜进行浸涂。然后,在膜两侧进行紫外固化,以形成有机交联涂层。紫外固化后,以α分档器测得的交联涂层140a、140b的厚度为3微米。具有100nm厚度的氧化硅涂层以与实施例1相同的方式沉积于有机交联涂层上。然后,在图8的塑料基板上制备更多的有机交联涂层142a、142b,图8的塑料基板是通过在氧化硅阻挡层上涂覆至3微米厚度而制备的塑料基板。基板的性质测量结果见下表9。
表9 如表9所见,尽管与PET基板相比,氧气和水蒸气透过率显著下降,但线性膨胀系数仍未下降。
由上述说明显而易见,本发明的塑料基板具有小的线性膨胀系数、优良的阻气性以及优异的尺度稳定性。因此,它可代替用于显示器件的玻璃基板。另外,它可在需要优良阻气性的应用中用于包装和容器材料。
已参考优选实施方式详细描述本发明,本领域的技术人员应理解,可做出多种修改和替代,而不偏离如所附权利要求中提出的本发明的实质和范围。
权利要求
1、一种具有多层结构的塑料基板,包括
彼此贴合的塑料膜,和
顺序堆叠于塑料膜两侧的第一有机-无机杂化缓冲层、阻气层和第二有机-无机杂化缓冲层,各层以塑料膜为中心形成对称排列。
2、根据权利要求1所述的塑料基板,其特征在于,所述的塑料膜由选自包括均聚物、至少一种共混聚合物以及含有有机或无机添加剂的聚合物复合材料的组中的至少一种组成。
3、根据权利要求2所述的塑料基板,其特征在于,所述的含有无机添加剂的聚合物复合材料是纳米材料分散于聚合母体中的聚合物-粘土纳米复合物。
4、根据权利要求1所述的塑料基板,其特征在于,所述的阻气层由选自包括SiOx,其中x为1~4的整数;SiOxNy,其中x和y各为1~3的整数;Al2O3和ITO的组中的至少一种无机材料制成。
5、根据权利要求1所述的塑料基板,其特征在于,所述的阻气层具有5~1000nm的厚度。
6、根据权利要求1所述的塑料基板,其特征在于,第一有机-无机杂化缓冲层和第二有机-无机杂化缓冲层各通过含有20~99.99wt%的至少一种选自包括下列化学式1表示的化合物的组中的有机硅烷和0.01~80wt%的至少一种选自包括化学式2表示的化合物的组中的金属烷基氧化物的缓冲组合物的部分水解制备
(R1)m-Si-X(4-m)(1)
其中X,可相同或不同,为氢、卤素、C1-12烷氧基、酰氧基、烷羰基、烷氧羰基、或-N(R2)2(其中R2为H或C1-12烷基);
R1,可相同或不同,为C1-12烷基、链烯基、炔基、芳基、芳烷基、烷芳基、芳基链烯基、链烯基芳基、芳基炔基、炔基芳基、卤素、取代氨基、酰胺、醛、酮、烷羰基、羧基、巯基、氰基、羟基、C1-12烷氧基、C1-12烷氧羰基、磺酸盐、磷酸盐、丙烯酰氧基、甲基丙烯酰氧基、环氧基或乙烯基;
氧或-NR2,其中R2为H或C1-12烷基,可插入R1和Si之间得到-(R1)m-O-Si-X(4-m)或(R1)m-NR2-Si-X(4-m);以及
m为1~3的整数;和
M-(R3)Z(2)
其中,M为选自包括铝、锆和钛的组的金属;
R3,可相同或不同,为卤素、C1-12烷基、烷氧基、酰氧基或羟基;以及
Z为3或4的整数。
7、根据权利要求6所述的塑料基板,其特征在于,所述的缓冲组合物进一步包括至少一种选自包括金属、玻璃粉、金刚石粉末、氧化硅、粘土、磷酸钙、磷酸镁、硫酸钡、氟化铝、硅酸钙、硅酸镁、硅酸钡、碳酸钡、氢氧化钡和硅酸铝的组的填充物;溶剂;和聚合催化剂。
8、根据权利要求1所述的塑料基板,其特征在于,各所述的第一有机-无机杂化缓冲层和第二有机-无机杂化缓冲层具有0.5~20微米的厚度。
9、一种制备具有多层结构的塑料基板的方法,包括步骤
a)通过在塑料膜一侧涂覆溶胶态的缓冲组合物并固化,在塑料膜一侧形成第一有机-无机杂化缓冲层;
b)通过在第一有机-无机杂化层上涂覆无机材料,在其上形成阻气层;
c)通过在阻气层上涂覆步骤a)的缓冲组合物并固化形成第二有机-无机杂化缓冲层,以制备多层膜;
d)制备具有与在步骤c)中获得的相同结构的另一多层膜;以及
e)贴合步骤c)和步骤d)的塑料膜,以使没有多层膜的侧面彼此接触。
10、根据权利要求9所述的方法,其特征在于,步骤e)所述的贴合采用丙烯酸粘合剂或加热进行。
11、根据权利要求9所述的方法,其特征在于,第一有机-无机杂化缓冲层和第二有机-无机杂化缓冲层各通过含有20~99.99wt%的至少一种选自包括下列化学式1表示的化合物的组中的有机硅烷和0.01~80wt%的至少一种选自包括化学式2表示的化合物的组中的金属烷基氧化物的缓冲组合物的部分水解制备
(R1)m-Si-X(4-m)(1)
其中X,可相同或不同,为氢、卤素、C1-12烷氧基、酰氧基、烷羰基、烷氧羰基、或-N(R2)2,其中R2为H或C1-12烷基;
R1,可相同或不同,为C1-12烷基、链烯基、炔基、芳基、芳烷基、烷芳基、芳基链烯基、链烯基芳基、芳基炔基、炔基芳基、卤素、取代氨基、酰胺、醛、酮、烷羰基、羧基、巯基、氰基、羟基、C1-12烷氧基、C1-12烷氧羰基、磺酸盐、磷酸盐、丙烯酰氧基、甲基丙烯酰氧基、环氧基或乙烯基;
氧或-NR2,其中R2为H或C1-12烷基,可插入R1和Si之间得到-(R1)m-O-Si-X(4-m)或(R1)m-NR2-Si-X(4-m);以及
m为1~3的整数;和
M-(R3)Z(2)
其中,M为选自包括铝、锆和钛的组的金属;
R3,可相同或不同,为卤素、C1-12烷基、烷氧基、酰氧基或羟基;以及
Z为3或4的整数。
全文摘要
本发明涉及一种具有多层结构的塑料基板及其制备方法。本发明的塑料基板包括彼此贴合的塑料膜以及顺序堆叠于塑料膜两侧的第一有机-无机杂化缓冲层、阻气层和第二有机-无机杂化缓冲层,各层以塑料膜为中心形成对称排列。由于本发明的塑料基板具有小的热膨胀系数、优异的尺度稳定性和优良的阻气性,其可在显示器件中代替易碎且重的玻璃基板。并且,可在需要优良阻气性的应用中用于多种包装或容器材料。
文档编号H01L51/00GK1918002SQ200580004119
公开日2007年2月21日 申请日期2005年2月4日 优先权日2004年2月6日
发明者金东烈, 金琪哲, 朴相炫 申请人:Lg化学株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1