接合方法及其装置的制作方法

文档序号:6866154阅读:140来源:国知局
专利名称:接合方法及其装置的制作方法
技术领域
本发明涉及适用于将电子元器件的电极与基板上形成的电极之间直接接合、从而将电子元器件安装在基板上等情况的接合方法及其装置。
背景技术
作为将多个被接合物彼此之间直接接合的安装方法,已知有一种方法,即将各被接合物配置在真空腔室内,在减压气体气氛中,对接合物表面照射能量波来进行清洗,在真空密封或密封了惰性气体或不与被接合物产生反应的气体的腔室内,使被接合物彼此之间对置,进行加压接合(参照专利文献1)。
还知道一种接合方法,它在通过金属接合将电子元器件的Au凸点与基板的连接端表面的Au膜进行接合时,将电子元器件及基板放置在腔室内,形成真空气氛,利用高速原子射线或离子束等向单方向加速的能量粒子,将电子元器件的Au凸点与基板的连接端表面的Au膜进行清洗,保持真空气氛或气体气氛,使利用清洗而活化的凸点及连接端接触,进行加压,通过这样在常温下将两者接合(参照专利文献2)。在本以往技术中,在大气中也能够接合,将能够维持利用清洗工序得到的活化状态的时间设定为10分钟以内,从室温加热至150℃进行接合。
专利文献11特开2001-351892号公报专利文献2特开2003-197673号公报但是,在以往技术有关的接合方法中,存在的问题是,从清洗工序开始进行传送及接合工序内,至少需要一个真空腔室或构成惰性气体气氛用的腔室,再加上需要真空泵、阀、控制系统等一连串的真空设备,与利用超声波加热接合或糊料固化的接合方法相比,设备成本高。另外存在的问题是,为了将电子元器件及基板送入腔室或从腔室送出,要进行减压或将气体封入及向大气开放,因此需要时间,生产节拍慢。
为了解决上述问题,如专利文献2所示的以往技术中揭示的那样,若能够在大气中进行从清洗工序开始的传送及接合,则不需要设置接合用的真空设备等,能够降低接合用的设备成本,加快生产节拍。但是,由于为了进行接合而必须加热,因此存在的问题是,要除去接合面上产生的氧化物或吸附物等妨碍接合的物质,更加要防止再吸附,并对吸附量进行管理。
因此,本发明的目的在于提供一种至少能够将从除去接合有害物质的表面处理至接合工序的工序,在大气中而且常温下进行的接合方法及其装置。

发明内容
为了达成上述目的,本申请的第1发明的接合方法,在对多个被接合物的接合面进行表面处理后、将多个被接合物在它们的接合面之间进行接合,具有以下工序将接合的至少一方的接合面加工成规定粗糙度的表面粗糙度控制工序;力图对于接合面除去妨碍接合物质及附着接合有效物质的表面处理工序;以及使各自的接合面接触而将多个被接合物进行接合的接合工序。
根据上述接合方法,由于利用表面粗糙度控制工序将接合一方的接合面的表面处理成规定粗糙度,因此得到在一方的接合面上以微细的间隔形成微细的尖顶的状态,若将该接合面在接合工序中与另一方的接合面压紧,则利用尖顶将接合面的表面上存在的氧化物或附着物等一层妨碍接合物质切断,近似均匀分布的、或有规则地排列的尖顶与另一方的接合面进行金属接合,将接合面之间进行接合。由于所要的接合强度取决于在接合面的一方形成的微细的尖顶部分与另一方的接合面进行点状接合的面积的总和、即接合部位的总接合面积,因此通过最佳选择表面粗糙度控制工序中在一方接合面上形成细糙度的尖顶的形状及尺寸、进而在接合工序中将形成为规定粗糙度的一方的接合面与另一方的接合面接触时的压入量等,就能够得到所希望的接合强度。这时,通过实施力图对于接合面除去妨碍接合物质及附着接合有效物质的表面处理工序,由于能够在没有妨碍接合物质、存在接合有效物质的情况下进行接合,因此尖顶与另一方的接合面的接合不会受到妨碍接合物质的阻碍,得到接合有效物质发挥的作用,从而更可靠。
作为上述接合方法的表面处理工序的一部分,最好在各工序之前实施除去接合面上存在的妨碍接合物质的初始表面清洗工序,能够以更清洁的状态实施各工序,表面清洗工序后的表面在存在再吸附的物质的情况下,通过附着接合有效物质进行改性,能够在大气压气氛中实施接合。
另外,表面粗糙度加工控制工序,在表面粗糙度是不与接合面的材料相对应的范围内时,加工控制成对应的表面粗糙度,可以采用下述的方法,即利用形成了规定粗糙度的凹凸的凹凸形成构件将凹凸向接合的一方接合面转印的方法、或利用大气压等离子体处理的方法、或利用喷射微细粒子的喷砂处理的方法。
另外,表面处理工序最好是在大气压下向接合面照射能量粒子或能量波的方法,能够在大气压及室温气氛下实施接合工序。具体来说,可以采用紫外线照射、或大气压等离子体形成的生成物的照射,该表面处理工序通过与接合工序并行实施,能够在进行除去妨碍接合物质及附着接合有效物质之后,迅速进行接合。
另外,本申请的第2发明有关的接合装置,在对多个被接合物的接合面进行表面处理后、将多个被接合物在它们的接合面之间进行接合,具有力图对于至少一方对规定粗糙度进行管理的接合面除去妨碍接合物质及附着接合有效物质的表面处理单元;以及使各自的接合面接触而将多个被接合物进行接合的接合单元。
根据上述接合装置,由于一方接合面的表面对规定粗糙度进行管理,因此得到在一方的接合面上以微细的间隔形成微细的尖顶的状态,若将该接合面在接合工序中与另一方的接合面压紧,则利用尖顶将接合面的表面上存在的氧化物或附着物等一层妨碍接合物质切断,有规则地排列的尖顶与另一方的接合面进行金属接合,将接合面之间进行接合。由于所要的接合强度取决于在接合面的一方形成的微细的尖顶部分与另一方的接合面进行点状接合的面积的总和、即接合部位的总接合面积,因此通过最佳选择利用表面粗糙度的管理而在一方接合面上形成细糙度的尖顶的形状及尺寸、进而在接合单元中将形成为规定粗糙度的一方的接合面与另一方的接合面接触时的压入量等,就能够得到所希望的接合强度。这时,通过利用表面处理单元力图对于接合面除去妨碍接合物质及附着接合有效物质,由于能够在没有妨碍接合物质、存在接合有效物质的情况下进行接合,因此尖顶与另一方的接合面的接合不会受到妨碍接合物质的阻碍,得到接合有效物质发挥的作用,从而更可靠。
作为上述接合装置的表面处理单元,最好在利用各单元进行处理工序之前设置除去接合面上存在的妨碍接合物质的初始表面清洗单元,能够以更清洁的状态实施各工序,表面清洗工序后的表面在存在再吸附的物质的情况下,通过附着接合有效物质进行改性,能够在大气压气氛中实施接合。
另外,在上述接合装置中,最好具有加工控制成与接合面的材料相对应的表面粗糙度的表面粗糙度加工控制单元,其中可以采用下述的方法,即利用形成了规定粗糙度的凹凸的凹凸形成构件将凹凸向接合的一方接合面转印的方法、或利用大气压等离子体处理的方法、或利用喷射微细粒子的喷砂处理的方法。
另外,表面处理单元最好是在大气压下向接合面照射能量粒子或能量波的方法,能够在大气压及室温气氛下实施接合。具体来说,可以采用紫外线照射、或大气压等离子体形成的生成物的照射,该表面处理工序通过与接合工序并行实施,能够在进行除去妨碍接合物质或改性之后,迅速进行接合。
本发明的接合方法,在对多个被接合物的接合面进行表面处理后、将多个被接合物在它们的接合面之间进行接合,具有以下工序将接合的至少一方的接合面对规定粗糙度进行管理、并对于没有或除去妨碍接合物质的接合面在大气气氛中存在吸附物质的情况下附着接合有效物质而进行改性的表面处理工序;以及使各自的接合面在前述改性情况下接触而将多个被接合物进行接合的接合工序,能确实地进行在大气中的常温接合。


图1所示为实施形态有关的接合方法的工序顺序流程图。
图2A~图2C所示为表面粗糙度控制工序的顺序的示意图。
图3A~图3C所示为接合工序及表面清洗工序的示意图。
图4为说明表面粗糙度的示意图。
图5A~图5C为说明利用进行了表面粗糙度控制的接合面进行接合的示意图。
图6A~图6B所示为主表面处理前及处理后的、表示妨碍接合物质的增减的曲线图及表示接合有效物质的增减的曲线图。
具体实施例方式
本实施形态表示一个例子,该例子是用于将电子元器件上形成的电极盘中形成的凸点电极与基板上形成的电极盘进行接合、而将电子元器件安装在基板上的情况。另外,也可以在基板的电极盘上形成凸点电极,也可以在基板及电子元器件的各自的电极盘上形成凸点电极。由于一般电极盘的厚度为1μm以下,因此为了吸收电子元器件及基板的翘曲,通过双方形成的多个电极盘的接合,确实达到导通,凸点电极作为高度为几~几十μm左右的缓冲材料,是不可缺少的。
图1所示为本实施形态有关的接合方法的各工序顺序,以下参照图2A~图4说明各工序。另外,图1所示的S1、S2…是表示工序顺序的步骤编号,在本文中,与附加的标号一致。
首先,作为预备的表面处理工序,对电子元器件1的凸点电极1b及基板2的电极盘2a进行初始清洗处理(S1)。初始清洗处理可以在大气中或真空中的任何条件下进行,实施利用等离子体形成的能量粒子、离子束或化学药品的湿法刻蚀等。利用该初始清洗工序,能够除去在凸点电极1b及电极盘2a的表面上存在的妨碍接合的氧化物或吸附物,形成凸点电极1b及电极盘2a的金属露出在表面。当然,在没有附着或基本上没有附着Si等妨碍接合物质的接合面的情况下,也可以省略初始清洗工序,而仅实施后述的主表面处理。
将初始清洗后的电子元器件1传送到实施表面粗糙度控制工序的表面处理台4上,将基板2传送到键合台7上(S2)。在表面粗糙度控制工序中,将凸点电极1b的表面粗化为规定粗糙度(S3)。该表面粗糙度控制工序如图2A所示,将表面上形成规定粗糙度的粗面部分3a的凹凸板(凹凸形成构件)3向着保持在台4上的电子元器件1的凸点电极1b下降,若如图2B所示,在用规定压力对凸点电极1b加压之后,使凹凸板3背离凸点电极1b上升,则如图2C所示,在凸点电极1b的表面形成凹凸形状。关于形成该凹凸形状的作用效果的详细情况,将在后面叙述。
将利用上述表面粗糙度加工控制工序对凸点电极1b进行了表面粗糙度加工控制后的电子元器件1向接合工序传送(S4),如图3A所示,保持在接合工具(接合单元)6上,在保持基板2的键合台7的上方控制接合工具6的位置,使得凸点电极1b与电极盘2a一致。
在图3A所示的状态下,实施主表面处理工序(表面处理工序),该主表面处理工序如图所示,从第1紫外线照射装置(表面处理单元)5a向电子元器件1照射紫外线,从第2紫外线照射装置(表面处理单元)5b向基板2照射紫外线,力图除去凸点电极1b及电极盘2a上在初始清洗后附着的妨碍接合物质,在有再吸附的吸附物的情况下,附着接合有效物质(S5)。
在实施了规定时间的主表面处理工序后,使接合工具进行下降动作,如图3B所示,若接触,使得基板2的电极盘2a对电子元器件1的凸点电极1b加压,则凸点电极1b用在其表面上形成的凸出部分与电极盘2a进行接合(S6)。关于该接合机理的详细情况,将在后面叙述。
若凸点电极1b与电极盘2a之间进行接合,则接合工具6松开保持的电子元器件1,然后上升,因此如图3C所示,将凸点电极1b与电极盘2a进行接合,将电子元器件1装在基板2上。
更加理想的是,在接合工序结束之前,持续进行上述第2清洗工序(S7)。另外,为了从利用紫外线产生的吸附物分解促使除去,也可以进行吹02。
关于利用上述表面粗糙度控制工序产生的凸点电极1b的表面处理的作用效果及表面处理后的凸点电极1b与电极盘2a之间的接合机理,将在下面说明其详细情况。
凸点电极1b主要是利用电镀或化学镀形成的,或利用柱状凸点键合加工方法形成的。在其表面有十点平均粗糙度为微米量级的起伏,再有,在一个一个的起伏中,有纳米量级的起伏。若将前述微米量级的起伏(十点平均粗糙度)定义为大粗糙度,将前述纳米量级的起伏(十点平均粗糙度)定义为小粗糙度,则大粗糙度能够利用粗糙度测量器,或进行激光测量,但小粗糙度为利用原子力显微镜等的分辨率才能够测量的量级。如图4所示,若设大粗糙度的进行了三角波近似时的峰值为h1,波形的间距为b1,小粗糙度的峰值为h2波形的间距为b2,则在利用金(Au)溅射膜形成的凸点电极1b的情况下,大粗糙度的峰值h1为亚微米程度,小粗糙度的峰值h2为10nm左右,在利用镀层形成凸点电极1b的情况下,大粗糙度的峰值h1为几微米,小粗糙度的峰值h2为50nm左右。
在无论表面处理的预清洗、还是主表面处理都不进行的情况下,如图5A所示,由于在大气中,在凸点电极1b及电极盘2a的表面存在氧化物或有机物的附着物等妨碍接合的妨碍物质G,因此不形成金属表面彼此之间直接接触的状态,所以接合会失败。若进行初始清洗,则由于能够从金属表面除去妨碍物质G,因此形成金属表面容易与其它物质进行反应的状态,所以若使金属彼此之间接触,则有可能利用金属结合来进行接合。但是,在大气中进行接合,或者在1×10-4Pa左右的真空度下,在除去妨碍物质G之后,还有再吸附,接合仍然会失败。这时,能够接合的情况是如图5B所示,如前所述,在金属表面、这里是凸点电极1b及电极盘2a的表面有大小的起伏,在起伏的顶点部分位置互相一致时,若将凸点电极1b与电极盘2a压紧,则一层再吸附物F被切断,在界面上生成金属的新生面等容易反应的活性面,在该部分利用通过金属结合的接合部位E进行接合。但是,由于这样的接合部位E完全是随机产生的,因此不能保证得到可靠的接合状态,接合强度也产生差异。
本发明应用上述的接合机理,在凹凸板3的粗面部分3a上,以大粗糙度的参数h1及b1形成标准化的凹凸,使得即使在批量工序下也能够得到稳定的接合状态。如图2所示,在凹凸板3上以尖顶间隔bp、尖顶高度hp形成凹凸的粗面部分3a与凸点电极1b压紧,在该被压紧的凸点电极1b的表面如图5C所示,形成对与电极盘2a接合的接合部位E的数量进行管理的凹凸。通过该表面粗糙度控制工序中对粗糙度的管理,能够产生可靠切断再吸附物的部分,能够在批量生产工序内对接合强度质量进行管理。若设○接合部位E○接合部位间的尺寸bp(是凹凸板3上形成的凹凸的尖顶间隔,通过设计决定的尺寸)○接合部位的接合面积s(由接合部位E的形状、尺寸、压入量所决定的理论值)○每单位面积的接合面积Sc○接合物的被接合面积S(能够实测的值)○总接合面积So,则单体面积1与以E作为4个顶点的、1边长为bp的正方形的面积(bp)2之比等于每单位面积的接合面积Sc与接合面积s(设为每1个顶点的接合面积s/4的4个顶点的部分,4×s/4),下式(1)成立。
1:(bp)2=Sc:s …(1)这里,所谓接合物的被接合面积S,与接合部位E的实际有效接合面积s不同,如图5C所示,它包含有效接合部分及非接合部分,从表面上来看,意味着看作为接合部分的实测上的投影总面积。
根据上式(1),每单位面积的接合面积Sc可作为下式(2)求得,由于接合部分的实际的总接合面积So为对于表面上来看的接合面积即被接合面积S乘以每单位面积的接合面积Sc,因此可表示为下式(3)。若将式(2)代入该式(3)则可得式(4)。
Sc=s/(bp)2…(2)So=S×Sc …(3)So=S×s/(bp)2…(4)由于若掌握了上述总接合面积So与接合强度的相关关系,则能够求出为了得到规定的接合强度所必需的总接合面积So,因此为了根据式(4)得到总接合面积So,只要决定必需的接合面积s、或接合部位间的尺寸bp即可。这时,通过选择在凹凸板3上形成的粗面部分3a的1个接合部位的形状、尺寸及压入量等,就能够决定接合面积s。
凹凸板3的粗面部分3a利用干法刻蚀或喷砂等形成为一定粗糙度、有周期性的状态。其尖顶高度hp及尖顶问隔bp的决定,要取决于凸点电极1b的表面状态、尺寸及材料。在本实施形态中,设凸点电极1b的材料为金,考虑每1个电极的想要接合的面积为30μm2左右的微小面积,则hp=2~5微米,最好为3微米左右,bp=1~3微米,最好为1.7微米左右。但是,这随接合材料而异,在难以压碎的Si材由彼此之间,适合采用更微细的凹凸。
即使通过上述粗化,设置标准化的接合部位E,但有时也担心因再吸附物F的大小不同而使各接合部位E的接合完成度产生差异,实际上使接合失败。为了解决这一问题,设置了前述主表面处理工序,以管理、控制大气中的金属表面的化学状态为目的,力图除去再吸附物F中的妨碍接合物质,附着接合有效物质。这里,从第1紫外线照射装置5a向电子元器件1的凸点电极1b形成面照射紫外线,从第2紫外线照射装置5b向基板2的电极盘2a形成面照射紫外线,利用紫外线进行主表面处理,力图除去再吸附物F中的妨碍接合物质,附着接合有效物质。其结果,即使是存在残留吸附物的情况下,也能够利用接合有效物质的作用,缓和或消除残留吸附物的影响,使接合始终能够很好地完成。这可以认为是接合有效物质促保残留吸附物层在接合部分被切断。即可以说,接合面的表面状态利用接合有效物质进行了改性,使得残留吸附物层不阻碍接合。
在以上说明的构成中,是将作为预备表面处理的初始清洗工序结束后的电子元器件1传送到表面处理台4上,将凹凸形状进行转印,但也可以这样构成,即利用接合工具6保持初始清洗工序结束后的电子元器件1,使接合工具6下降到将粗两面部分3a朝上配置的凹凸板3上,将保持的电子元器件1的凸点电极1b与粗面部分3a压紧,将凹凸向凸点电极1b转印。
另外,除了利用作为实施表面粗糙度加工控制工序的单元所说明的凹凸板3将凹凸形状进行转印外,也可以利用等离子体处理或喷砂处理直接形成凹凸形状即粗面。另外,也可以利用作为实施主表面处理工序的单元所说明的由大气压等离子体生成的离子等生成物进行照射。
另外,在接合工序中,由于通过将电子元器件1及基板2加热至50~250℃左右,能够使金属的扩散速度加速,因此能够更增强接合力。
另外,在以上说明的构成中,是对电子元器件1上形成的凸点电极1b实施表面粗糙度控制工序,但即使对基板2一侧的电极盘2a进行粗面形成处理,也能够得到同样的效果。
下面就以下1~4的工序,说明最佳形态的参考工序及实施结果。
1.在电子元器件1上形成Au柱状凸点1b;2.使用对Si基板进行刻蚀加工而形成的型板,使电子元器件1的接合部分即Au表面形成有规则的凹凸,即实施这样的粗化工序作为表面粗糙度加工控制工序(倾斜角54.7°、各向异性刻蚀1.7μm高、间距3μm);3.利用UV灯同时对粗化后的电子元器件1上的Au凸点、及电子元器件2上的Au溅射电极进行表面处理,力图除去妨碍接合物质,附着接合有效物质(低压汞灯、波长185~254nm、照度20mW/cm2、照射时间90s);4.将电子元器件1及电子元器件2的双方、或一方进行加热,使接合面温度达到100℃,并下压,从而引起凝固或/及扩散接合,使其接合。
通过以上的工序,利用接合面积φ50μm(1963μm2),作为Au-Au接合强度,得到均匀的切断破坏强度200Mn。另外,作为初始清洗工序,若进行Ar等离子体清洗(200W、30s),则接合强度更上升,在该接合中,切断破坏强度达到300Mn以上。但是,在这种情况下,由于切断破坏部分在接合界面以外产生,因此接合强度虽不能定量化,但在保证接合强度方面,能够得到足够的隔靴。
另外,接合温度相对于室温来看,越高越得到良好的接合结果。另外,在前述主表面处理的前后,如图6A所示,碳C的尖峰降低,如图6B所示,氧O的尖峰升高。这可以说是,通过除去碳C,并附着氧O而增加,从而能够改性为有利于接合的表面状态,得到上述的好结果。而且,可以说C是妨碍接合物质,O是接合有效物质。
工业上的实用性如上所述,根据本发明,由于在利用第1清洗工序将被接合物的表面进行清洗、除去氧化物及吸附物等妨碍接合物质之后,利用表面粗糙度控制工序在一方的接合面上形成规定粗糙度的凹凸,并利用第2清洗工序除去附着在接合面上的再吸附物,将形成了凹凸的接合面与另一方的接合面压紧,进行接合,通过这样能够在常温下而且在大气中进行接合,因此用于利用倒装芯片方式进行的电子元器件安装是很有效的。
权利要求
1.一种接合方法,在对多个被接合物(1、2)的接合面(1b、2a)进行表面处理后、将多个被接合物在各自的接合面之间进行接合,其特征在于,具有以下工序将接合的至少一方的接合面(1b)管理为规定粗糙度、并力图对于接合面除去妨碍接合物质(G)及附着接合有效物质的表面处理工序;以及使各自的接合面接触而将多个被接合物进行接合的接合工序(S6)。
2.如权利要求1所述的接合方法,其特征在于,表面处理工序包含除去在接合面(1b、2a)上存在的妨碍接合物质(G)的初始表面清洗工序(S1)。
3.如权利要求1所述的接合方法,其特征在于,在大气压气氛中实施各工序。
4.如权利要求1所述的接合方法,其特征在于,表面粗糙度的管理包含表面粗糙度是在与接合面的材料不相对应的范围内时、加工控制成对应的表面粗糙度的工序。
5.如权利要求4所述的接合方法,其特征在于,表面粗糙度加工控制工序利用形成了规定粗糙度的凹凸的凹凸形成构件(3),向接合的至少一方的接合面(1b)转印凹凸。
6.如权利要求4所述的接合方法,其特征在于,表面粗糙度加工控制工序是大气压等离子体处理。
7.如权利要求4所述的接合方法,其特征在于,表面粗糙度加工控制工序是喷射微细粒子的喷砂处理。
8.如权利要求1所述的接合方法,其特征在于,表面处理工序在大气压下对接合面照射能量粒子或能量波。
9.如权利要求1所述的接合方法,其特征在于,表面处理工序与接合工序(S6)并行实施。
10.如权利要求1、8及9的任一项所述的接合方法,其特征在于,表面处理工序是紫外线的照射。
11.如权利要求1、8及9的任一项所述的接合方法,其特征在于,表面处理工序是大气压等离子体产生的生成物的照射。
12.如权利要求1或9所述的接合方法,其特征在于,接合工序(S6)在室温气氛下实施。
13.一种接合装置,在对多个被接合物(1、2)的接合面(1b、2a)进行表面处理后、将多个被接合物在各自的接合面之间进行接合,其特征在于,具有力图对于至少一方管理为规定粗糙度的接合面除去妨碍接合物质(G)及附着接合有效物质的表面处理单元;以及使各自的接合面接触而将多个被接合物进行接合的接合单元(6)。
14.如权利要求13所述的接合装置,其特征在于,表面处理单元设置除去接合面(1b、2a)的妨碍接合物质(G)的初始表面清洗单元。
15.如权利要求13所述的接合装置,其特征在于,表面处理单元在大气压中进行处理动作。
16.如权利要求13所述的接合装置,其特征在于,具有将接合面加工控制成与其材料相对应的表面粗糙度的表面粗糙度加工控制单元。
17.如权利要求16所述的接合装置,其特征在于,表面粗糙度加工控制单元利用形成了规定粗糙度的凹凸的凹凸形成构件(3),向接合面(1b)转印凹凸。
18.如权利要求16所述的接合装置,其特征在于,表面粗糙度加工控制单元利用大气压等离子体处理,将接合面处理成规定粗糙度。
19.如权利要求16所述的接合装置,其特征在于,表面粗糙度加工控制单元是对接合的一方的接合面(1b)喷射微细粒子而处理成规定粗糙度的微粒子喷砂装置。
20.如权利要求13或16所述的接合装置,其特征在于,表面处理单元是紫外线照附装置。
21.如权利要求13或16所述的接合装置,其特征在于,表面处理单元是照射大气压等离子体产生的生成物的大气压等离子体处理装置。
22.一种接合方法,在对多个被接合物(1、2)的接合面(1b、2a)进行表面处理后、将多个被接合物在各自的接合面之间进行接合,其特征在于,具有以下工序将接合的至少一方的接合面(1b)管理为规定粗糙度、并对于没有或除去妨碍接合物质(G)的接合面在大气气氛中存在吸附物质的情况下附着接合有效物质而进行改性的表面处理工序;以及使各自的接合面在前述改性情况下接触而将多个被接合物进行接合的接合工序(S6)。
全文摘要
本发明实现一种接合方法及其装置,在利用初始清洗工序(S1)将被接合物(1b、2a)的表面进行清洗、除去氧化物及吸附物等妨碍接合物质(G)之后,利用表面粗糙度控制工序(S3)在一方的接合面(1b)上形成规定粗糙度的凹凸,并利用表面处理工序(S5)除去附着在接合面(1b、2a)上的再吸附物(F),将形成了凹凸的接合面(1b)与另一方的接合面(2a)压紧,进行接合,通过这样能够在大气压条件下进行常温金属接合。
文档编号H01L21/68GK1942281SQ20058001199
公开日2007年4月4日 申请日期2005年4月6日 优先权日2004年4月8日
发明者笹冈达雄, 堀江聪, 青仓勇, 八木能彦, 深田和岐 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1