基于低温制备的Ag<sub>2</sub>S片状纳米晶阵列与P3HT杂化的薄膜光电转换器件的制作方法

文档序号:7163432阅读:168来源:国知局
专利名称:基于低温制备的Ag<sub>2</sub>S片状纳米晶阵列与P3HT杂化的薄膜光电转换器件的制作方法
技术领域
本发明属于光电材料技术领域,尤其涉及一种低温、低能耗、绿色、原位制备的 Ag2S片状纳米晶阵列与P3HT组装的薄膜光电转换器件。
背景技术
有机-无机杂化太阳能电池是一种为了克服有机共轭聚合物电子迁移率低而研发的新型异质结光电转换器,该种光电转换器件主要利用了无机物半导体的高电子迁移率、高化学稳定性和有机半导体的分子可设计性、良好的加工性能等优点。目前所研究的有机共轭聚合物半导体中,P3HT是已知的场效应空穴迁移率最高的聚合物(0. Icm2-V^-S-1), 因此它被用来做光电池中空穴的传输材料,但是大多数有机共轭聚合物半导体材料的电子迁移率很低(10_4cm2 · V"1 · S"1)。为了在较低的成本下获得更高的光电转换效率,人们已经制备出多种形貌的不同无机化合物半导体材料作为光生电子的传输材料,目前已经报道的有CdSe、CdS、ZnO, ZnS, TiO2, PbSe^FeS2和釙2&等。无机化合物纳米晶半导体材料对于传统的有机共轭聚合物半导体材料而言,具有以下优点(1)电子迁移率高,可以减少电子和空穴复合的几率;( 化学稳定性高,理化性质不易受到外界因素的影响;C3)纳米晶体具有较大的比表面积,有效提高异质结面积;(4)无机化合物半导体材料可以通过掺杂等手段实现能带的调节,改变光谱吸收范围,有效利用可见光。实验室中基于旋涂成膜的方法组装的太阳能电池器件,主要通过以下步骤实现 (1)制备无机化合物纳米晶半导体粉末材料;( 基底及电极的制备处理;C3)无机纳米晶半导体材料和有机共轭聚合物的共混;(4)电极表面旋涂有机-无机共混物以及其他载流子传输物质;( 制备光电池另外一电极。2010年,mi Yue等在Nano. Lett.发表题为 PerformanceEnhancement of Hybrid Solar Cells Through Chemical Vapor Annealing 文章,文中以CcKe纳米晶与P3HT共混,旋涂在ITO导电玻璃表面制作器件,得到了 Voc = 0. 553V, Jsc = 9. 7mA/cm2, η = 2. 65%的太阳能电池。2010年,Jeong Ah Chang等在Nano. Lett.发表题为 High-PerformanceNanostructured Inorganic-Organic Heterojunction Solar Cells的论文,用Sb2S3和P3HT共混,以FTO为电极,在致密的TiO2制备Sb2S3和P3HT 共混物薄膜,以Au为正极,得到Voc = 0. 556V,Jsc = 12. 3mA/cm2, η = 5. 06%的光电转换器件。但是,以上杂化薄膜太阳能电池材料的制备及组装有以下几个方面的缺陷首先, 无机纳米晶的制备过程中不可避免的要用到一些不导电的表面活性剂或者长链配体,例如 tri-n-octylphosphine oxide (T0P0)通常用于CcKe纳米晶的制备。据报道这些不导电物质仅仅在无机纳米晶表面残余Inm就会导致相应的太阳能电池器件效率降低10倍;其次, 无机纳米晶需要跟共轭聚合物在一定的溶剂中混合均勻后进行涂膜,很显然这种膜与基底的结合是不牢固的。第三,常用的Cdk、PbS等半导体受体材料在很大程度上受到日益紧张的环保要求限制,进一步的发展受到制约。硫化银(Agj)作为一种I-VI族窄禁带宽度化合物半导体,是一种快离子导体,温
4度为36 时,电子迁移率为63. 5cm2 · V—1 · s—1,在室温条件下稳定存在的α -Ag2S是η型半导体材料,在温度为300k时,直接带隙为1. OeV,间接带隙为0. 85eV。它拥有良好的化学稳定性和突出的限制性光学特性(optical limiting properties) 0单质银以及银的硫化物对环境没有毒害作用,而且硫化银纳米晶薄膜容易制备,在制备过程中能耗极低。申请人研究发现,η型硫化银纳米晶半导体的能级与ρ型有机共轭聚合物半导体材料Ρ3ΗΤ的能级位置匹配,如果将η型Ag2S和ρ型Ρ3ΗΤ混合可以形成异型ρ_η结,而且所制备的Ag2S薄膜是由片状纳米晶阵列构成,与Ρ3ΗΤ杂化共混后可以得到数目众多的体相异型ρ-η结,更为有效地传输内建电场所分离的电子。所以Ag2S材料是理想的有机-无机杂化太阳能电池材料。尽管如此,利用硫化银作为太阳能电池材料的报道很少。例如,Sung Oh Cho等曾报道称以硫化钠和硝酸银为原料,利用CBD (化学浴沉积)或者SILAR(连续离子层吸附)的方法在1102表面沉积硫化银量子点可以提高太阳能电池的性能(C. Chen, Y. Xie,G. Ali, S. H. Yoo and S. 0. Cho Nanoscale. Res. Lett. , 2011,6,462. A. Tubtimtae, K. L. Wu, H. Y. Tung,Μ. W. Lee and G.J.Wang Electrochem. Commun. 2010,12,1158.)。但到目前为止,还没有关于硫化银作为n型半导体与共轭聚合物形成杂化薄膜太阳能电池的报道。本申请人曾开发了一种低温条件下原位制备片状硫化银纳米晶光电薄膜的化学方法。并申请了一项国家发明专利(专利申请号201010111402. 0)。该方法先将硫粉加入到容器中,然后加入DMF或无水乙醇,有机溶剂的体积大于容器容积的1/2,再将具有洁净金属银表面的基底材料倾斜或水平置于容器底部,避免与硫粉直接接触。把其基底材料和硫粉沉浸于溶剂液面之下,在20 60°C温度反应4 184小时,反应物中单质硫粉的浓度保持在饱和状态,即在具有洁净金属银表面的基底材料表面原位制得片状硫化银纳米晶组成的薄膜材料,产物用无水乙醇洗涤,室温干燥即可。综合在制作太阳能电池过程中对环境的污染、能耗和效率等问题,本申请人在此提出一种基于低温制备的Ag2S片状纳米晶阵列的低能耗和环境友好的组装过程来制造太阳能电池。在本说明书中,一种低温、低能耗、绿色、原位制备的Ag2S片状纳米晶阵列与P3HT 杂化后组装成光电转换器件,并具有以下特点(I)Ag2S性能稳定,电子迁移率高,是一种快离子导体,可以快速运输内建电场分离的电子,有效提高电流密度,电池的能量转化效率有了很大的提高;(2) Ag2S纳米晶半导体材料是在室温下合成,不需要加热,能耗低;(3)金属银储量丰富,适于工业应用;(4)反应所用的溶剂可以重复使用,减少了原料的消耗,符合低碳环保概念。申请人:在经清洁处理过的ITO表面利用磁控溅射、电镀、化学镀等技术获得一层 200 300nm厚度的银薄膜,令其在0°C 60°C条件下和单质硫在DMF(N,N- 二甲基甲酰胺)中反应4-184小时(同时考虑到反应速率和能耗问题,实验通常在室温条件下进行反应8小时),待反应完全后可以得到一层纯净的Ag2S纳米晶薄膜,所得的薄膜在无水乙醇中洗涤,在干燥时为保证薄膜表面的清洁,在真空干燥箱中40°C真空干燥2小时以上。在通有纯氩气的手套箱中,将浓度为lOmg/mL的P3HT氯仿溶液旋涂到Ag2S纳米晶薄膜上形成异质结,在氮气保护下40 60°C干燥2小时以上,最后利用真空蒸镀技术在薄膜表面蒸镀单质金作为电池正极。在25°C条件下,将组装好的太阳能电池器件用美国Oriel公司生产的太阳光模拟器(AM 1. 5)进行光电性能测试,得到Voc = 0. 24V, Jsc = 11. 19mA/cm2,η 1. 23%,FF = 44. 84%的测试结果,电池性能稳定,长时间(190天)放置未检测到电池效率的衰减。本发明中申请人使用一种简单、快捷、低能耗、绿色的方法,在0-60°C条件下原位制备出具有片状纳米晶阵列的Ag2S光电薄膜材料,组装成了 IT0/Ag2S/P3HT/Au结构和ITO/ PED0T:PSS/Ag2S/P3HT/Au结构的光电转换器件,且得到了较为理想的测试结果,基于该方法制作的光电转换器件具有非常低的电池内阻(1400欧姆),这是制作多层光电池的有利条件。ITO玻璃是表面带有一层氧化铟锡andium-Tin Oxide)透明导电膜的玻璃。P3HT是一种3-己基噻吩的聚合物,主要用于有机薄膜晶体管和有机太阳能电池。PEDOT PSS该产品是由PEDOT和PSS两种物质构成(所述的PEDOT PSS为商品,未知混合物比例),PEDOT是EDOT(3,4-乙撑二氧噻吩单体)的聚合物,PSS是聚苯乙烯磺酸盐。这两种物质在一起极大的提高了 PEDOT的溶解性,水溶液导电物主要应用于有机发光二极管OLED,有机太阳能电池,有机薄膜晶体管,超级电容器等的电子传输层。

发明内容
本发明所要解决的问题是(1)提供一种太阳能电池电子传输层材料;( 把低温、原位制备出的η型半导体Ag2S薄膜与有机共轭聚合物ρ型半导体Ρ3ΗΤ复合,并组装成 IT0/Ag2S/P3HT/Au 和 IT0/PED0T:PSS/Ag2S/P3HT/Au 结构的杂化薄膜光电转换器件;(3)提高杂化薄膜光电转换器件效率,降低成本和能耗。本发明对要解决的问题所采取的技术方案是一种基于Ag2S片状纳米晶阵列与P3HT杂化构成的薄膜光电转换器件,其特征在于该器件是在具有纳米金属银表面的ITO玻璃或柔性ITO基底材料上原位、0°C 60°C反应制得Ag2S片状纳米晶薄膜,反应温度更好为10°C 30°C,最好室温25°C,并在纯氩气环境中与P3HT复合,利用真空蒸镀技术在该P3HT复合薄膜表面蒸镀一层Au作为正极的薄膜光电转换器件;所述的具有纳米金属银表面的ITO基底材料是指表面镀有一层厚度为200 300nm的金属银薄膜的ITO导电玻璃或柔性ITO基底材料。一种基于Ag2S片状纳米晶阵列与P3HT杂化构成的薄膜光电转换器件的制备方法,其制备步骤依此如下1)、用离子溅射、电镀、化学镀等技术在清洁的ITO导电玻璃或柔性ITO基底材料表面镀一层厚度为200 300nm的金属银薄膜;2)、把表面镀有厚度200 300nm金属银薄膜的ITO导电玻璃,单质硫粉,以及DMF 溶剂共置于聚四氟乙烯反应釜或者烧杯中,硫粉浓度在反应过程中保持饱和状态,溶剂浸没ITO导电玻璃表面,在0°C 60°C下直接反应8小时,更好为10°C 30°C,最好室温25°C, 反应结束后用无水乙醇清洗产品,在真空条件下40°C干燥2小时,即得到在ITO导电玻璃表面原位制得的A&S片状纳米晶阵列的薄膜;3)、把步骤幻得到的产品在通有纯氩气的手套箱中旋涂P3HT的氯仿溶液,制得 Ag2S与P3HT杂化薄膜,制备好的杂化薄膜在氮气保护条件下40°C干燥2小时;4)、步骤3)进行完后,蒸镀Au电极,即组装成光电转换器件(太阳能电池器件)。
本发明中所用的P3HT的氯仿溶液为ρ型半导体有机共轭聚合物P3HT以三氯甲烷溶解,配置成lOmg/mL溶液;旋涂转速为2500 3000转/分钟;旋涂时间为30 40秒。其中,所述的处理过的ITO导电玻璃分为旋涂牌号为Baytron P 4083的 PEDOT PSS膜和不旋涂PEDOT PSS膜两种;1、ITO导电玻璃旋涂牌号为Baytron P 4083的PEDOTPSS膜的处理过程为将ITO玻璃先用丙酮超声清洗两次,每次10分钟,再用洗洁精超声清洗20分钟, 然后放入浓度25wt% NH3. H20、浓度30wt% H2O2和H2O的混合溶液中80°C煮20分钟,浓度 25wt% NH3. H2O 浓度30wt%H2& H2O体积比=1 2 5,然后用去离子水超声清洗5 分钟,再用异丙醇超声处理5分钟,最后将清洗好的ITO导电玻璃放入真空干燥箱中60°C 干燥,把烘干的ITO导电玻璃吸到勻胶机吸盘上,将过滤好的牌号为Baytron P 4083的 PEDOT PSS液滴到ITO导电玻璃表面,先以500转/分钟的转速旋转5秒钟,然后再以2500 转/分钟的转速旋转40秒甩膜,将旋涂有PEDOT PSS薄膜的ITO导电玻璃放入真空干燥箱中,110°C下干燥40分钟。2,ITO导电玻璃不旋涂PEDOT PSS膜处理过程为将ITO导电玻璃先用丙酮超声清洗两次,每次10分钟,再用洗洁精超声清洗20分钟,然后放入浓度25wt% NH3. H20、浓度30wt% H2O2和H2O的混合溶液中80°C煮20分钟,浓度25wt% ΝΗ3.Η20 浓度 H2O体积比=1 2 5,然后用去离子水超声清洗 5分钟,再用异丙醇超声处理5分钟,最后将清洗好的ITO导电玻璃放入真空干燥箱中60°C 干燥。本发明的优点1、无机Ag2S纳米晶电子受体薄膜材料是在O 60°C下合成,更好为10°C 30°C, 最好室温25°C,不需要加热,能耗低;处理容易,克服了物理气相沉积法、喷涂裂解法、热蒸发法等方法制备工艺复杂的缺点,有效降低了成本。2、所用金属及生成的Ag2S半导体材料对环境无毒害作用,光电转换器件组装过程对环境基本没有危害。3、Ag2S性能稳定,电子迁移率高,是一种快离子导体,可以快速运输内建电场分离的电子,有效提高电流密度。4、基于该方法制作的光电转换器件具有非常低的电池内阻(1400欧姆)。5、以该方法制备的太阳能电池性能稳定,未封装的器件在手套箱中长时间放置 (190天)未检测到电池效率的衰减。


图1、实施例1组装电池所用的硫化银纳米晶光电薄膜材料的电子显微照片图2、实施例1组装电池所用的硫化银纳米晶与P3HT复合薄膜的电子显微照片图3、实施例1组装电池所用的硫化银纳米晶光电薄膜材料的X射线衍射图谱图4、实施例1所组装太阳能电池的I-V曲线图5、实施例1所组装的硫化银纳米晶薄膜太阳能电池器件示意中1-玻璃基底,2-IT0,3-金电极,44&5与?3肌杂化薄膜。图6、实施例1组装的A&S与P3HT杂化薄膜太阳能电池的能级结构图
图7、实施例2所组装太阳能电池的I-V曲线图8、实施例2组装的A&S与P3HT杂化薄膜太阳能电池的能级结构9、实施例3所组装太阳能电池的I-V曲线图10、实施例4组装电池所用的硫化银纳米晶光电薄膜材料的电子显微照片图11、实施例4所组装太阳能电池的I-V曲线
具体实施例方式片状Ag2S纳米晶阵列与P3HT杂化的薄膜光电转换器件的制备实施例11)准备工作将ITO玻璃先用丙酮超声清洗两次,每次10分钟,再用洗洁精超声清洗20分钟,然后放入浓度25wt% NH3. H20、浓度30wt% H2O2和H2O的混合溶液中80°C煮 20分钟,浓度25wt% ΝΗ3.Η20 浓度30wt%H2& H2O体积比=1 2 5,然后用去离子水超声清洗5分钟,再用异丙醇超声处理5分钟,最后将清洗好的ITO玻璃放入真空干燥箱中60°C干燥,自然冷却至25°C;利用磁控溅射技术,在经上述处理好的ITO导电玻璃上溅射 250nm厚度的单质银薄膜;2)反应步骤在烧杯或者其他耐有机溶剂的容器中先加入0. Olg硫粉,再加入 15mlDMF,溶剂要能浸没过ITO导电玻璃表面,把步骤1)制备的带有金属银薄膜的ITO导电玻璃放入,在25°C条件下保持8小时,取出后用无水乙醇洗涤,在40°C条件下真空干燥2小时,自然冷却;3)电池组装将步骤2~)干燥好的样品放入手套箱中,在纯氩气环境下以2500转 /分钟的转速旋涂lOmg/mL的P3TH氯仿溶液,完成后擦除多余的P3HT,在40°C氮气保护条件下干燥2小时,自然冷却;完成后在P3HT表面真空蒸镀金电极;4)电池性能测试在25°C室温条件下,使用美国Oriel公司生产的太阳光模拟器 (AMI. 5)进行光电性能测试。电池的I-V曲线如图4。实施例21)准备工作将ITO玻璃先用丙酮超声清洗两次,每次10分钟,再用洗洁精超声清洗20分钟,然后放入浓度25wt% NH3. H20、浓度30wt% H2O2和H2O的混合溶液中80°C煮 20分钟,浓度25wt% ΝΗ3.Η20 浓度30wt%H2& H2O体积比=1 2 5,然后用去离子水超声清洗5分钟,再用异丙醇超声处理5分钟,最后将清洗好的ITO玻璃放入真空干燥箱中60°C干燥,自然冷却至25V ;把烘干的ITO导电玻璃吸到勻胶机吸盘上,将过滤好的 PEDOTPSS (Baytron P 4083)液滴到导电玻璃表面,先以500转/分钟的转速旋转5秒钟, 然后再以2500转/分钟的转速旋转40秒甩膜;将旋涂有PED0T:PSS薄膜的ITO导电玻璃放入真空干燥箱中,110°C下干燥40分钟,自然冷却利用磁控溅射技术,在经上述处理好的ITO导电玻璃上溅射250nm厚度的单质银薄膜;2)反应步骤同实施例1 ;3)电池组装同实施例1 ;4)电池性能测试同实施例1。电池的I-V曲线如图7。实施例31)准备工作将ITO导电玻璃先用丙酮超声清洗两次,每次10分钟,再用洗洁精超声清洗20分钟,然后放入浓度25wt% NH3. H20、浓度30wt% H2O2和H2O的混合溶液中80°C 煮20分钟,浓度25wt% ΝΗ3.Η20 浓度30wt%H2& H2O体积比=1 2 5,然后用去离子水超声清洗5分钟,再用异丙醇超声处理5分钟,最后将清洗好的ITO导电玻璃放入真空干燥箱中60°C干燥,自然冷却至25°C;利用磁控溅射技术,在经上述处理好的ITO导电玻璃上溅射200nm厚度的单质银薄膜。2)反应步骤在烧杯或者其他耐有机溶剂的容器中先加入0. Olg硫粉,再加入 15mlDMF,溶剂要能浸没ITO导电玻璃表面,把步骤1)制备的带有金属银薄膜的ITO导电玻璃放入,在25°C条件下保持8小时,取出后用无水乙醇洗涤,在40°C条件下真空干燥2小时,自然冷却;3)电池组装将步骤2~)干燥好的样品放入手套箱中,在纯氩气环境下以2500转 /分钟的转速旋涂lOmg/mL的P3TH氯仿溶液,完成后擦除多余的P3HT,在40°C氮气保护条件下干燥2小时,自然冷却;完成后在P3HT表面真空蒸镀金电极。4)电池性能测试在室温条件下,使用美国Oriel公司生产的太阳光模拟器(AM 1. 5)进行光电性能测试。电池的I-V曲线如图9。实施例41)准备工作将ITO玻璃先用丙酮超声清洗两次,每次10分钟,再用洗洁精超声清洗20分钟,然后放入浓度25wt% NH3. H20、浓度30wt% H2O2和H2O的混合溶液中80°C煮 20分钟,浓度25wt% ΝΗ3.Η20 浓度30wt%H2& H2O体积比=1 2 5,然后用去离子水超声清洗5分钟,再用异丙醇超声处理5分钟,最后将清洗好的ITO玻璃放入真空干燥箱中60°C干燥,自然冷却至25°C;利用磁控溅射技术,在经上述处理好的ITO导电玻璃上溅射 300nm厚度的单质银薄膜;2)反应步骤在烧杯或者其他耐有机溶剂的容器中先加入0. Olg硫粉,再加入 15mlDMF,溶剂要能浸没过ITO导电玻璃表面,把步骤1)制备的带有金属银薄膜的ITO导电玻璃放入,在25°C条件下保持8小时,取出后用无水乙醇洗涤,在40°C条件下真空干燥2小时,自然冷却;3)电池组装将步骤2~)干燥好的样品放入手套箱中,在纯氩气环境下以2500转 /分钟的转速旋涂lOmg/mL的P3TH氯仿溶液,完成后擦除多余的P3HT,在40°C氮气保护条件下干燥2小时,自然冷却;完成后在P3HT表面真空蒸镀金电极。4)电池性能测试在25°C条件下,使用美国Oriel公司生产的太阳光模拟器(AM 1. 5)进行光电性能测试。电池的I-V曲线如图11。本发明于O 60°条件下在ITO导电玻璃上经过一步反应获得具有片状结构的 Ag2S纳米晶阵列,与P3HT复合后组装成光电转换器件(薄膜太阳能电池器件)。P3HT均勻地嵌入到原位生长的Ag2S片状纳米晶阵列空隙中,形成有机无机杂化薄膜,具有更高的稳定性;Ag2S性能稳定,电子迁移率高,是一种快离子导体,可以快速运输内建电场分离的电子,有效提高电流密度;基于该方法制作的光电转换器件具有非常低的电池内阻(1400欧姆);以该方法制备的太阳能电池性能稳定,未封装的器件在手套箱中长时间放置(190天) 未检测到电池效率的衰减;本方法反应快捷,制备装置简单,操作方便,低能耗,低成本,环境友好。
9
权利要求
1.一种基于Ag2S片状纳米晶阵列与P3HT杂化构成的薄膜光电转换器件,其特征在于 该器件是在具有纳米金属银表面的ITO基底材料上原位、0°C 60°C反应制得Ag2S片状纳米晶薄膜,并在纯氩气环境中与P3HT复合,利用真空蒸镀技术在该P3HT复合薄膜表面蒸镀一层Au作为正极的薄膜光电转换器件;所述的具有金属银表面的ITO基底材料是指表面镀有一层厚度为200 300nm的金属银薄膜的ITO导电玻璃。
2.根据权利要求1所述的基于Ag2S片状纳米晶阵列与P3HT杂化构成的薄膜光电转换器件,其特征在于所述的Ag2S片状纳米晶薄膜是在具有纳米金属银表面的ITO基底材料上原位、10°C 30°C反应制得。
3.根据权利要求1所述的基于Ag2S片状纳米晶阵列与P3HT杂化构成的薄膜光电转换器件,其特征在于=Ag2S片状纳米晶薄膜是在具有纳米金属银表面的ITO基底材料上原位、 25 °C反应制得。
4.一种基于Ag2S片状纳米晶阵列与P3HT杂化构成的薄膜光电转换器件的制备方法, 其特征在于,制备步骤如下1)、用离子溅射技术在清洁的ITO导电玻璃表面镀一层厚度为200 300nm的金属银薄膜;2)、把表面镀有厚度200 300nm金属银薄膜的ITO导电玻璃,单质硫粉,以及DMF溶剂共置于聚四氟乙烯反应釜或者烧杯中,硫粉浓度在反应过程中保持饱和状态,溶剂浸没ITO 导电玻璃表面,在0°C 60°C下直接反应8小时,反应结束后用无水乙醇清洗产品,在真空条件下40°C干燥2小时,即得到在ITO导电玻璃表面原位制得的Ag2S片状纳米晶阵列的薄膜;3)、把步骤幻得到的产品在通有纯氩气的手套箱中旋涂P3HT的氯仿溶液,制得々&5与 P3HT杂化薄膜,将制备好的杂化薄膜在氮气保护条件下40°C干燥2小时;4)、步骤3)进行完后,蒸镀Au电极,即组装成光电转换器件。
5.根据权利要求4所述的基于Ag2S片状纳米晶阵列与P3HT杂化构成的薄膜光电转换器件的制备方法,其特征在于步骤2)中反应温度为10°C 30°C。
6.根据权利要求4所述的基于Ag2S片状纳米晶阵列与P3HT杂化构成的薄膜光电转换器件的制备方法,其特征在于步骤2)中反应温度为25°C。
7.根据权利要求4所述的基于Ag2S片状纳米晶阵列与P3HT杂化构成的薄膜光电转换器件的制备方法,其特征在于所用的P3HT的氯仿溶液为ρ型半导体有机共轭聚合物; P3HT以三氯甲烷溶解,配置成lOmg/mL溶液;旋涂转速为2500 3000转/分钟;旋涂时间为30 40秒。
8.根据权利要求4所述的基于Ag2S片状纳米晶阵列与P3HT杂化构成的薄膜光电转换器件的制备方法,其特征在于,所述的ITO导电玻璃分为旋涂牌号为Baytron P 4083的 PEDOT PSS膜和不旋涂PEDOT PSS膜两种。
9.根据权利要求8所述的基于Ag2S片状纳米晶阵列与P3HT杂化构成的薄膜光电转换器件的制备方法,其特征在于,ITO导电玻璃旋涂牌号为Baytron P4083的PED0T:PSS膜的处理过程为将ITO玻璃先用丙酮超声清洗两次,每次10分钟,再用洗洁精超声清洗20分钟,然后放入浓度25wt% NH3. H20、浓度30wt% H2O2和H2O的混合溶液中80°C煮20分钟,浓度25wt% NH3. H2O 浓度 H2O体积比=1 2 5,然后用去离子水超声清洗5分钟,再用异丙醇超声处理5分钟,最后将清洗好的ITO导电玻璃放入真空干燥箱中60°C干燥,把烘干的ITO导电玻璃吸到勻胶机吸盘上,将过滤好的牌号为Baytron P 4083的PEDOTPSS 水溶液滴到ITO导电玻璃表面,先以500转/分钟的转速旋转5秒钟,然后再以2500转/ 分钟的转速旋转40秒甩膜,将旋涂有PED0T:PSS薄膜的ITO导电玻璃放入真空干燥箱中, 110°C下干燥40分钟。
10.根据权利要求8所述的基于Ag2S片状纳米晶阵列与P3HT杂化构成的薄膜光电转换器件的制备方法,其特征在于,ITO导电玻璃不旋涂PEDOTPSS膜处理过程为将ITO导电玻璃先用丙酮超声清洗两次,每次10分钟,再用洗洁精超声清洗20分钟, 然后放入浓度25wt% NH3. H20、浓度30wt% H2O2和H2O的混合溶液中80°C煮20分钟,浓度 25wt% NH3. H2O 浓度30wt%H2& H2O体积比=1 2 5,然后用去离子水超声清洗5 分钟,再用异丙醇超声处理5分钟,最后将清洗好的ITO导电玻璃放入真空干燥箱中60°C干O
全文摘要
一种基于低温制备的Ag2S片状纳米晶阵列与P3HT杂化的薄膜光电转换器件。它是在具有金属银表面的ITO玻璃或柔性ITO基底材料上原位、0℃~60℃反应制得Ag2S片状纳米晶薄膜,在纯氩气环境中与P3HT复合,然后在其表面蒸镀一层Au作为正极的光电转换器件。做法是在清洁的ITO表面溅射一层200~300nm厚度的银薄膜,令其在0℃~60℃条件下和单质硫在DMF中反应,得到一层Ag2S纳米晶薄膜,经无水乙醇洗涤,40℃真空干燥,在通有纯氩气的手套箱中,将浓度为10mg/mL的P3HT氯仿溶液旋涂到Ag2S纳米晶薄膜上形成异质结,在氮气保护下40~60℃干燥2小时以上,最后在薄膜表面蒸镀单质金作为电池正极而成。该薄膜光电转换器件的Voc=0.24V,Jsc=11.19mA/cm2,η=1.23%,FF=44.84%,电池性能稳定,放置190天未检测到电池效率的衰减。
文档编号H01L51/44GK102509769SQ20111033770
公开日2012年6月20日 申请日期2011年10月28日 优先权日2011年10月28日
发明者张艳鸽, 李大鹏, 李艳巧, 法文君, 翟学珍, 贾会敏, 郑直, 雷岩 申请人:许昌学院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1