一种制备氧化铟八面体纳米晶薄膜的方法

文档序号:8311400阅读:682来源:国知局
一种制备氧化铟八面体纳米晶薄膜的方法
【技术领域】
[0001]本发明涉及一种在基体上制备氧化铟八面体纳米晶薄膜的方法,特别涉及一种通过溶胶-凝胶工艺利用旋涂法先在基体上制作凝胶膜再通过烧结制备微观形貌为八面体纳米晶的氧化铟薄膜的方法,属于纳米材料合成技术领域。该氧化铟八面体纳米晶薄膜可用于透明电极、场发射、太阳电池、光催化、光电催化、光降解、传感器等领域。
【背景技术】
[0002]氧化铟八面体纳米晶(英文In2O3 octahedron nanocrystals)由于具有特殊的外露晶面和尖锐的棱角等特点,在气体传感器、场发射、太阳能转换等领域具有重要的应用。近年来,有关氧化铟八面体纳米晶的制备,采用的主要是基于化学气相沉积(英文ChemicalVapor Deposit1n, CVD)技术的方法,该类方法虽然能够实现对氧化铟八面体形貌的控制,获得氧化铟八面体晶粒,但也存在着合成温度高(950-1300° C)、有时需要催化剂(如金、镍等)、收集沉积的区域有严格要求等特点。这些特点中,除了高温会造成高的能耗外,催化剂的使用往往会造成产物受残留催化剂的污染。而收集沉积的区域有严格要求则使得此法在追求产物形貌一致与产量大这两个方面产生矛盾,因为CVD方法中,距离上游蒸发源不同距离处的产物,其形貌和尺寸往往有很大差别。此外,CVD方法往往需要结构复杂且成本高昂的CVD生长系统。因此,探索温和的路线,特别是基于液相化学的路线,制备高品质的氧化铟八面体纳米晶具有重要的意义。
[0003]目前为止,基于液相化学方法制备氧化铟八面体纳米晶的报道非常少。ShaojuanLuo等最近报道了先在260° C下制备硬脂酸铟作为前躯体再在340° C和350° C下热解制备氧化铟八面体纳米晶的方法(Shaojuan Luo, Jiyun Feng and Ka Ming Ng.Largescale synthesis of nearly monodisperse, variable-shaped In2O3 nanocrystals viaa one-pot pyrolysis react1n.CrystEngComm, 2014, 16, 9236 - 9244)。此方法虽然能够不使用CVD技术制备氧化铟八面体纳米晶,但无论在前躯体的制备过程还是后续的热分解过程都需要氮气的保护,而且需要用有机溶剂对产物进行多次洗涤纯化,产生一定的有机废液。此外,该法获得的是氧化铟八面体纳米晶粉末,不能直接在基体上获得氧化铟八面体纳米晶薄膜。
[0004]氧化铟作为光电半导体材料,实际应用中常在一定基体上制作成薄膜使用,如果能够直接通过温和的路线在基体上制备高质量的氧化铟八面体纳米晶薄膜,这将减少薄膜的制备工艺步骤,降低应用成本。到目前为止,未见有在基体上基于温和的、低成本的溶胶-凝胶工艺进行氧化铟八面体纳米晶薄膜的制备的报道。

【发明内容】

[0005]本发明的目的在于提供一种在基体上制备微观形貌为八面体纳米晶的氧化铟薄膜的方法,该方法利用低成本的溶胶-凝胶工艺先在基体上通过旋涂法制备凝胶薄膜再通过烧结直接获得高质量的氧化铟八面体纳米晶薄膜。具有无需CVD生长系统、无催化剂残留、不需要气氛保护、单次反应产量大、成本低等优点。
[0006]本发明是通过以下技术方案实现的:
所述的在基体上制备氧化铟八面体纳米晶薄膜的方法,其特征在于包括以下步骤:
(1)配制乙二醇、水、无水乙醇和冰醋酸的混合溶液,再将无机铟盐溶解其中,形成铟离子浓度为0.50 - 2.60 mo I.L—1的溶液,并在室温下快速搅拌2 h ;
(2)在(I)所述的溶液中加入柠檬酸并搅拌、溶解,其中柠檬酸的浓度为0.08-0.60mo I.L1;
(3)将(2)所述的溶液加热到30- 70° C,并在此温度下搅拌1- 8 h,冷却,获得溶胶;
(4)将(3)所述溶胶1-5滴滴到洁净的2X 2 cm2的基片上通过旋涂工艺制膜,所得薄膜于100° C下干燥2 h,得到凝胶薄膜;
(5)将(4)所述凝胶薄膜于450-700°C下烧结,得到氧化铟八面体纳米晶薄膜。
[0007]所述混合溶液中乙二醇、水、无水乙醇和冰醋酸的体积比为(1-5): (0-6):(2-8): (2-15);所述含铟的无机盐为InCl3或In (NO 3)3或In.(C2H3O2) 3及它们的含水盐;所述基片为玻璃片或硅片或FTO导电玻璃或ITO玻璃;所述旋涂制膜条件为2000-8000 rpm的转速下旋涂10-500秒。
【附图说明】
[0008]图1本发明实施例1所制备的氧化铟八面体纳米晶薄膜的X-射线衍射(XRD)图。
[0009]图2本发明实施例1所制备的氧化铟八面体纳米晶薄膜的扫描电镜(SBO照片。
[0010]图3本发明实施例11所制备的氧化铟薄膜的扫描电镜(SEM)照片,其晶粒微观形貌不是八面体纳米晶。
【具体实施方式】
[0011]下面结合具体实施例对本发明作进一步说明。
[0012]实施例1
以InCl3.4H20为铟盐,玻璃片为基片:
(1)将乙二醇、水、无水乙醇、冰醋酸按体积比2:3:5:12的比例配成混合溶液,再将InCl3.4Η20溶解其中,形成铟离子浓度为1.20 mo I.L—1的溶液,并在室温下快速搅拌2 h ;
(2)在(I)所述的溶液中加入柠檬酸并搅拌、溶解,其中柠檬酸的浓度为0.30 mo I ?Γ1;
(3)将(2)所述的溶液加热到50°C,并在此温度下搅拌5 h,冷却,获得溶胶;
(4)将(3)所述溶胶2滴滴到洁净的2X 2 cm2的基片上,通过旋涂工艺以3000 rpm的转速旋转40秒进行涂膜,所得薄膜于100° C下干燥2 h,得到凝胶薄膜;
(5)将(4)所述凝胶薄膜于500°C下烧结,得到氧化铟八面体纳米晶薄膜。
[0013]产物的X-射线衍射(XRD)图和扫描电镜(SEM)照片分别如图1、2所示。
[0014]实施例2
以InCl3.4H20为铟盐,玻璃片为基片:
(I)将乙二醇、水、无水乙醇、冰醋酸按体积比3:0:5: 12的比例配成混合溶液,再将InCl3.4Η20溶解其中,形成铟离子浓度为1.0O mo I.L—1的溶液,并在室温下快速搅拌2 h ;
(2)在(I)所述的溶液中加入柠檬酸并搅拌、溶解,其中柠檬酸的浓度为0.10 mo I ?Γ1;
(3)将(2)所述的溶液加热到40°C,并在此温度下搅拌3 h,冷却,获得溶胶;
(4)将(3)所述溶胶2滴滴到洁净的2X 2 cm2的基片上,通过旋涂工艺以3000 rpm的转速旋转40秒进行涂膜,所得薄膜于100° C下干燥2 h,得到凝胶薄膜;
(5)将(4)所述凝胶薄膜于500°C下烧结,得到氧化铟八面体纳米晶薄膜。
[0015]产物的X-射线衍射(XRD)图和扫描电镜(SEM)照片与图1、2近似。
[0016]实施例3
以InCl3.4H20为铟盐,FTO导电玻璃为基片:
(1)将乙二醇、水、无水乙醇、冰醋酸按体积比2:3:5: 15的比例配成混合溶液,再将InCl3.4H20溶解其中,形成铟离子浓度为2.20 mo I.L—1的溶液,并在室温下快速搅拌2h ;
(2)在(I)所述的溶液中加入柠檬酸并搅拌、溶解,其中柠檬酸的浓度为0.10 mo I ?Γ1;
(3)将(2)所述的溶液加热到40°C,并在此温度下搅拌3 h,冷却,获得溶胶;
(4)将(3)所述溶胶2滴滴到洁净的2X 2 cm2的基片上,通过旋涂工艺以3000 rpm的转速旋转40秒进行涂膜,所得薄膜于100° C下干燥2 h,得到凝胶薄膜;
(5)将(4)所述凝胶薄膜于500°C下烧结,得到氧化铟八面体纳米晶薄膜。
[0017]产物的X-射线衍射(XRD)图和扫描电镜(SEM)照片与图1、2近似。
[0018]实施例4
以In (NO3) 3.4.5H20为铟盐,玻璃片为基片:
(1)将乙二醇、水、无水乙醇、冰醋酸按体积比3:0:5: 12的比例配成混合溶液,再将In(NO3)3.4.5H20溶解其中,形成铟离子浓度为2.20 mo I.L—1的溶液,并在室温下快速搅拌2 h ;
(2)在(I)所述的溶液中加入柠檬酸并搅拌、溶解,其中柠檬酸的浓度为0.60mo I ?Γ1;
(3)将(2)所述的溶液加热到60°C,并在此温度下搅拌5 h,冷却,获得溶胶;
(4)将(3)所述溶胶2滴滴到洁净的2X 2 cm2的基片上,通过旋涂工艺以5000 rpm的转速旋转20秒进行涂膜,所得薄膜于100° C下干燥2 h,得到凝胶薄膜;
(5)将(4)所述凝胶薄膜于600°C下烧结,得到氧化铟八面体纳米晶薄膜。
[0019]产物的X-射线衍射(XRD)图和扫描电镜(SEM)照片与图1、2近似。
[0020]实施例5
以In (NO3) 3.4.5H20为铟盐,玻璃片为基片:
(1)将乙二醇、水、无水乙醇、冰醋酸按体积比3:2:5: 12的比例配成混合溶液,再将In(NO3)3.4.5H20溶解其中,形成铟离子浓度为1.00 mo I.L—1的溶液,并在室温下快速搅拌2 h ;
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1