一类石墨烯-蛋白质衍生碳超级电容器材料及其制备方法

文档序号:7054486阅读:140来源:国知局
一类石墨烯-蛋白质衍生碳超级电容器材料及其制备方法
【专利摘要】本发明属于超级电容器材料制备【技术领域】,具体为一类石墨烯-蛋白质衍生碳超级电容器材料及其制备方法。本发明通过水溶性蛋白质与石墨烯的相互作用制备蛋白质包覆石墨烯的溶液;加入致孔剂,均匀混合后干燥并高温碳化,即制得多孔的石墨烯-水溶性蛋白质衍生碳复合材料。本发明制备过程简单、绿色温和、节能高效、成本低廉且产率高。所制备的石墨烯-蛋白质衍生碳复合材料,紧密均匀,比表面积大且具有多重孔道结构,导电性好。采用此类材料制备的超级电容器,具有很好的倍率性能、循环稳定性,在大电流密度下也能表现出超高的比容量。在新能源电动汽车、混合动力汽车、风力发电、太阳能发电等领域有广宽应用前景。
【专利说明】一类石墨烯-蛋白质衍生碳超级电容器材料及其制备方法

【技术领域】
[0001]本发明属于新能源材料【技术领域】,具体涉及一类石墨烯-蛋白质衍生碳超级电容器材料及其制备方法。

【背景技术】
[0002]超级电容器的发展始于20世纪60年代,在20世纪90年代由于混合电动汽车的兴起,其受到了广泛的关注并开始迅速发展起来。超级电容器是介于传统电容器和充电电池之间的一种新型储能装置,具有功率密度高、循环寿命长、能瞬间大电流快速充放电、工作温度范围宽、安全无污染等特点而倍受国内外研究者的青睐,在电动汽车不间断电源航空航天军事等诸多领域有广阔的应用前景。
[0003]根据电能的储存与转化机理,超级电容器分为双电层电容器(electric doublelayer capacitors, EDLC)和法拉第准电容器(又叫赝电容器,pseudo-capacitors),其中法拉第准电容器又包括金属氧化物电容器和导电高分子电容器。而在双电层电容器中,碳材料是研究最多,应用最为广泛,主要包括活性炭、介孔碳、碳纳米管、碳化物衍生炭、石墨烯等。最近人们对各种生物来源的碳,例如丝蛋白、头发、鸡蛋白衍生碳及树叶、木屑、花粉、牛粪等衍生碳研究得愈发深入。由于其中杂原子的掺杂使得这些碳材料在低电流密度下具有较高的电容,然而,其中绝大多数材料在高电流密度下往往容量损失严重。
[0004]石墨烯,具有优异的力学、热学电学性能和光学性能,是目前已知的在常温下导电性能最好的材料。在法拉第准电容器中,人们常将石墨烯与活性物质复合,提高材料的导电性进而减小材料在高电流密度下的容量损失。但是,这些复合方法往往比较复杂或者复合效果不甚理想。
[0005]本发明提出了一类石墨烯-蛋白质衍生碳超级电容器材料及其制备方法。利用水溶性蛋白质与石墨烯的相互作用达到了其与石墨烯均匀的复合。通过简单的致孔剂致孔碳化,得到的最终石墨烯-蛋白衍生碳复合材料具有多重孔道结构,高的比较面积,良好的材料导电性及优异的超级电容器电性能。使得各种生物源的碳材料在超级电容器领域具有了可观的实际应用前景。


【发明内容】

[0006]本发明目的在于提供一种超级电容器材料及其制备方法,即一类石墨烯-蛋白质衍生碳超级电容器材料及其制备方法。通过该方法得到的石墨烯-蛋白衍生碳复合材料具有多重孔道结构,高的比较面积,良好的材料导电性及优异的超级电容器电性能。
[0007]本发明通过以下技术方案加以实现:先将水溶性蛋白与氧化石墨烯混合,在一定条件下还原,再加入致孔剂,干燥,惰性气体氛围碳化后得到多孔的石墨烯-水溶性蛋白质衍生碳复合材料。
[0008]本发明提供的石墨烯-蛋白质衍生碳超级电容器材料的制备方法,具体步骤如下: (O首先,制备水溶性蛋白质的水溶液,其质量分数0.5^20% ;制备氧化石墨烯,其质量分数为0.01%?5%,尺寸为50 ηπΓ50 μ m ;室温搅拌下,将上述两种溶液在pH=6?14的条件下混合,两者质量比可在1:5(Γ50:1 (优选两者质量比为1:1(Γ?0:1)的范围内调控,搅拌,得水溶性蛋白质与氧化石墨烯混合溶液;
(2)然后,进行还原反应,还原反应可为强碱性条件下还原,利用蛋白上还原性氨基酸还原,或加入还原剂还原;还原反应温度为3(T250°C,反应0.5tT3d.反应结束后得到水溶性蛋白质稳定的还原氧化石墨烯;
(3)然后,向上述得到的溶液中加入致孔剂,搅拌0.5tT2h ;再进行干燥处理,干燥条件为真空干燥、浇膜干燥和冷冻干燥中的一种;
(4)最后,进行碳化处理,碳化在氮气或氩气的气氛下进行,温度为50(T90(TC,升温速率为5?30。。/min ;碳化时间为I?5h ;
(5)碳化后,分别用水,乙醇反复清洗;在真空烘箱3(T50°C的条件下,干燥3lh,即得多孔的石墨烯-蛋白质衍生碳复合材料。
[0009]本发明中,还原反应所用还原剂可为但不限于水合肼、柠檬酸、氢碘酸和氢溴酸中的一种。
[0010]本发明中,所述致孔剂为K0H、Na0H、Na2C03、NaHC03、K2C03和KHCO3的一种或多种组分。致孔剂与复合物的质量比为1:1(Γ10:1,优选质量比为1:5飞:1
本发明制备的石墨烯-蛋白质衍生碳复合材料,所含元素为碳、氮、氧;比表面积为200^3500 m2/g;孔径分布为flOOO nm ;循环伏安曲线为类矩形,存在由于法拉第反应产生的驼峰,在低电流密度下(0.2 A/g)的容量为15(T450 F/g ;在大电流密度下(2(Tl00 A/g)容量大于100 F/g。
[0011]本发明所制备的多孔的石墨烯-蛋白质衍生碳复合材料复合紧密均匀,比表面积大且具有多重孔道结构,丰富的杂原子掺杂,良好的导电性。制备过程简单,绿色温和,节能高效,成本低廉,产率可观。测量此材料的超级电容器性能,表现出超高的比容量(尤其是在大电流密度下),很好的倍率性能及循环稳定性。可通过调控水溶性蛋白质种类、与石墨烯的质量比及还原方式调控水溶性蛋白质与石墨烯片层的组装、复合,通过致孔剂的种类和加入质量调控孔分布及比表面积。通过干燥过程、碳化温度、时间等调控石墨烯-蛋白质衍生碳复合材料的晶型、杂原子的含量及材料的电导率,进而调控石墨烯-蛋白质衍生碳复合材料的超级电容器的比容量、倍率性能及循环稳定性等重要的电性能。采用此类材料制备的超级电容器,具有很好的倍率性能、循环稳定性,在大电流密度下也能表现出超高的比容量。在新能源电动汽车、混合动力汽车、风力发电、太阳能发电等领域有广宽应用前景。

【专利附图】

【附图说明】
[0012]图1是实施例1制备出的石墨烯-蛋白质复合物原子力显微镜(AFM)照片。
[0013]图2是实施例1制备出的石墨烯-蛋白质衍生碳复合材料扫描电镜照片。
[0014]图3是实施例1制备出的石墨烯-蛋白质衍生碳复合材料扫描电镜照片。
[0015]图4是实施例1制备出的石墨烯-蛋白质衍生碳复合材料的循环伏安曲线。
[0016]图5是实施例1制备出的石墨烯-蛋白质衍生碳复合材料的循环稳定性测试曲线。

【具体实施方式】
[0017]以下实施例用于说明本发明,但不用来限制本发明的范围,凡是依据本发明的技术实质对以下实例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。
[0018]以下实施例中的原料均为市售商品。
[0019]实施例1
1.制备桑蚕丝蛋白的水溶液,质量分数4%。制备氧化石墨烯,其质量分数为0.4%,尺寸为 200 nm。
[0020]2.室温搅拌下,将上述两种溶液在pH=8的条件下混合,两者以体积比1:1混合,得桑蚕丝蛋白与氧化石墨烯混合溶液。
[0021]3.加入柠檬酸钠还原,还原温度为100°C,反应3h.反应结束后得到桑蚕丝蛋白-还原氧化石墨烯溶液。图一为此复合溶液的原子力显微镜图片,展示了桑蚕丝蛋白缠绕着还原氧化石墨烯而阻止其大片聚集。
[0022]4.向上述得到的复合溶液中加入NaOH,与复合溶液固含质量比为1:1,搅拌0.5h,
室温下真空干燥。
[0023]5.将上述干燥后的复合物碳化。在氮气气氛下,温度为800°C,升温速率为10°C /min。碳化时间为3h。碳化后分别用水,乙醇反复清洗。在真空烘箱30°C的条件下,干燥8h,得石墨烯-桑蚕丝蛋白衍生碳复合材料。
[0024]6.对所得的石墨烯-桑蚕丝蛋白衍生碳复合材料进行扫描电镜、透射电镜观察,此材料疏松多孔且片层上分布着大量的介孔/微孔。如图2,3所示。
[0025]7.对所得的多孔的石墨烯-桑蚕丝蛋白衍生碳复合材料进行X-射线粉末衍射分析,此材料为部分石墨化的碳。通过比表面积与孔隙率对其测试,此材料比表面积为1600m2/g ;孔径分布为10 nm。
[0026]8.以多孔的石墨烯-桑蚕丝蛋白衍生碳复合材料为活性物质,乙炔黑为导电剂,聚四氟乙烯为粘结剂,把活性物质、导电剂和粘结剂按质量比为80:10:10的比例分散到异丙醇中,杆膜,在压力为30 Mpa下压片到泡沫镍上30秒,制成超级电容器电极。
[0027]9.以钼片作为对电极,饱和甘汞电极为参比电极,6M的KOH溶液为电解质,进行循环伏安测试,其循环伏安测试曲线表现为矩形,如图4所示。其电化学可逆性较高,在高的扫描速率下依然可以保持较高的容量。对其进行恒流充放电测试,此材料具有较高的比容量,并且具有很好的循环稳定性。
[0028]实施例2
1.制备桑蚕丝蛋白的水溶液,质量分数10%。制备氧化石墨烯,其质量分数为1%,尺寸为 200 nm。
[0029]2.室温搅拌下,将上述两种溶液在pH=8的条件下混合,两者以体积比1:2混合,得桑蚕丝蛋白与氧化石墨烯混合溶液。
[0030]3.加入水合肼还原,还原温度为80°C,反应6h.反应结束后得到桑蚕丝蛋白-还原氧化石墨烯溶液。
[0031]4.向上述得到的复合溶液中加入Κ0Η,与复合溶液固含质量比为2:1,搅拌0.5h,冻干。
[0032]5.将上述干燥后的复合物碳化。在氮气气氛下,温度为700°C,升温速率为10°C /min。碳化时间为3h。碳化后分别用水,乙醇反复清洗。在真空烘箱30°C的条件下,干燥8h,得多孔的石墨烯-桑蚕丝蛋白衍生碳复合材料。
[0033]6.对所得的石墨烯-桑蚕丝蛋白衍生碳复合材料进行扫描电镜观察,此材料疏松多孔。通过透射电镜也可观察到材料片层上分布着大量的介孔/微孔。对所得的石墨烯-桑蚕丝蛋白衍生碳复合材料进行X-射线粉末衍射分析,此材料为部分石墨化的碳。
[0034]7.以多孔的石墨烯-桑蚕丝蛋白衍生碳复合材料为活性物质,乙炔黑为导电剂,聚四氟乙烯为粘结剂,把活性物质、导电剂和粘结剂按质量比为80:10:10的比例分散到异丙醇中,杆膜,在压力为30 Mpa下压片到泡沫镍上30秒,制成超级电容器电极。
[0035]8.以钼片作为对电极,饱和甘汞电极为参比电极,6M的KOH溶液为电解质,进行循环伏安测试,其循环伏安测试曲线表现为矩形。其电化学可逆性较高,在高的扫描速率下依然可以保持较高的容量。对其进行恒流充放电测试,此材料具有较高的比容量,并且具有很好的循环稳定性。在2 A/g的电流密度下,容量可以达到180 F/g。在此电流密度下进行充放电循环2000圈,无明显的容量衰减。如图5所示。
[0036]实施例3
1.制备桑蚕丝蛋白的水溶液,质量分数6%。制备氧化石墨烯,其质量分数为0.6%,尺寸为 200 nm。
[0037]2.室温搅拌下,将上述两种溶液在pH=8的条件下混合,两者以体积比1:10混合,
得桑蚕丝蛋白与氧化石墨烯混合溶液。
[0038]3.向上述得到的复合溶液中加入NaOH,与复合溶液固含质量比为5:1。在温度为80°C下进行还原反应,反应24h.反应结束后得到桑蚕丝蛋白-还原氧化石墨烯溶液。
[0039]4.将上述干燥后的复合物碳化。在氮气气氛下,温度为700°C,升温速率为10°C /min。碳化时间为3h。碳化后分别用水,乙醇反复清洗。在真空烘箱30°C的条件下,干燥8h,得多孔的石墨烯-桑蚕丝蛋白衍生碳复合材料。
[0040]5.对所得的石墨烯-桑蚕丝蛋白衍生碳复合材料进行扫描电镜、透射电镜观察,此材料疏松多孔且片层上分布着大量的介孔/微孔。对所得的石墨烯-桑蚕丝蛋白衍生碳复合材料进行X-射线粉末衍射分析,此材料为部分石墨化的碳。
[0041]6.以多孔的石墨烯-桑蚕丝蛋白衍生碳复合材料为活性物质,乙炔黑为导电剂,聚四氟乙烯为粘结剂,把活性物质、导电剂和粘结剂按质量比为80:10:10的比例分散到异丙醇中,杆膜,在压力为30 Mpa下压片到泡沫镍上30秒,制成超级电容器电极。
[0042]7.以钼片作为对电极,饱和甘汞电极为参比电极,6M的KOH溶液为电解质,进行循环伏安测试,其循环伏安测试曲线表现为标准的矩形,电化学可逆性较高。对其进行恒流充放电测试,在0.5 A/g的电流密度下,容量为150 F/g。
[0043]实施例4
1.制备明胶水溶液,质量分数为2%。制备氧化石墨烯,其质量分数为0.5%,尺寸为200nm。
[0044]2.水浴50°C下,将上述两种溶液在pH=8的条件下混合,两者以体积比1:1混合,得明胶与氧化石墨烯混合溶液。
[0045]3.加入水合肼还原,还原温度为100°C,反应3h.反应结束后得到明胶-还原氧化石墨烯溶液。
[0046]4.向上述得到的复合溶液中加入NaOH,与复合溶液固含质量比为1:5。搅拌0.5h,冻干。
[0047]5.将上述冻干的复合物碳化。在氮气气氛下,温度为700°C,升温速率为10°C /min。碳化时间为3h。碳化后分别用水,乙醇反复清洗。在真空烘箱30°C的条件下,干燥8h,得石墨烯-明胶衍生碳复合材料。
[0048]6.此石墨烯-明胶衍生碳复合材料疏松多孔,对其进行X-射线粉末衍射分析,此材料为部分石墨化的碳。
[0049]7.以多孔的石墨烯-明胶衍生碳复合材料为活性物质,乙炔黑为导电剂,聚四氟乙烯为粘结剂,把活性物质、导电剂和粘结剂按质量比为80:10:10的比例分散到异丙醇中,杆膜,在压力为30 Mpa下压片到泡沫镍上30秒,制成超级电容器电极。
[0050]8.以钼片作为对电极,饱和甘汞电极为参比电极,6M的KOH溶液为电解质,进行循环伏安测试,其循环伏安测试曲线表现为矩形。对其进行恒流充放电测试,在0.2 A/g的电流密度下,其容量可以达到290 F/g。
[0051]实施例5
1.制备明胶水溶液,质量分数为5%。制备氧化石墨烯,其质量分数为0.5%,尺寸为200nm。
[0052]2.水浴50°C下,将上述两种溶液在pH=8的条件下混合,两者以体积比2:1混合,得明胶与氧化石墨烯混合溶液。
[0053]3.加入柠檬酸钠还原,还原温度为100°C,反应3h.反应结束后得到明胶-还原氧化石墨烯溶液。
[0054]4.向上述得到的复合溶液中加入Κ0Η,与复合溶液固含质量比为1:1。,冻干。
[0055]5.将上述冻干的复合物碳化。在氮气气氛下,温度为900°C,升温速率为10°C /min。碳化时间为3h。碳化后分别用水,乙醇反复清洗。在真空烘箱30°C的条件下,干燥8h,得石墨烯-明胶衍生碳复合材料。
[0056]6.此石墨烯-明胶衍生碳复合材料疏松多孔,对其进行X-射线粉末衍射分析,此材料为部分石墨化的碳。
[0057]7.以多孔的石墨烯-明胶衍生碳复合材料为活性物质,乙炔黑为导电剂,聚四氟乙烯为粘结剂,把活性物质、导电剂和粘结剂按质量比为80:10:10的比例分散到异丙醇中,杆膜,在压力为30 Mpa下压片到泡沫镍上30秒,制成超级电容器电极。
[0058]8.以钼片作为对电极,饱和甘汞电极为参比电极,6M的KOH溶液为电解质,进行循环伏安测试,其循环伏安测试曲线表现为矩形。对其进行恒流充放电测试,在2 A/g的电流密度下,容量为172 F/g。
【权利要求】
1.一类石墨烯-蛋白质衍生碳超级电容器材料的制备方法,其特征在于,具体步骤如下: (O首先,制备水溶性蛋白质的水溶液,其质量分数0.5^20% ;制备氧化石墨烯,其质量分数为0.01%?5%,尺寸为50 ηπΓ50 μ m ;室温搅拌下,将上述两种溶液在pH=6?14的条件下混合,两者质量比可在1:5(Γ50:1的范围内调控,搅拌,得水溶性蛋白质与氧化石墨烯混合溶液; (2)然后,进行还原反应,还原反应温度为3(T250°C,反应0.5tT3d.反应结束后得到水溶性蛋白质稳定的还原氧化石墨烯; (3)然后,向上述得到的溶液中加入致孔剂,搅拌0.5tT2h ;再进行干燥处理,干燥条件为真空干燥、浇膜干燥和冷冻干燥中的一种; (4 )最后,进行碳化处理,碳化在氮气或氩气的气氛下进行,温度为500、00 V,升温速率为5?30。。/min ;碳化时间为I?5h ; (5)碳化后,分别用水,乙醇反复清洗;在真空烘箱3(T50°C的条件下,干燥3lh,即得多孔的石墨烯-蛋白质衍生碳复合材料。
2.根据权利要求1所述的制备方法,其特征在于还原反应所用还原剂为水合肼、柠檬酸、氢碘酸和氢溴酸中的一种。
3.根据权利要求1所述的制备方法,其特征在于所述致孔剂为KOH、NaOH,Na2CO3^NaHCO3、K2CO3和KHCO3中的一种,或其中的多种;致孔剂与复合物的质量比为1:1(Γ?0:1。
4.如权利要求1-3之一所述的制备方法制备得到的石墨烯-蛋白质衍生碳超级电容器材料,所含元素为碳、氮、氧;比表面积为20(T3500 m2/g;孔径分布为flOOO nm ;循环伏安曲线为类矩形,存在由于法拉第反应产生的驼峰,在0.2 A/g低电流密度下的容量为150?450 F/g;在20?100 A/g大电流密度下容量大于100 F/g。
【文档编号】H01G11/38GK104167298SQ201410362989
【公开日】2014年11月26日 申请日期:2014年7月28日 优先权日:2014年7月28日
【发明者】邵正中, 王雅娴 申请人:复旦大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1