多区域的功率半导体器件的制作方法

文档序号:12807171阅读:248来源:国知局
多区域的功率半导体器件的制作方法与工艺

本申请总体上涉及功率半导体器件。



背景技术:

功率半导体器件(尤其是利用少数载流子导电的双极型功率半导体器件)是根据导通损耗与开关损耗之间的权衡曲线设计的。旨在实现高频开关的产品通常利用相对高的通路状态导通电压来优化开关损耗性能。旨在实现低频开关的产品通常利用相对高的开关损耗来优化导通损耗性能。对于给定的技术性能,现有的设计不能使开关晶体管在同一芯片内实现低损耗导通状态和低损耗开关表现。



技术实现要素:

在一些构造中,一种绝缘栅双极型晶体管包括第一区域和第二区域,第一区域和第二区域分别包括多个栅极区,所述多个栅极区与发射极区相邻并延伸通过基极区进入设置在集电极区上的漂移区,第一区域被构造为:(i)在切换到非导通状态期间比第二区域具有更大的开关损耗;(ii)在第二区域之前切换到非导通状态。其它构造可包括相应的计算机系统、设备和记录在一个或更多个计算机存储装置中的计算机程序,它们均被构造为执行所述方法的动作。

一些构造可包括以下特征中的一个或更多个。在所述绝缘栅双极型晶体管中,第一区域的集电极区具有比第二区域的集电极区的掺杂浓度更大的掺杂浓度。在所述绝缘栅双极型晶体管中,由于第一区域与第二区域之间不同的复合寿命减少处理(recombinationlifetimekillingtreatment),所以第一区域的漂移区在导通状态期间比第二区域的漂移区具有更多的存储电荷。在所述绝缘栅双极型晶体管中,栅极区电连接到共同的栅极信号。在所述绝缘栅双极型晶体管中,栅极氧化物层将栅极区与相邻的区分隔开,第一区域的栅极氧化物层的厚度大于第二区域的栅极氧化物层的厚度。在所述绝缘栅双极型晶体管中,第一区域的基极区具有比第二区域的基极区的掺杂浓度更大的掺杂浓度。在所述绝缘栅双极型晶体管中,第一区域和第二区域还被构造为使得第一区域在第二区域接收到用于切换到非导通状态的请求之前接收用于切换到非导通状态的请求。在所述绝缘栅双极型晶体管中,第二区域的栅极区连接到具有预定电阻值的栅极信号,所述预定电阻值降低来自第二区域的栅极电容的放电电流的水平,其中,所述预定电阻值大于与第一区域的栅极区关联的电阻值。描述的构造的实施方式可包括硬件、方法或处理,或者在计算机可访问的介质上的计算机软件。

根据本发明,提供一种绝缘栅双极型晶体管,所述绝缘栅双极型晶体管包括:第一区域和第二区域,分别包括多个栅极区,所述多个栅极区经由发射极区和基极区连接到发射极并连接到设置在集电极区上的漂移区,第一区域被构造为:(i)在切换到非导通状态期间比第二区域具有更大的开关损耗;(ii)在第二区域之前切换到非导通状态。

在一些构造中,一种功率半导体器件包括多个区域,所述多个区域被构造为使得所述多个区域中的至少两个区域在切换到非导通状态期间具有不同的开关损耗,且使得针对所述区域中的任意两个区域,两个区域中具有较大开关损耗的一个区域在所述两个区域中的另一个区域之前切换到非导通状态。其它构造可包括相应的计算机系统、设备和记录在一个或更多个计算机存储装置中的计算机程序,它们均被构造为执行所述方法的动作。

一些构造可包括以下特征中的一个或更多个。在所述功率半导体器件中,所述多个区域中的至少两个区域在至少一个预定层中具有不同的掺杂浓度。在所述功率半导体器件中,所述至少一个预定层是集电极区。在所述功率半导体器件中,所述多个区域中的至少两个区域在至少一个预定层中具有不同的厚度。在所述功率半导体器件中,所述至少一个预定层是在栅极区与基极区之间的栅极氧化物层。根据本发明的至少一个实施例,所述至少一个预定层是在栅极区与基极区之间的栅极绝缘层。在所述功率半导体器件中,所述多个区域中的至少两个区域还被构造为使得所述两个区域中具有较大开关损耗的一个区域在所述两个区域中的另一个区域之前接收用于切换到非导通状态的请求。描述的构造的实施方式可包括硬件、方法或处理,或者在计算机可访问的介质上的计算机软件。

在一些构造中,一种绝缘栅双极型晶体管包括多个区域,每个区域通过在切换到非导通状态期间的开关损耗来表征,所述每个区域被构造为使得开关损耗在所述多个区域中的至少两个区域之间不同且使得具有较大的开关损耗的区域在具有较小的开关损耗的区域之前切换到非导通状态。其它构造可包括相应的计算机系统、设备和记录在一个或更多个计算机存储装置中的计算机程序,它们均被构造为执行所述方法的动作。

一些构造可包括以下特征中的一个或更多个。在所述绝缘栅双极型晶体管中,所述多个区域中的至少两个区域在至少一个区中具有不同的掺杂浓度。在所述绝缘栅双极型晶体管中,所述至少一个区是集电极区。在所述绝缘栅双极型晶体管中,所述多个区域中的至少两个区域在至少一个区中具有不同的厚度。在所述绝缘栅双极型晶体管中,所述至少一个区是栅极氧化物层。根据本发明的至少一个实施例,所述至少一个区是栅极绝缘层。在所述绝缘栅双极型晶体管中,所述多个区域中的至少两个区域还被构造为使得具有较小的开关损耗的区域在具有较大的开关损耗的区域之后接收用于切换到非导通状态的请求。描述的构造的实施方式可包括硬件、方法或处理,或者在计算机可访问的介质上的计算机软件。

附图说明

图1是描述igbt的开关损耗与导通损耗之间的设计平衡的曲线图。

图2是沟槽型igbt的示例性截面图。

图3是平面型igbt的示例性截面图。

图4描述了利用布置成行的两种不同区域构造的可行的igbt构造。

图5描述了利用布置成栅格的两种不同区域构造的可行的igbt构造。

图6描述了栅极区由共同的栅极信号驱动的可行的igbt构造。

图7描述了每个区域的栅极区由器件内的单独的栅极信号驱动的可行的igbt构造。

图8描述了利用使用布置成栅格的两种不同的区域构造的十个区域的可行的igbt构造。

图9描述了利用布置成栅格的三种不同的区域构造的可行的igbt构造。

具体实施方式

根据需要,在此公开了本发明的详细实施例;然而,应理解的是,所公开的实施例仅仅是本发明的示例,其可以以各种和替代形式实现。附图无需按比例绘制;可夸大或缩小一些特征以示出特定组件的细节。因此,在此公开的具体结构和功能细节不应被解释为具有限制性,而仅仅作为用于教导本领域技术人员以多种方式利用本发明的代表性基础。

功率半导体器件(尤其是利用少数载流子导电的双极型功率半导体器件)是根据导通损耗与开关损耗之间的平衡曲线设计的。旨在实现高频开关的产品通常利用相对高的通路状态导通电压来优化开关损耗性能,反之亦然。

绝缘栅双极型晶体管(igbt)是在许多应用中发挥作用的固态开关器件。例如,igbt可用在电力逆变器中以控制电机。电力逆变器可用于将高电压直流(dc)的电池输出转换为用于电机的交流(ac)信号。在操作过程中,igbt可能由于器件的特性而遭受能量损耗。这些能量损耗可以在igbt及周围环境中转换成热能。能量损耗可作为igbt上的电压降被观测。导通损耗可以是在igbt导通并传导电流时发生的损耗。开关损耗可以是当igbt正在被导通和/或关断时发生的损耗。

典型的igbt被设计为具有开关损耗和导通损耗之间的特定关系。通常,随着开关损耗减小,导通损耗增大。在开关过程期间,尤其是在关断瞬间,针对低频开关而设计的igbt通常会由于与igbt上的高电压同时发生的过量尾电流而引发高的开关损耗。一般的igbt设计选择提供期望的权衡的构造。图1描述了示出igbt的开关损耗与导通损耗之间的平衡的曲线94。针对第一点a90处的性能而构造的igbt可针对低开关损耗而被构造。针对第二点b92处的性能而构造的igbt可针对低导通损耗而被构造。针对第三点c96处的性能而构造的igbt可被构造为具有在点a90处的导通损耗性能与点b92处的导通损耗性能之间的导通损耗性能以及在点a90处的开关损耗性能与点b92处的开关损耗性能之间的开关损耗性能。可观测到,减小导通损耗或开关损耗会导致另一方的增大。

igbt可具有连接到外部电路的三个端子。所述三个端子是栅极、集电极和发射极。功率半导体可由不同的材料层组成。当材料缺乏负电荷时,该材料被称作p型材料。也就是说,有空间或空穴可用于填充电子。当材料具有负电荷时,该材料被称作n型材料。也就是说,在该材料中有可用的自由电子。特定材料(诸如,硅)可通过称为掺杂的工艺来转换成p型或n型材料。为了形成p型材料,硅可被掺杂少了一个外层电子的元素(例如,硼、镓)。为了形成n型材料,硅可被掺杂多了一个外层电子的元素(例如,砷、磷)。为了指示掺杂的程度,加号上标或减号上标结合材料的类型来使用。例如,p+型和n+型材料是重掺杂的,p-型和n-型材料是轻掺杂的。

图2描述了沟槽型igbt部分98的可行的构造的截面图。igbt可由多个这样的部分98组成。igbt可包括集电极接点100。每部分的集电极接点100可电连接到集电极端子。集电极区102可被设置为与集电极接点100相邻。集电极区102可由p+型材料构成。漂移区106可被设置为与集电极区102相邻。漂移区106可由n-型材料构成。漂移区106可包括与集电极区102相邻设置的缓冲区104。缓冲区104可由n+型材料构成。基极区108可被设置为与漂移区106相邻。基极区108可由p+型材料构成。发射极接点112可被设置为与基极区108相邻。每部分的发射极接点112可电连接到发射极端子。发射极接点112和集电极接点100可以是具有低电阻率的导电材料。

栅极区114可延伸通过基极区108进入漂移区106。这种构造可被称作沟槽型igbt。栅极区114的截面可表现为形成通过基极区108和漂移区106的沟槽。栅极区114可由具有低电阻率的导电材料构成。绝缘区118可被设置在栅极区114和发射极接点112之间。绝缘区118可由高电阻率的材料构成以将栅极区114与发射极接点112电隔离。栅极区114可包括将栅极区114与相邻的区隔离开的栅极绝缘层116。发射极区110可形成在栅极绝缘层116和发射极接点112之间的基极区108内。发射极区110可由n+型材料构成。发射极接点112可电连接到发射极区110和基极区108。

图3描述了平面型igbt部分99的构造的截面图。应注意,区可以与针对沟槽型igbt定义的区类似。平面型igbt部分99可包括集电极接点100。集电极区102可被设置为与集电极接点100相邻。集电极区102可由p+型材料构成。漂移区106可被设置为与集电极区102相邻。漂移区106可由n-型材料构成。漂移区106还可连接到栅极区114。漂移区106可包括与集电极区102相邻设置的缓冲区104。缓冲区104可由n+型材料构成。基极区108可被设置为与漂移区106相邻,并且可被设置在栅极区114和发射极接点112之间。基极区108可由p+型材料构成。发射极区110可被设置为与基极区108相邻,并且可被设置在栅极区114和发射极接点112之间。发射极区110可由n+型材料构成。每部分的发射极接点112可电连接到发射极端子。发射极接点112和集电极接点100可以是具有低电阻率的导电材料。栅极区114可由具有低电阻率的导电材料构成。栅极区114可包括将栅极区114与相邻的区分隔开的栅极绝缘层116。

igbt可由平面型结构99或沟槽型结构98构成。任一构造的igbt的操作都是相似的。将要描述的技术不受限制地适用于任一构造。所描述的结构为igbt的一部分的截面部分。实际的igbt可包括在单个器件上构造的多个此类结构。典型的igbt可包括多个具有相同材料和掺杂浓度的此类结构。其它结构可允许较高的电流承载容量。其它结构可布置成行和/或可形成栅格。通常,每部分的发射极接点112、集电极接点100和栅极区114可电连接以使得集成器件具有单个发射极端子、单个集电极端子和单个栅极端子。

在一些应用中,igbt可用作开关以控制通过电负载的电流流动。例如,在逆变器应用中,集电极可电连接到高电压电池的输出。发射极可电连接到电机。在逆变器的操作期间,当igbt是非导通状态时,集电极端子和发射极端子间的电压可能是高电压。

栅极端子可电连接到控制电路或控制器的输出。可通过栅极端子的操作控制集电极端子和发射极端子之间的电流流动。控制器可通过输出在栅极端子和发射极端子之间的电压(栅极电压)来控制igbt。当栅极电压大于阈值水平并且集电极至发射极的电压为正时,电流可在集电极和发射极之间流动。当栅极电压小于阈值水平时,集电极和发射极之间的电流流动可被阻断。当没有施加栅极电压时,器件可处于阻断或非导通状态。在非导通状态下,集电极端子和发射极端子之间的电流流动被阻止。

发射极区110、基极区108和漂移区106形成通过栅极电压控制的金属氧化物半导体场效应晶体管(mosfet)。当栅极相对于发射极正向偏置时,产生的电场在栅极区114附近的基极区108中形成负电荷的通道。负电荷的通道连接了发射极区110和漂移区106。当栅极相对于发射极越来越正向偏置时,电流开始通过所述通道在集电极和发射极之间流动。

漂移区106的导电率可通过栅极电压来调制。随着栅极电压增大,漂移区106的导电率增大,从而允许较高的电流流动并降低集电极与发射极之间的电压降。当栅极电压大于阈值时,igbt可处于导通状态(接通状态),同时集电极与发射极之间的电压降相对小。在导通状态下,当集电极至发射极的电压为正时,电流流过集电极和发射极。

当栅极电压下降到阈值以下时,开始切换到非导通状态。然而,电流不会立即中止流动。漂移区106中存储的电荷可使得尾电流继续流动。在关断期间,集电极至发射极的电压可增大,同时电流减小。漂移区106中存储的电荷可能因器件内的复合而减少。这会影响igbt的开关时间和开关损耗。在高电压应用中,集电极至发射极的电压可上升为高电压。功率损耗可被定义为电压和电流的乘积。在这段关断时间内,因为电压可能迅速增大,所以功率损耗会迅速增大。

igbt可通过igbt在开关操作期间(即,在从导通状态切换到非导通状态期间)如何执行来表征。在从导通状态切换到非导通状态期间,能量损耗会由于开关损耗而发生。损耗可被计算为功率损耗(即,电压和电流的乘积)。电压可以是集电极—发射极饱和电压(vce)。电流可以是集电极截止电流(ices)。

开关损耗包括由于在器件关断期间出现的尾电流而产生的能量损耗。当igbt通过降低栅极电压而被关断时,集电极—发射极电压开始增大。在此期间,电流依然在集电极和发射极之间流动。在此期间,电流朝着零衰减。然而,在此期间由于电压和电流都非零而导致能量损失。通过减小尾电流,可减小开关损耗。

开关时间和开关损耗可能受到igbt的各种设计选择的影响。通常,降低开关损耗的调制会导致导通损耗的增大。因此,存在在开关损耗和导通损耗之间进行选择的权衡。可能期望构造出开关损耗被改善而不会导致导通损耗增大的igbt。具有较低的开关损耗的igbt器件可适于高频开关应用。

在典型的igbt中,器件的所有区被设计为具有相同的开关性能。然而,igbt可被构造为使得igbt的各个区域或区具有不同的性能。igbt可包含多个区域。每个区域可包括如上所述的igbt结构。然而,每个区域的igbt结构可被构造为具有不同的开关损耗。各种技术可用于改变每个区域的开关损耗。此外,每个区域的igbt结构可被构造为在针对每个区域在不同时间关断。

在一些构造中,集电极区102的掺杂浓度可针对区域中的至少两个而不同。开关损耗可能受到集电极区102的掺杂浓度的影响。区域之间的不同开关损耗可通过针对每个区域的p型集电极区102的不同的掺杂浓度来实现。增大集电极区102中的掺杂浓度会增大该区域的开关损耗。例如,低剂量的硼可首先注入整个igbt的集电极区102。可通过将硼二次注入igbt的预定区域来建立高开关损耗区域。没有接受二次注入的区域可具有较低的开关损耗。这会导致igbt具有不同的集电极区的掺杂浓度,并且因此具有不同的开关时间和开关损耗。

关断时间可能受到去除在漂移区106中存储的电荷所需时间的影响,所述存储的电荷是由于在导通状态期间注入少数载流子而产生的。在一些igbt构造中,增加更重掺杂的缓冲区104改进了在关断期间对少数载流子的去除,但是增大了导通状态下的导通损耗。可通过利用在缓冲区104和/或漂移区106中的不同的复合寿命减少处理构造igbt来影响开关时间。复合寿命减少处理的增多可导致更低的开关损耗。这个过程减少了在关联的区中存储的电荷量。例如,电子辐照可应用于igbt以便于在器件关断时进行复合。

低开关损耗区域可通过可选的区域载流子复合寿命减少处理(诸如,从芯片的底部注入氦(he)或特定的其它离子)来实现。为了防止注入物影响高开关损耗区域,可使用注入掩膜。例如,重金属的厚层膜可沉积在芯片的背部并通过光刻来形成图案。

在从导通状态切换到非导通状态期间,高开关损耗区域和低开关损耗区域可有不同的表现。被构造为高开关损耗区域的区域停止传导电流会消耗较长的时间。igbt可被构造为使得高开关损耗区域被命令在低开关损耗区域之前关断。

每个区域可被构造为具有不同的栅极阈值电压。可通过使用针对每个区域的不同的栅极绝缘厚度来配置栅极阈值电压。产生的配置可使得区域在不同时间关断。在关断期间,负载电流可由具有较低的栅极阈值电压的区域来承载。具有较高的栅极阈值电压的区域可在关断过程中承载减小的电流密度。由于栅极通道在高开关损耗区域中较早地截止,因此这样会导致尾电流损耗的减小。当针对低开关损耗构造的区域最终截止时,尾电流损耗较低,这是因为这些区域被构造为以降低水平的电导率调制来传导电流。

可通过各种技术来实现调整关断时间。这样的构造可造成器件的开关损耗较低。通过较早地截止高开关损耗区域,高开关损耗区域可较快地开始截止处理。由于低开关损耗区域可能依然是活跃的,因此,集电极—发射极电压的增大速率将更小。结果导致开关损耗将在高开关损耗区域中被减小。在预定的时间或延迟之后,低开关损耗区域可截止。由于低开关损耗区域已经被构造为减小开关损耗,因此,器件的总体损耗可减小。

在一些构造中,不同区域可由单独的栅极信号控制。控制低开关损耗区域的栅极信号可相对于针对高开关损耗区域的栅极信号而延迟。例如,可使用降低来自低开关损耗区域的栅极电容的放电电流的水平的额外片上电阻。

在一些构造中,不同区域可由共同的栅极信号控制,但是每个区域可对共同的栅极信号作出不同的反应。栅极绝缘层116的厚度可针对每个区域而不同。随着栅极绝缘层厚度增大,阈值电压可增大。栅极阈值电压是这样的电压水平,当高于所述电压水平时电流开始在集电极中流动,当低于所述电压水平时电流开始停止流动。较高的栅极阈值意味着集电极电流将在较高的电压处开始停止流动。低开关损耗区域可被构造具有较薄的栅极绝缘层116,从而获得较低的栅极阈值电压以允许低开关损耗区域较晚截止。

各种方法可用于调节每个区域的栅极绝缘层。在一些构造中,栅极绝缘层116可以是氧化物层。在一些构造中,栅极绝缘层116可包含非氧化物绝缘体(诸如,氮化硅)。当二氧化硅用作栅极绝缘层116时,被构造为具有较薄的栅极绝缘层的区域可首先被覆盖在沉积的氮化硅膜中,而其它区域经历栅极氧化物生长。氮化硅膜可随后被去除,然后是用于增大所有区域中的氧化物厚度的附加氧化时间。在一些构造中,所有区域可被同时热氧化。被构造成较厚的栅极氧化层的区域可通过化学气相沉积(chemicalvapordeposition,cvd)来接受附加的氧化物膜沉积。在一些构造中,所有区域可被同时热氧化,但是被构造成较薄的栅极绝缘层的区域可受到可选区域的等离子蚀刻,以减小氧化物厚度。

在一些构造中,低开关损耗区域的基极区108和高开关损耗区域的基极区108可具有不同的掺杂浓度。为了增大栅极阈值电压,基极区108的掺杂浓度可针对被构造为高开关损耗区域的区域而增大。例如,首次注入剂量可应用于所有区域。然后高开关损耗区域可利用注入掩膜接收二次注入剂量。结果造成区域将被构造成在略微不同的时间截止。

igbt可包含多个区域。每个区域可包含如图2或图3所述的多个igbt部分(例如,部分98或99)。每个区域或区域的子集可被构造为具有不同的开关损耗特性。每个区域或区域的子集可被构造为在不同时间截止。例如,具有较高的开关损耗的区域可被构造为在具有较低的开关损耗的区域之前截止。针对这种igbt的各种构造是可行的。

为了简洁,可描述具有两个不同的区域a和b的igbt构造。第一区域可具有如通过图1的点a90描述的开关损耗特性。该点可被构造为具有相对低的开关损耗。第二区域可具有如通过图1的点b92描述的开关损耗特性。该点可被构造为具有相对高的开关损耗。此外,通过在此描述的方法,第二区域可被构造为在第一区域之前切换到非导通状态。在将被描述的示例性构造中,标为a和b的区域可用于分别描述第一区域和第二区域的性能。术语高和低是在相对意义上使用的,且不一定暗含了损耗在绝对意义上是高或低的。

图4描述了包括布置成行的四个区域的第一igbt构造200。第一igbt构造200可包括四个区域。每个区域可针对不同的开关损耗特性以及不同的截止特性而构造。第一区域202可包含多个第一igbt部分210。第一igbt部分210可针对特定的开关损耗特性(例如,点a90)而构造。第二区域204可包含多个第二igbt部分212。第二igbt部分212可针对与第一igbt部分210的开关损耗特性不同的开关损耗特性(例如,点b92)而构造。第三区域206可被构造为与第一区域202相同。第四区域208可被构造为与第二区域204相同。应注意,第一igbt部分210和第二igbt部分212可具有与前面描述的igbt部分98的结构相似的结构。然而,各个区的多种特性可如在此描述的被调整以实现针对每个区域的期望的开关特性。第三区域206和第四区域208也可被构造为具有不同的性能特性。

图5描述了包括布置成栅格的四个区域的第二igbt构造250。左上区域252可针对特定的开关损耗特性(例如,点a90)而构造。左下区域254可针对与左上区域252的开关损耗特性不同的开关损耗特性(例如,点b92)而构造。右上区域256可被构造为具有与左下区域254的性能特性相同的性能特性。右下区域258可被构造为具有与左上区域252的性能特性相同的性能特性。

图6描述了具有共同的栅极导体302的第三igbt构造300。共同的栅极导体302电连接到构成igbt的每个区域的栅极区。根据所述,每个区域可根据区域的开关损耗特性而在不同时间切换到非导通状态。共同的栅极导体302可向igbt的栅极提供栅极电压。共同的栅极导体302可承载控制igbt的状态的电压或信号。

所述电压或信号可以是用于切换到非导通状态(例如,电压下降到栅极阈值以下)的请求或用于切换到导通状态(例如,电压上升到栅极阈值以上)的请求。所述电压或信号可以是用于保持当前的导通状态或非导通状态(例如,栅极电压不变)的请求。

图7描述了第四igbt构造350,其中,每种类型的区域具有起源于输入栅极导体352的不同的栅极导体。输入栅极导体352可承载用于控制igbt的状态的电压或信号。具有低开关损耗的区域(例如,标为a的区域)可由第一栅极导体356控制。具有较高开关损耗的区域(例如,标为b的区域)可由第二栅极导体358控制。延迟块354可基于来自输入栅极导体352的电压或信号而产生在第一栅极导体356上的电压和在第二栅极导体358上的电压。作为示例,延迟块354可包括在输入栅极导体352和第一栅极导体356之间的电阻元件,以修改关联的栅极区的截止定时。区域可被构造为使得具有高开关损耗的区域在具有低开关损耗的区域之前接收用于切换到非导通状态的请求。

图8描述了包括布置成两行五列的栅格的十个区域的第五igbt构造400。igbt构造400可由两种不同的区域构造a和b组成。例如,标为a的区域可具有相对低的开关损耗,而标为b的区域可具有相对高的开关损耗。

图9描述了包括布置成三行五列的栅格的十五个区域的第六igbt构造450。igbt构造450可由三种不同的区域构造a、b和c组成。例如,标为a的区域可具有相对低的开关损耗。标为b的区域可具有相对高的开关损耗。标为c的区域可具有在a区域的开关损耗和b区域的开关损耗之间的开关损耗。

可以以多种方式实现不同特性的区域。可通过相对于低开关损耗区域而增大集电极区102的掺杂浓度来实现高开关损耗区域。较高的开关损耗区域可被构造为接收比低开关损耗区域的栅极截止信号更早的栅极截止信号。高开关损耗区域可具有比低开关损耗区域的栅极电阻更小的栅极电阻。高开关损耗区域可具有比低开关损耗区域的栅极阈值电压更大的栅极阈值电压。高开关损耗区域可具有比低开关损耗区域的栅极绝缘层116更厚的栅极绝缘层116。高开关损耗区域可以比低开关损耗区域具有更高的基极区108中的掺杂浓度。由于复合寿命减少过程的更深入的处理,低开关损耗区域可以比高开关损耗区域具有更少的存储在漂移区106和/或缓冲区104中的电荷。

尽管已经描述了多个示例性构造,但是对于可行的构造的数量没有限制。任何数量的具有不同开关损耗/截止定时的区域可被应用,并且其它布置也是可行的。此外,在器件内的区域的布置可被布置为优化器件的热特性。此外,其它的igbt和功率半导体器件的结构可受益于公开的特征。公开的方法和结构可适用于由各种半导体材料(诸如,硅和碳化硅)形成的功率半导体器件。

虽然以上描述了示例性实施例,但这些实施例并不意在描述本发明的所有可能形式。更确切地,说明书中使用的词语是描述性词语而非限制性词语,并且应理解的是,可在不脱离本发明的精神和范围的情况下进行各种改变。此外,各种实现的实施例的特征可被组合以形成本发明的进一步的实施例。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1