一种锡化硒/氧化锡复合材料及其制备方法及应用与流程

文档序号:12275571阅读:765来源:国知局
一种锡化硒/氧化锡复合材料及其制备方法及应用与流程

本发明涉及钠(锂)离子电池负极材料制备领域,具体涉及一种锡化硒/氧化锡复合材料及其制备方法及应用。



背景技术:

锂离子电池作为一种占据社会主导地位的电化学储能器件,已经在便携式电子产品(笔记本电脑,智能移动装备,平板电脑等)、电动汽车和即插式混合动力电动车中取得了良好的应用。同时,钠离子电池由于钠资源蕴藏量丰富、环境友好也受到了广泛关注,钠离子电池的研究开发在一定程度上可缓和因锂资源短缺引发的电池发展受限问题,被认为是下一代电动汽车动力电源及大规模储能电站配备电源的理想选择。

过去的几十年时间里,科研工作者对钠(锂)离子电池的正极材料开展了广泛研究,但是对于负极材料的研究仍处于起步阶段。现有的商业化的锂离子电池负极材料主要是石墨化的碳,但其理论比容量较低(小于400mA h g-1),不能满足高比容量锂离子电池商业化应用的要求。同时,由于石墨化的碳层间距较小,而钠离子的半径较大,导致石墨化的碳几乎没有储钠容量。因此寻找新体系的材料极为关键,近来大量研究结果表明,过渡金属硒化物在锂离子电池及钠离子电池中具有较高的理论比容量,而硒化锡由于合成工艺简单,更是引起了科学工作者的广泛关注。

然而,由于硒化锡材料本身导电性能差,且在充放电过程中,生成的可溶性多硒化物溶于电解液中,产生部分不可逆容量,所以该材料的容量会逐渐衰减,现在提高该材料电化学性能的普遍做法是将其与高导电性的碳材料进行复合,提高该材料的导电性,从而提高材料的循环性能。然而,由于碳的密度较小,所占体积较大,所以碳的加入会减少材料的能量密度。且由于需要加入其他物质进行反应,其制备过程更加复杂,反应条件更为苛刻。



技术实现要素:

本发明的目的在于针对现有技术的不足,提供一种有效抑制可溶性多硒化物溶解于电解液,减少钠(锂)离子电池容量衰减的锡化硒/氧化锡复合材料。

本发明的另一目的在于提供一种工艺简单、无毒环保、重复性好、可操作性强、成本低、有利于工业化大规模生产的锡化硒/氧化锡复合材料的制备方法。

本发明的另一目的在于提供一种应用作为钠(锂)离子电池负极材料时,具有高充放电比容量、良好倍率性能和循环稳定性能锡化硒/氧化锡复合材料的应用。

本发明的目的通过以下技术方案实现:

一种锡化硒/氧化锡复合材料的制备方法,包括以下步骤:配制含硒碱性溶液和含锡酸性溶液,按照硒锡摩尔比为1:1混合,加热至70~100℃,搅拌,反应,将反应所得沉淀物洗涤,过滤,干燥,于300~400℃煅烧,得到锡化硒/氧化锡复合材料。

本发明的锡化硒/氧化锡复合材料的制备方法还包括以下优选方案:

优选的方案中,所述的煅烧过程中的升温速率为8~15℃/min,保温时间2~20min。

更优选煅烧温度为320~380℃,保温时间5-10min。

优选的方案中,所述含硒碱性溶液中,硒源为硒粉,含硒碱性溶液中硒粉的浓度为0.02~0.10mol/L。

更优选硒源的浓度为0.03~0.08mol/L。

优选的方案中,所述含硒碱性溶液中,所述碱为氢氧化钠、氢氧化钾的一种或两种;碱性溶液中,碱的浓度为5~20mol/L。

更优选碱的浓度为8~15mol/L。

优选的方案中,所述含硒碱性溶液通过将硒粉加入碱性溶液中,加热至50~100℃,搅拌得到。

优选的方案中,所述含锡酸性溶液中,锡源为带结晶水的二氯化锡或无水二氯化锡的一种或几种,含锡酸性溶液中锡源的浓度为0.02~0.10mol/L。

更优选锡源的浓度为0.03~0.08mol/L。

优选的方案中,所述含锡酸性溶液中,酸为乳酸、柠檬酸或草酸的一种或几种,酸性溶液中,酸的浓度为3~10mol/L。

更优选酸的浓度为4~8mol/L。

所述的锡源更优选二水二氯化锡。

优选的方案中,加热至80~95℃反应。

优选的方案中,所述反应时间为1~20h。

更优选所述反应时间为8-15h。

优选用去离子水和无水乙醇洗涤。

上述制备方法所制备得到的锡化硒/氧化锡复合材料,所述锡化硒/氧化锡复合材料中,氧化锡包覆在锡化硒表面,整体呈现为纳米颗粒结构,复合材料的粒径为10~80nm。

上述制备方法所制备得到的锡化硒/氧化锡复合材料或上述锡化硒与氧化的锡复合材料的应用,将所述锡化硒/氧化锡复合材料应用作为钠(锂)离子电池负极材料。

本发明的方案还包括将所述的锡化硒/氧化锡复合材料应用作为钠(锂)离子电池负极材料。

本发明制得的锡化硒/氧化锡复合材料制备负极:将锡化硒/氧化锡复合材料与导电炭黑和海藻酸钠粘结剂按照8:1:1的质量比例进行研磨,充分混合后加入去离子水形成均匀的糊状物,涂覆在铜箔上作为测试电极,制备钠半电池,以金属钠作为对电极,其电解液为1M NaClO4/EC:DMC(1:1)+5wt.%FEC,测试循环性能所用充放电电流密度为200mA/g。制备锂半电池,以金属锂作为对电极,其电解液为1M LiPF6/EC:DMC:DEC(1:1:1),测试循环性能所用充放电电流密度为300mA/g。

本发明的有益效果:

本发明的制备锡化硒/氧化锡复合材料的方法简单可靠,绿色环保、可操作性强、环境友好、成本低廉,具有广阔的工业化应用前景。发明人通过使用简单的溶液法结合后续的烧结,制备得到了氧化锡包覆硒化锡的复合材料,该复合材料应用作为钠(锂)离子电池负极材料时,能够有效抑制充放电过程中多硒化物的溶解,大大提高钠(锂)离子电池的循环性能。

此外,本发明的复合材料的反应活性位高,二氧化锡包覆层的存在能很大程度上缓解硒化锡在脱嵌钠(锂)离子过程中产生的体积膨胀。

由本发明方法所制得的复合材料在保证高比容量的前提下,能够明显改善电极材料的倍率性能和循环稳定性能,可制备得到具有高放电比容量、优异的倍率性能和循环稳定性能的钠(锂)离子电池。

本发明的发明人通过不断的研究,改变了锡化硒必须与其他碳或石墨烯等高导电性产品复合来改变导电性能的偏见,本发明通过简单的方法,巧妙地将含硒碱性溶液和含锡酸性溶液混合,然后通过煅烧直接得到复合材料,无需掺入其他物质,通过一步反应就制备得到了氧化锡包覆硒化锡的复合材料,且该复合材料是以硒化锡为核层,氧化锡为壳层的核壳结构材料。该材料应用作为钠(锂)离子电池负极材料时,体现出了优异的性能。

附图说明

【图1】为实施例1制得的锡化硒/氧化锡复合材料的X射线衍射图谱(XRD);

【图2】为实施例1制得的锡化硒/氧化锡复合材料的透射电镜图(TEM);

【图3】为实施例1制得的锡化硒/氧化锡复合材料组装的钠离子电池的恒流充放电性能图;

【图4】为实施例1制得的锡化硒/氧化锡复合材料组装的锂离子电池的恒流充放电性能图;

[图5]为实施例1制得的锡化硒/氧化锡复合材料的核壳结构示意图。

具体实施方式

以下实施例旨在对本发明内容做进一步详细说明;而本发明权利要求的保护范围不受实施例限制。

实施例1

首先将0.5mol氢氧化钠溶于100mL水溶液中,然后加入0.003mol硒粉,80℃搅拌,使之充分溶解,得到含硒碱性溶液。将0.4mol柠檬酸溶于100mL水溶液中,然后加入0.003mol二水二氯化锡,充分搅拌使之溶解,得到含锡酸性溶液。然后将上述两种溶液混合,90℃加热搅拌8h,随后将反应沉淀物用水和无水乙醇洗涤、抽滤、干燥,最后置于马弗炉中,在空气氛围下,以10℃/min加热至350℃,保温5min,自然冷却,即得到锡化硒/氧化锡复合材料。XRD结果表明该物质为硒化锡和二氧化锡的混合相。从图2可以看出,该复合物为粒径10-70nm的不规则纳米颗粒。

采用本实施例制备的钠离子半电池,在200mA/g的恒流放电密度下,循环100圈放电比容量仍可保持在410mAh/g。采用本实施例制备的锂离子半电池,在300mA/g的恒流放电密度下,循环100圈放电比容量仍可保持在600mAh/g。

实施例2

首先将0.5mol氢氧化钠溶于100mL水溶液中,然后加入0.004mol硒粉,80℃搅拌,使之充分溶解,得到含硒碱性溶液。将0.4mol柠檬酸溶于100mL水溶液中,然后加入0.004mol二水二氯化锡,充分搅拌使之溶解,得到含锡酸性溶液。然后将上述两种溶液混合,90℃加热搅拌10h,随后将反应沉淀物用水和无水乙醇洗涤、抽滤、干燥,最后置于马弗炉中,在空气氛围下,以10℃/min加热至350℃,保温5min,自然冷却,即得到锡化硒/氧化锡复合材料。

采用本实施例制备的钠离子半电池,在200mA/g的恒流放电密度下,循环100圈放电比容量仍可保持在405mAh/g。采用本实施例制备的锂离子半电池,在300mA/g的恒流放电密度下,循环100圈放电比容量仍可保持在590mAh/g。

实施例3

首先将0.4mol氢氧化钠溶于100mL水溶液中,然后加入0.004mol硒粉,80℃搅拌,使之充分溶解,得到含硒碱性溶液。将0.35mol柠檬酸溶于100mL水溶液中,然后加入0.004mol二水二氯化锡,充分搅拌使之溶解,得到含锡酸性溶液。然后将上述两种溶液混合,80℃加热搅拌10h,随后将反应沉淀物用水和无水乙醇洗涤、抽滤、干燥,最后置于马弗炉中,在空气氛围下,以10℃/min加热至330℃,保温5min,自然冷却,即得到锡化硒/氧化锡复合材料。

采用本实施例制备的钠离子半电池,在200mA/g的恒流放电密度下,循环100圈放电比容量仍可保持在400mAh/g。采用本实施例制备的锂离子半电池,在300mA/g的恒流放电密度下,循环100圈放电比容量仍可保持在592mAh/g。

实施例4

首先将0.5mol氢氧化钠溶于100mL水溶液中,然后加入0.003mol硒粉,80℃搅拌,使之充分溶解,得到含硒碱性溶液。将0.4mol柠檬酸溶于100mL水溶液中,然后加入0.003mol二水二氯化锡,充分搅拌使之溶解,得到含锡酸性溶液。然后将上述两种溶液混合,90℃加热搅拌8h,随后将反应沉淀物用水和无水乙醇洗涤、抽滤、干燥,最后置于马弗炉中,在空气氛围下,以10℃/min加热至400℃,保温3min,自然冷却,即得到锡化硒/氧化锡复合材料。

采用本实施例制备的钠离子半电池,在200mA/g的恒流放电密度下,循环100圈放电比容量仍可保持在415mAh/g。采用本实施例制备的锂离子半电池,在300mA/g的恒流放电密度下,循环100圈放电比容量仍可保持在610mAh/g。

实施例5

首先将0.5mol氢氧化钠溶于100mL水溶液中,然后加入0.006mol硒粉,80℃搅拌,使之充分溶解,得到含硒碱性溶液。将0.4mol柠檬酸溶于100mL水溶液中,然后加入0.006mol二水二氯化锡,充分搅拌使之溶解,得到含锡酸性溶液。然后将上述两种溶液混合,90℃加热搅拌8h,随后将反应沉淀物用水和无水乙醇洗涤、抽滤、干燥,最后置于马弗炉中,在空气氛围下,以10℃/min加热至300℃,保温10min,自然冷却,即得到锡化硒/氧化锡复合材料。

采用本实施例制备的钠离子半电池,在200mA/g的恒流放电密度下,循环100圈放电比容量仍可保持在420mAh/g。采用本实施例制备的锂离子半电池,在300mA/g的恒流放电密度下,循环100圈放电比容量仍可保持在605mAh/g。

实施例7

首先将0.5mol氢氧化钠溶于100mL水溶液中,然后加入0.003mol硒粉,80℃搅拌,使之充分溶解,得到含硒碱性溶液。将0.4mol柠檬酸溶于100mL水溶液中,然后加入0.003mol二水二氯化锡,充分搅拌使之溶解,得到含锡酸性溶液。然后将上述两种溶液混合,90℃加热搅拌8h,随后将反应沉淀物用水和无水乙醇洗涤、抽滤、干燥,最后置于马弗炉中,在空气氛围下,以10℃/min加热至350℃,保温5min,自然冷却,即得到锡化硒/氧化锡复合材料。XRD结果表明该物质为硒化锡和二氧化锡的混合相。从图2可以看出,该复合物为粒径10-70nm的不规则纳米颗粒。

采用本实施例制备的钠离子半电池,在200mA/g的恒流放电密度下,循环100圈放电比容量仍可保持在410mAh/g。采用本实施例制备的锂离子半电池,在300mA/g的恒流放电密度下,循环100圈放电比容量仍可保持在600mAh/g。

对比例1

首先将0.5mol氢氧化钠溶于100mL水溶液中,然后加入0.003mol硒粉,80℃搅拌,使之充分溶解,得到含硒碱性溶液。将0.4mol柠檬酸溶于100mL水溶液中,然后加入0.003mol二水二氯化锡,充分搅拌使之溶解,得到含锡酸性溶液。然后将上述两种溶液混合,90℃加热搅拌8h,随后将反应沉淀物用水和无水乙醇洗涤、抽滤、干燥,最后置于马弗炉中,在空气氛围下,以10℃/min加热至400℃,保温30min,自然冷却,XRD结果表明该材料为SnO2

采用本实施例制备的钠离子半电池,在200mA/g的恒流放电密度下,循环100圈放电比容量仅为30mAh/g。采用本实施例制备的锂离子半电池,在300mA/g的恒流放电密度下,循环100圈放电比容量仍为110mAh/g。

对比例2

首先将0.5mol氢氧化钠溶于100mL水溶液中,然后加入0.004mol硒粉,80℃搅拌,使之充分溶解,得到含硒碱性溶液。将0.4mol柠檬酸溶于100mL水溶液中,然后加入0.004mol二水二氯化锡,充分搅拌使之溶解,得到含锡酸性溶液。然后将上述两种溶液混合,90℃加热搅拌8h,随后将反应沉淀物用水和无水乙醇洗涤、抽滤、干燥。XRD结果表明该材料为SnSe。

采用本实施例制备的钠离子半电池,在200mA/g的恒流放电密度下,循环100圈放电比容量仅为45mAh/g。采用本实施例制备的锂离子半电池,在300mA/g的恒流放电密度下,循环100圈放电比容量仍为130mAh/g。

对比例3

首先将0.5mol氢氧化钠溶于100mL水溶液中,然后加入0.003mol硒粉,80℃搅拌,使之充分溶解,得到含硒碱性溶液。将0.4mol柠檬酸溶于100mL水溶液中,然后加入0.003mol二水二氯化锡,充分搅拌使之溶解,得到含锡酸性溶液。然后将上述两种溶液混合,30℃加热搅拌2h,随后将反应沉淀物用水和无水乙醇洗涤、抽滤、干燥,最后置于马弗炉中,在空气氛围下,以10℃/min加热至350℃,保温5min,自然冷却,得到黑色样品。XRD显示该物质存在锡化硒与氧化锡复合相,但有较多的杂峰。

采用本实施例制备的钠离子半电池,在200mA/g的恒流放电密度下,循环100圈放电比容量仅为180mAh/g。采用本实施例制备的锂离子半电池,在300mA/g的恒流放电密度下,循环100圈放电比容量仍为230mAh/g。

对比例4

首先将2mol氢氧化钠溶于100mL水溶液中,然后加入0.03mol硒粉,80℃搅拌,使之充分溶解,得到含硒碱性溶液。将3mol柠檬酸溶于100mL水溶液中,然后加入0.04mol二水二氯化锡,充分搅拌使之溶解,得到含锡酸性溶液。然后将上述两种溶液混合,50℃加热搅拌2h,随后将反应沉淀物用水和无水乙醇洗涤、抽滤、干燥,最后置于马弗炉中,在空气氛围下,以10℃/min加热至400℃,保温5min,自然冷却,得到黑色样品。XRD未对应到具体的物质。

采用本实施例制备的钠离子半电池,在200mA/g的恒流放电密度下,循环100圈放电比容量仅为10mAh/g。采用本实施例制备的锂离子半电池,在300mA/g的恒流放电密度下,循环100圈放电比容量仍为60mAh/g。

对比例5

首先将0.003mol硒粉加入100mL水溶液中,80℃充分搅拌,得到含硒悬浊液。将0.003mol二水二氯化锡加入到100mL水溶液中,充分搅拌使之溶解,得到含锡溶液。然后将上述两种液体混合,90℃加热搅拌8h,随后将反应沉淀物用水和无水乙醇洗涤、抽滤、干燥,最后置于马弗炉中,在空气氛围下,以10℃/min加热至350℃,保温5min,自然冷却,得到最终产物。XRD未对应到具体的物质。

对比例6

首先将0.5mol氢氧化钠溶于100mL水溶液中,然后加入0.003mol硒粉,80℃搅拌,使之充分溶解,得到含硒碱性溶液。将0.003mol二水二氯化锡加入到100mL水溶液中,充分搅拌使之溶解,得到含锡溶液。然后将上述两种溶液混合,90℃加热搅拌8h,随后将反应沉淀物用水和无水乙醇洗涤、抽滤、干燥,最后置于马弗炉中,在空气氛围下,以10℃/min加热至350℃,保温5min,自然冷却,即得到锡化硒/氧化锡复合材料。XRD未对应到具体的物质。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1