电子器件以及多层陶瓷基板的制作方法

文档序号:17442322发布日期:2019-04-17 04:55阅读:122来源:国知局
电子器件以及多层陶瓷基板的制作方法

本发明涉及在多层陶瓷基板安装有电子部件的电子器件。此外,本发明涉及用于安装电子部件的多层陶瓷基板。



背景技术:

作为将半导体芯片等的电子部件安装到基板上的方法,在专利文献1实质上记载了如下要点的电子部件的安装方法,即,在将形成了突起电极和高度比上述突起电极高的定位突起的电子部件安装到带布线电极的基板的情况下,在上述基板与上述定位突起的位置对应地形成具有斜面的凹部,在该凹部的底部形成电极,并且在与上述突起电极对应的部分形成布线电极,使上述定位突起与上述凹部卡合并进行按压而使定位突起变形。根据上述结构,能够避免向窄间距、细微布线基板的错位安装(连接)所造成的可靠性的下降。

在先技术文献

专利文献

专利文献1:日本专利第4889464号公报



技术实现要素:

发明要解决的课题

在专利文献1记载的电子部件的安装方法中,为了使安装的完成状态下的定位突起的高度与其它突起电极的高度一致,在基板的表面形成有凹部,但是并不限于定位突起,即使在将具备高度不同的多个连接端子的电子部件安装到基板的情况下,也能够使用在表面形成了凹部的基板。

但是,在为了将电子部件安装到基板而使焊料凸块、铜柱凸块等连接端子与设置在基板表面的凹部的表面电极抵接时,电子部件有可能会受到大的损伤而产生导通不良。

本发明是为了解决上述的问题而完成的,其目的在于提供一种在多层陶瓷基板安装有电子部件的电子器件,在所述电子器件中,能够降低安装时的电子部件的损伤,能够抑制导通不良的产生。此外,本发明的目的还在于,提供一种能够降低安装时的电子部件的损伤的多层陶瓷基板。

用于解决课题的技术方案

本发明的电子器件是在多层陶瓷基板安装有电子部件的电子器件,该电子器件的特征在于,上述电子部件在安装面侧具备在剖视下具有r形状的连接端子,上述多层陶瓷基板具备用于与上述连接端子连接的表面电极,在上述多层陶瓷基板的安装面,在与上述连接端子对应的位置,形成有在剖视下具有r形状的凹部,上述表面电极设置在上述凹部的至少一部分,并与上述连接端子导通。

在本发明的电子器件中,在与具有r形状的连接端子对应的位置,在基板的表面形成具有r形状的凹部,并且在该凹部的至少一部分设置有表面电极。在像以往那样凹部的底面平坦的情况下,在将电子部件安装到多层陶瓷基板时连接端子和表面电极通过点进行接触,受到大的应力。相对于此,在本发明的电子器件中,在将电子部件安装到多层陶瓷基板时连接端子和表面电极能够通过面进行接触。因此,与连接端子和表面电极通过点进行接触的情况相比,可缓解应力,因此能够降低电子部件的损伤,能够抑制导通不良的产生。

在本发明的电子器件中,上述凹部的剖面形状优选为圆弧状或浴槽形状。在该情况下,连接端子和表面电极容易通过面进行接触,因此能够进一步降低电子部件的损伤。

在本发明的电子器件中,在将上述凹部的剖视下的曲率半径设为rs并将上述连接端子的剖视下的曲率半径设为rp时,rp/rs的值优选为0.1以上且1.0以下。在该情况下,能够进一步抑制导通不良的产生。

本发明的多层陶瓷基板是用于安装电子部件的多层陶瓷基板,该多层陶瓷基板的特征在于,上述多层陶瓷基板具备用于与上述电子部件的连接端子连接的表面电极,在上述多层陶瓷基板的安装面,在与上述连接端子对应的位置,形成有在剖视下具有r形状的凹部,上述表面电极设置在上述凹部的至少一部分。

在本发明的多层陶瓷基板中,在与连接端子对应的位置,在基板的表面形成具有r形状的凹部,并且在该凹部的至少一部分设置有表面电极。由此,在连接端子具有r形状的情况下,连接端子和表面电极能够通过面进行接触,因此与两者通过点进行接触的情况相比,可缓解应力。因此,能够降低电子部件的损伤,能够抑制导通不良的产生。

在本发明的多层陶瓷基板中,优选上述凹部的剖面形状为圆弧状或浴槽形状。在该情况下,连接端子和表面电极容易通过面进行接触,因此能够进一步降低电子部件的损伤。

发明效果

根据本发明,能够提供一种在多层陶瓷基板安装有电子部件的电子器件,在所述电子器件中,能够降低安装时的电子部件的损伤,能够抑制导通不良的产生。

附图说明

图1是示意性地示出本发明的电子器件的一个例子的剖视图。

图2的(a)是示意性地示出作为连接端子的一个例子的铜柱凸块的剖视图,图2的(b)是示意性地示出作为连接端子的另一个例子的焊料凸块的剖视图。

图3是示意性地示出求出铜柱凸块的曲率半径的方法的剖视图。

图4的(a)、图4的(b)、图4的(c)、图4的(d)以及图4的(e)是示意性地示出凹部的剖面形状的例子的剖视图。

图5是示意性地示出求出具有浴槽形状的剖面形状的凹部的曲率半径的方法的剖视图。

图6的(a)以及图6的(b)是示意性地示出设置在凹部的表面电极的例子的剖视图。

图7的(a)以及图7的(b)是示意性地示出本发明的电子器件的其它例子的剖视图。

图8的(a)、图8的(b)、图8的(c)、图8的(d)以及图8的(e)是示意性地示出图1所示的电子器件的制造方法的一个例子的剖视图。

图9的(a)、图9的(b)、图9的(c)以及图9的(d)分别是示意性地示出了在实施例1、实施例2、比较例1以及比较例2的多层陶瓷基板安装电子部件的位置的剖视图。

具体实施方式

以下,对本发明的电子器件进行说明。

然而,本发明并不限定于以下的结构,能够在不变更本发明的主旨的范围内适当地变更而进行应用。另外,将以下记载的本发明的每个优选的结构组合了两个以上的结构也是本发明。

图1是示意性地示出本发明的电子器件的一个例子的剖视图。

在本说明书中,在仅记载为“剖面”的情况下,意味着多层陶瓷基板的厚度方向的剖面。

虽然在图1未示出整体的结构,但是在电子器件1中,在多层陶瓷基板10安装有电子部件20。电子部件20在安装面侧具备连接端子21,连接端子21在剖视下在安装面侧具有r形状(roundedshape)。多层陶瓷基板10具备用于与连接端子21连接的表面电极11。在多层陶瓷基板10的安装面,在与连接端子21对应的位置形成有凹部12,凹部12在剖视下具有r形状。在凹部12的一部分设置有表面电极11,表面电极11和连接端子21导通。另外,如图1所示,表面电极11在剖视下也具有r形状。

构成本发明的电子器件的电子部件例如由有源部件、无源部件、或它们的复合体构成。作为有源部件,例如可举出晶体管、二极管、ic或lsi等半导体元件,作为无源部件,例如可举出电阻、电容器或电感器等芯片部件、振荡器、滤波器等。

在本发明的电子器件中,电子部件在安装面侧具备在剖视下具有r形状的连接端子。例如,在电子部件由ic等半导体元件构成的情况下,铜柱凸块、焊料凸块等凸块相当于连接端子。此外,在电子部件由电容器等芯片部件构成的情况下,外部电极相当于连接端子。

图2的(a)是示意性地示出作为连接端子的一个例子的铜柱凸块的剖视图,图2的(b)是示意性地示出作为连接端子的另一个例子的焊料凸块的剖视图。

在图2的(a)所示的铜柱凸块22中,在铜制的柱(pillar)22b的前端设置有焊料22a,前端具有r形状。此外,在图2的(b)所示的焊料凸块23中,整体具有r形状。

在本发明的电子器件中,只要连接端子在剖视下具有r形状,连接端子的剖视下的曲率半径rp就没有特别限定。

例如,在连接端子为焊料凸块的情况下,将焊料凸块的剖面形状视作圆时的半径作为曲率半径rp。此外,在连接端子为铜柱凸块的情况下,将设置在前端的焊料的剖面形状视作圆弧的一部分时的半径作为曲率半径rp。

图3是示意性地示出求出铜柱凸块的曲率半径的方法的剖视图。

在将设置在铜柱凸块22的前端的焊料22a的剖面形状视作圆弧的一部分的情况下,曲率半径rp能够通过测定弦长(图3中用l示出的长度)以及矢高(图3中用d示出的长度)而根据以下的式子求出。

rp=(l2+4d2)/8d

另外,在铜柱凸块的平面形状为跑道形状等弦长l不恒定的情况下,只要将最短的部位的长度作为弦长l而求出曲率半径rp即可。

构成本发明的电子器件的多层陶瓷基板具备在表面具有陶瓷层的陶瓷坯体和设置在陶瓷坯体的一个主面的表面电极。

构成多层陶瓷基板的陶瓷坯体具有层叠了多个陶瓷层的层叠构造,在陶瓷坯体的内部设置有内层导体以及过孔导体。此外,在陶瓷坯体的另一个主面也设置有表面电极。

构成陶瓷坯体的陶瓷层优选含有低温烧结陶瓷材料。所谓低温烧结陶瓷材料,意味着陶瓷材料中的能够在1000℃以下的烧成温度进行烧结且能够进行与银、铜等的共烧的材料。

作为陶瓷层含有的低温烧结陶瓷材料,例如可举出在石英、氧化铝、镁橄榄石等陶瓷材料混合硼硅酸盐玻璃而成的玻璃复合类低温烧结陶瓷材料、使用了zno-mgo-al2o3-sio2类的晶化玻璃的晶化玻璃类低温烧结陶瓷材料、使用了bao-al2o3-sio2类陶瓷材料、al2o3-cao-sio2-mgo-b2o3类陶瓷材料等的非玻璃类低温烧结陶瓷材料等。

设置在陶瓷坯体的内部的内层导体以及过孔导体优选包含从金、银以及铜选择的至少一种导电材料,更优选包含银或铜。因为金、银以及铜的电阻低,所以特别适合多层陶瓷基板为高频用途的情况。

设置在陶瓷坯体的一个主面的表面电极用于与电子部件的连接端子连接,优选包含从金、银以及铜选择的至少一种导电材料,更优选包含银或铜。

表面电极可以具有一层构造,也可以具有多层构造。在表面电极具有多层构造的情况下,表面电极优选包括在构成陶瓷坯体的一个主面的陶瓷层的上表面设置的烧结层、和在烧结层的上表面设置的镀敷层。烧结层可以是仅为一层,也可以是两层以上。镀敷层也可以是仅为一层,还可以是两层以上。

另外,烧结层是通过烧附导电膏而形成的,镀敷层是通过在形成烧结层之后实施电解镀敷或无电解镀敷而形成的。

表面电极的最大厚度没有特别限定,优选为2μm以上且20μm以下。

在本发明的电子器件中,多层陶瓷基板的结构没有特别限定,关于陶瓷层的层叠数、表面电极、内层导体以及过孔导体的配置等,能够进行各种变更。

此外,也可以在含有低温烧结陶瓷材料的陶瓷层之间配置含有在上述低温烧结陶瓷材料的烧结温度下实质上不烧结的金属氧化物的约束层。

作为在低温烧结陶瓷材料的烧结温度下实质上不烧结的金属氧化物,例如可举出氧化铝、二氧化钛、氧化锆、二氧化硅、氧化镁等,在它们之中,优选氧化铝或二氧化硅。这些金属氧化物可以是一种,也可以是两种以上。

在本发明的电子器件中,在多层陶瓷基板的安装面,在与连接端子对应的位置形成有在剖视下具有r形状的凹部。在凹部的至少一部分设置有表面电极,表面电极和连接端子导通。

在本发明的电子器件中,只要凹部在剖视下具有r形状,凹部的剖面形状就没有特别限定,优选为圆弧状或浴槽形状(bathtub-likeshape)。

另外,所谓凹部的剖面形状,意味着包含表面电极的部分的剖面形状。但是,在表面电极包含镀敷层的情况下,意味着除去镀敷层的部分的剖面形状。因此,在本发明的电子器件中,除去镀敷层的表面电极在剖视下也具有r形状,优选包含镀敷层的表面电极在剖视下具有r形状。

图4的(a)、图4的(b)、图4的(c)、图4的(d)以及图4的(e)是示意性地示出凹部的剖面形状的例子的剖视图。

作为凹部的剖面形状,可举出如图4的(a)所示的圆弧状、如图4的(b)所示的椭圆弧状、如图4的(c)、图4的(d)以及图4的(e)所示的浴槽形状等。另外,所谓浴槽形状,意味着在剖视下具有直线状的底边的r形状。在图4的(c)中,c1至c2成为圆弧状,c2至c3成为直线状,c3至c4成为圆弧状。在图4的(d)中,d1至d3成为曲线状,d3至d4成为直线状,d4至d6成为曲线状,d2以及d5作为拐点而存在。在图4的(e)中,e1至e2成为直线状,e2至e3成为圆弧状,e3至e4成为直线状,e4至e5成为圆弧状,e5至e6成为直线状。

在本发明的电子器件中,只要凹部在剖视下具有r形状,凹部的剖视下的曲率半径rs就没有特别限定。

例如,在凹部的剖面形状为圆弧状的情况下,将其半径作为曲率半径rs。此外,在凹部的剖面形状为椭圆弧状或浴槽形状的情况下,将与连接端子抵接的部位的半径作为曲率半径rs。

图5是示意性地示出求出具有浴槽形状的剖面形状的凹部的曲率半径的方法的剖视图。

如图5所示,在多层陶瓷基板10的凹部12中,求出与铜柱凸块22的端部对应的位置a、与铜柱凸块22的中央部对应的位置b、以及与端部和中央部的中点对应的位置c的坐标,将通过这三点的圆的半径作为曲率半径rs。位置a设为靠近凹部12的外周的一侧。另外,在求出位置a、位置b以及位置c的坐标时,如图5所示,求出包含表面电极11的部分的坐标。但是,在表面电极11包含镀敷层的情况下,求出除去镀敷层的部分的坐标。

虽然在图5中对连接端子为铜柱凸块的情况进行了说明,但是在焊料凸块等的连接端子的情况下,也能够通过上述的同样的方法求出曲率半径rs。

在本发明的电子器件中,在将凹部的剖视下的曲率半径设为rs并将连接端子的剖视下的曲率半径设为rp时,优选rp/rs的值为0.1以上且1.0以下。rp/rs的值优选为0.2以上且1.0以下。

在本发明的电子器件中,除去镀敷层的凹部的最大深度没有特别限定,优选为3μm以上且20μm以下。

在本发明的电子器件中,只要在凹部的至少一部分设置有表面电极,表面电极的构造就没有特别限定。表面电极可以设置在凹部的一部分,也可以设置在凹部的整个面。此外,设置在凹部的表面电极可以与设置在凹部以外的表面的表面电极电连接。

图6的(a)以及图6的(b)是示意性地示出设置在凹部的表面电极的例子的剖视图。

在图6的(a)中,设置在凹部12的一部分的表面电极11与设置在凹部12以外的表面的表面电极13电连接,在图6的(b)中,设置在凹部12的整个面的表面电极11与设置在凹部12以外的表面的表面电极13以及14电连接。

在本发明的电子器件中,在电子部件具备多个连接端子的情况下,在多层陶瓷基板的安装面,无需在与全部的连接端子对应的位置形成有上述凹部,只要在与至少一个连接端子对应的位置形成有上述凹部即可。

图7的(a)以及图7的(b)是示意性地示出本发明的电子器件的其它例子的剖视图。在图7的(a)以及图7的(b)中,为方便起见,将电子部件20从多层陶瓷基板10分离而进行了记载。

如图7的(a)所示,在电子部件20具备的连接端子21的长度相同的情况下,优选在与全部的连接端子21对应的位置形成有深度相同的凹部12。此外,如图7的(b)所示,在电子部件20具备的连接端子21的长度不同的情况下,优选根据连接端子21的长度形成有深度不同的凹部12,使得电子部件20相对于多层陶瓷基板10不倾斜。但是,在图7的(b)中,也可以不在与长度短的连接端子对应的位置形成凹部。

本发明的电子器件优选像以下那样制造。

图8的(a)、图8的(b)、图8的(c)、图8的(d)以及图8的(e)是示意性地示出图1所示的电子器件的制造方法的一个例子的剖视图。

首先,准备多个陶瓷生片。陶瓷生片在烧成后成为陶瓷层。

陶瓷生片例如是通过刮刀法等将含有低温烧结陶瓷材料那样的陶瓷原料的粉末、有机粘合剂以及溶剂的浆料成型为片状而成的。上述浆料也可以含有分散剂、增塑剂等各种添加剂。

在特定的陶瓷生片形成过孔导体用的贯通孔。通过在该贯通孔填充含有例如银或铜的导电膏,从而形成应成为过孔导体的导电膏体。

使用与上述导电膏相同的组成的导电膏,例如通过丝网印刷等方法,在特定的陶瓷生片形成应成为内层导体的导电膏层。

接着,如图8的(a)所示,在层叠后配置于表面的陶瓷生片15’上,形成应成为表面电极11的导电膏层11’。导电膏层11’例如能够使用与上述导电膏相同的组成的导电膏通过丝网印刷等方法来形成。接下来,通过将多个陶瓷生片15’层叠并压接,从而制作未烧成的层叠体10’。

接下来,如图8的(b)所示,使用给定的形状的模具30对未烧成的层叠体10’中的与电子部件的连接端子对应的部分进行压制。由此,如图8的(c)所示,在未烧成的层叠体10’的表面形成在剖视下具有r形状的凹部12。在图8的(c)中,在凹部12的一部分设置有导电膏层11’。

在对未烧成的层叠体进行压制时,通过变更模具的形状,从而能够形成所希望的形状的凹部。此外,通过钻头加工、激光加工等,也能够形成凹部。

在卸下了模具之后,对未烧成的层叠体10’进行烧成。由此,如图8的(d)所示,可得到在凹部12的表面具备表面电极11的烧结体(多层陶瓷基板10)。

另外,也可以通过对烧成后的烧结体实施电解镀敷或无电解镀敷,从而在表面电极的上表面形成镀敷层。

此后,如图8的(e)所示,将在安装面侧具备在剖视下具有r形状的连接端子21的电子部件20安装到多层陶瓷基板10。具体地,使电子部件20的连接端子21与多层陶瓷基板10的表面电极11抵接,使表面电极11和连接端子21导通。

通过以上,可得到图1所示的电子器件1。

另外,也可以准备含有在陶瓷生片烧结的温度下实质上不烧结的氧化物的约束用生片,并在未烧成的层叠体的两个主面配置了约束用生片的状态下对层叠体进行烧成。此外,也可以对在陶瓷生片之间配置了约束用生片的未烧成的层叠复合体进行烧成,进而,也可以在未烧成的层叠复合体的两个主面配置了约束用生片的状态下对层叠复合体进行烧成。

在该情况下,约束用生片在烧成时实质上不烧结,因此不产生收缩,发挥作用使得对于层叠体或层叠复合体抑制主面方向上的收缩。其结果是,能够提高多层陶瓷基板的尺寸精度。

优选地,约束用生片是将含有上述氧化物的粉末、有机粘合剂以及溶剂的浆料通过刮刀法等成型为片状而成的。上述浆料也可以含有分散剂、增塑剂等的各种添加剂。

作为上述浆料含有的氧化物,例如能够使用氧化铝、二氧化钛、氧化锆、二氧化硅、氧化镁等。在它们之中,优选使用氧化铝。

以上,虽然对本发明的电子器件进行了说明,但是构成上述电子器件的多层陶瓷基板也是本发明之一。

实施例

以下,示出更具体地公开了本发明的电子器件的实施例。另外,本发明并不仅限定于这些实施例。

[实施例1:形成了圆弧状的凹部的多层陶瓷基板的制作]

(准备陶瓷片1的工序)

陶瓷片1是成为多层陶瓷基板的陶瓷层的陶瓷生片。

作为起始原料,准备了sio2、baco3、al2o3、zro2、caco3、b2o3、mnco3、tio2以及mg(oh)2的各粉末。

在上述的起始原料粉末添加有机粘合剂、分散剂以及增塑剂而制作了陶瓷浆料。

接着,通过刮刀法将陶瓷浆料在pet膜上成型为片状并使其干燥,由此制作了陶瓷片1。

(准备陶瓷片2的工序)

陶瓷片2是层叠在多层陶瓷基板的内部的约束用生片。

称量氧化铝粉末和b-si-ba类玻璃粉末,使得成为给定的组成比,并进行混合粉碎,然后,通过与陶瓷片1同样的步骤制作陶瓷浆料,制作陶瓷片2。

(准备陶瓷片3的工序)

陶瓷片3是配置在多层陶瓷基板的主面的约束用生片。

称量氧化铝粉末和玻璃粉末,使得成为给定的组成比,并进行混合粉碎,然后,通过与陶瓷片1同样的步骤制作陶瓷浆料,制作陶瓷片3。

(准备导电膏的工序)

将cu粉末、乙基纤维素以及萜烯类溶剂混合,并用三辊研磨机进行混合分散,由此制作了电极形成用的导电膏。

(在陶瓷片印刷导电膏的工序)

在特定的陶瓷片1、2以及3上,通过丝网印刷法印刷了上述导电膏。

(将陶瓷片层叠压接的工序)

在将上述的陶瓷片切割为100mm×100mm之后,以50℃以上且80℃以下的温度、50mpa以上且200mpa以下的压力进行压接,由此得到了未烧成的层叠复合体。另外,该层叠复合体从表面起按陶瓷片3、陶瓷片1以及陶瓷片2的顺序配置。

(形成凹部的工序)

使用剖视下为圆弧状的模具对未烧成的层叠复合体中的与电子部件的连接端子对应的部分进行了压制。由此,在未烧成的层叠复合体的表面形成了剖视下为圆弧状的凹部。另外,凹部形成为,烧成后的表面电极设置在凹部的一部分。另外,也可以在按陶瓷片2以及陶瓷片1的顺序进行层叠之后,使用上述模具进行压制,由此形成剖视下为圆弧状的凹部,然后将陶瓷片3层叠并压接。

(对未烧成的层叠复合体进行烧成的工序)

对于未烧成的层叠复合体,一边在h2/n2/h2o气氛中调整为cu不氧化的气氛条件,一边升温至烧成温度850℃以上且1050℃以下,并保持60分钟以上且90分钟以下,然后冷却至室温,由此,制作了在圆弧状的凹部具备表面电极的多层陶瓷基板。接下来,在上述烧成后,通过超声波清洗等将配置在所制作的多层陶瓷基板的表面的未烧结的陶瓷片3除去,然后,在形成于上述多层陶瓷基板的表面的表面电极上实施电解镀敷或无电解镀敷,由此,形成了镀敷层。

[实施例2:形成了浴槽形状的凹部的多层陶瓷基板的制作]

代替剖视下为圆弧状的模具,使用剖视下为浴槽形状的模具对未烧成的层叠复合体进行压制,由此,在未烧成的层叠复合体的表面形成了剖视下为浴槽形状的凹部,除此以外,通过与实施例1同样的方法制作了多层陶瓷基板。

[比较例1:形成了矩形的凹部的多层陶瓷基板的制作]

代替剖视下为圆弧状的模具,使用剖视下为矩形的模具对未烧成的层叠复合体进行压制,由此,在未烧成的层叠复合体的表面形成了剖视下为矩形的凹部,除此以外,通过与实施例1同样的方法制作了多层陶瓷基板。

[比较例2:未形成凹部的多层陶瓷基板的制作]

不进行使用了模具的未烧成的层叠复合体的压制,在未烧成的层叠复合体的表面未形成凹部,除此以外,通过与实施例1同样的方法制作了多层陶瓷基板。

[电子器件的评价]

通过在实施例1、实施例2、比较例1以及比较例2的多层陶瓷基板安装电子部件,从而制作了电子器件。为了评价安装时的电子部件的损伤,评价了导通不良。

首先,作为电子部件,准备内置有内部导通确认图案的ic,在ic的电极部附上作为连接端子的凸块。作为凸块,使用了焊料凸块以及铜柱凸块。

图9的(a)、图9的(b)、图9的(c)以及图9的(d)分别是示意性地示出了在实施例1、实施例2、比较例1以及比较例2的多层陶瓷基板安装电子部件的位置的剖视图。

对于在圆弧状的凹部形成的实施例1的多层陶瓷基板的表面电极,如图9的(a)所示,在凹部的中心部(图9的(a)中表示为0的位置)、与中心部相距30μm的位置(图9的(a)中表示为30的位置)、与中心部相距50μm的位置(图9的(a)中表示为50的位置)搭载ic,在距中心部的距离为0μm、30μm以及50μm的三处对导通不良进行了评价。

对于在浴槽形状的凹部形成的实施例2的多层陶瓷基板的表面电极、以及在矩形的凹部形成的比较例1的多层陶瓷基板的表面电极,也分别如图9的(b)以及图9的(c)所示,在距中心部的距离为0μm、30μm以及50μm的三处对导通不良进行了评价。

对于未形成凹部的比较例2的多层陶瓷基板的表面电极,如图9的(d)所示,在表面电极的中心部(图9的(d)中表示为0的位置)搭载ic,在距中心部的距离为0μm的一处对导通不良进行了评价。

将导通不良的评价结果示于表1。在表1中,将未产生导通不良的情况设为○,将产生了导通不良的情况设为×。

另外,凹部的宽度设为120μm,凹部的最大深度设为10μm以上且30μm以下。此外,使连接端子(凸块)的曲率半径恒定而进行评价,并且在形成有凹部的情况下,使连接端子的曲率半径rp相对于凹部的曲率半径rs之比(rp/rs)恒定而进行了评价。对于浴槽形状的凹部,将与中心部相距50μm的位置的凹部的曲率半径作为上述曲率半径rs。

[表1]

根据表1,可认为,在形成了矩形的凹部的比较例1以及未形成凹部的比较例2中,连接端子和表面电极通过点进行接触,因此产生了导通不良。另一方面,可认为,在形成了圆弧状的凹部的实施例1中,连接端子和表面电极通过面进行接触,因此未产生导通不良。此外,可认为,在形成了浴槽形状的凹部的实施例2中,在与中心部相距50μm的位置,连接端子和表面电极通过面进行接触,因此未产生导通不良。

以下,对于实施例1以及实施例2的多层陶瓷基板,在与中心部相距50μm的位置,对将rp/rs的值变更为表2所示的范围的情况下的导通不良进行了评价。将导通不良的评价结果示于表2。在表2中,对于1000个ic,将导通不良的产生数为0个的情况设为◎(优),将1个以上且10个以下的情况设为○(良),将11个以上且50个以下的情况设为△(可),将51个以上的情况设为×(不良)。

[表2]

根据表2可确认,在形成了圆弧状的凹部的实施例1中,在rp/rs的值为0.1以上且1.0以下的情况下,可抑制导通不良的产生,在0.2以上且1.0以下的情况下,可特别抑制导通不良的产生。

此外,可确认,在形成了浴槽形状的凹部的实施例2中,在rp/rs的值为0.1以上且1.0以下的情况下,可抑制导通不良的产生,在0.2以上且1.0以下的情况下,可特别抑制导通不良的产生。

附图标记说明

1:电子器件;

10:多层陶瓷基板;

11、13、14:表面电极;

12:凹部;

20:电子部件;

21:连接端子;

22:铜柱凸块(连接端子);

23:焊料凸块(连接端子)。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1