一种低功耗高灵敏度的固体电解质传感器的制备方法与流程

文档序号:12452344阅读:152来源:国知局
一种低功耗高灵敏度的固体电解质传感器的制备方法与流程

本发明属于电解质传感器领域,涉及一种低功耗高灵敏度的固体电解质传感器,具体涉及一种低功耗高灵敏度的固体电解质传感器的制备方法。



背景技术:

全固态气体传感器具有结构简单、价格低廉、体小质轻、能够进行原位测量和易构建传感网络等优点,因此备受学术界和产业界的关注。在全固态气体传感器中,金属氧化物半导体型和固体电解质型具有广阔的应用前景。金属氧化物半导体型具有灵敏度高、响应速度快、长期稳定性好的优点,但是选择性、一致性和线性需要改善。固体电解质型传感器除了具有金属氧化物半导体型传感器的优点外,还具有良好的选择性、一致性、线性、热稳定性和化学稳定性,所以该类传感器是目前备受关注的研究热点,也是目前已经实用化的一种传感器。其中钇稳定氧化锆类氧传感器被广泛应用于汽车尾气检测中。

早期对于材料的制备受到广大研究者关注,大量的金属氧化物材料被研究如:LaCoO3, ZnFe2O4, NiCr2O4, ZnCr2O4, WO3, NiO, SnO2, La0.8Sr0.2FeO3等;除了选择合适的敏感电极材料外,提高传感器灵敏度可以通过提高YSZ(钇稳定氧化锆)基材的导电率,三相界面处电极与电解质的粘结度,电极层的多孔性等几个方面。如吉林大学的卢革宇小组即通过氢氟酸腐蚀的方法增加YSZ基板的粗糙度来提高三相界面的面积,从而有效地提高传感器的灵敏度。传统的固体电解质类型的传感器一般都是单一平板型或圆柱状。这类传感器需要在高温下(700-800oC)工作,在500oC以下的工作温度灵敏度偏低,高温不仅需要高的功耗,同时又降低了传感器的易用性。因此,提高响应的灵敏度和降低传感器的功耗更有助于这类传感器的应用。

随着微纳米科学与技术的发展,越来越多的基于微纳米材料的传感器被开发出来,工作温度处于500oC及以下的中低温区。这类材料超高的比表面积,有利于提高三相界面反应位点,如CeO2,LSM微纳米纤维已经被制备出来,表现出较好的低温导电性能。但是目前常用的传感器件主要是平板型和管式,需要较高的工作温度,同时也不利于进行集成化设计。



技术实现要素:

本发明为解决常用的传感器件主要是平板型和管式,需要较高的工作温度,不利于进行集成化设计的技术难题,公开了一种低功耗高灵敏度的固体电解质传感器的制备方法。

为解决上述技术难题,本发明采用以下技术方案:

本方法创新地改进了YSZ基固体电解质型传感器的结构,采用相转换法制备YSZ中空微纳米厚度的纤维管替代传统的平板或管式YSZ基材,用多根中空YSZ微纳米管并列排布的形式将单一的敏感单元集成,增大敏感电极的面积。

一种低功耗高灵敏度的固体电解质传感器,所述电解质传感器包括基板和涂覆有敏感电极和参考电极的固体电解质中空纤维,其中基板的一面设有铂带、加热丝或加热设备,基板的另一面涂有第一铂浆带和第二铂浆带,固体电解质中空纤维上设有敏感电极端和参考电极端,固体电解质中空纤维的敏感电极端与第一铂浆带相接,固体电解质中空纤维的参考电极端与第二铂浆带相接;所述固体电解质中空纤维的壁厚为200nm-1mm。

低功耗高灵敏度的固体电解质传感器的制备方法,步骤如下:

(1)通过在基板上涂覆一条蛇形的铂浆带,于1300℃烧结,形成一条蛇形铂电极,在电极两端分别黏上一根铂丝;

(2)在步骤(1)中得到的基板的另一面,涂覆第一铂浆带和第二铂浆带,完成铂浆带基板的制备;

(3)将固体电解质中空纤维膜风干,1300℃烧结,完成固体电解质中空纤维的制备;

(4)将敏感电极材料涂覆在步骤(3)制备的固体电解质中空纤维的敏感电极端,在敏感电极外涂覆上一圈铂浆带,在固体电解质中空纤维的参考电极端也涂覆一圈铂浆带,完成涂覆有敏感电极和参考电极的固体电解质中空纤维的制备;

(5)将步骤(4)中制备的涂覆有敏感电极和参考电极的固体电解质中空纤维,与铂浆带基板上涂覆有第一铂浆带和第二铂浆带的一面相固定,使敏感电极上的铂浆带与第一铂浆带相连接,参考电极上的铂浆带与第二铂浆带相连接,经过1300℃烧结、固定,完成固体电解质传感器的制备。

所述基板的材质为Al2O3、SiO2、非导电的绝缘材料或涂覆有绝缘层的导电材料;所述基板为单层或多层结构。

所述步骤(2)中,第一铂浆带为连续或间断的。

所述步骤(3)中,固体电解质中空纤维膜的制备如下:

a. 取一定量的N-甲基吡咯烷酮、聚乙烯吡咯烷酮和聚醚砜,混合搅拌均匀至完全溶解形成聚合物溶液,之后向其中加入YSZ电解质粉体,搅拌均匀得到铸膜液,其中YSZ电解质粉体:N-甲基吡咯烷酮:聚乙烯吡咯烷酮:聚醚砜的质量比为:4.5:3.5:0.3:0.7;YSZ中钇的掺杂量为1-12 wt%;

b. 向中空纤维纺丝设备的喷丝头的内环中注入去离子水作为内轴,,然后将铸膜液注入纺丝装置的储料罐中,连接喷丝头的外环,真空除气泡后,进行纺丝,向接收纺丝的水箱中注入N-甲基吡咯烷酮,这样从喷丝头喷出的丝落入有N-甲基吡咯烷酮的水箱中,内轴的水脱去,外轴的铸膜液中溶剂脱去固化,形成中空纤维膜。

所述步骤(4)中,敏感电极材料为金属氧化物、复合金属氧化物、Pt中的一种或多种,参考电极材料为贵金属单质或金属氧化物中的一种或多种;固体电解质中空纤维上涂覆敏感电极和参考电极后,再涂覆一层催化层;所述催化层为Pd,Ru,通过溶液浸渍法涂覆在敏感电极和参考电极上,以提高传感器的选择性。

本发明的有益效果在于:本发明的薄壁中空纤维管相对于传统的平板式和管式,可以提高YSZ的低温离子导电率,故可降低传感器工作温度,提高了传感器的灵敏度,并且这种结构的传感器可以集成两种或以上敏感电极,实现一个器件同时检测几种气体的功能,更加方便地测量混合气体中的多种成份。

附图说明

图1为固体电解质型传感器的结构示意图,其中①、②为外接电流的接线,③为参考电极,④为敏感电极。

图2为集成两种敏感电极的传感器示意图,其中①、②为外接电流的接线,③为参考电极,④、⑤为敏感电极。

图3为固体电解质型传感器的制备工艺。

具体实施方式

一种低功耗高灵敏度的固体电解质传感器,所述电解质传感器包括基板和涂覆有敏感电极和参考电极的固体电解质中空纤维,其中基板的一面设有铂带、加热丝或加热设备,基板的另一面涂有第一铂浆带和第二铂浆带,固体电解质中空纤维上设有敏感电极端和参考电极端,固体电解质中空纤维的敏感电极端与第一铂浆带相接,固体电解质中空纤维的参考电极端与第二铂浆带相接;所述固体电解质中空纤维的壁厚为200nm-1mm。

低功耗高灵敏度的固体电解质传感器的制备方法,步骤如下:

(1)通过在基板上涂覆一条蛇形的铂浆带,于1300℃烧结,形成一条蛇形铂电极,在电极两端分别黏上一根铂丝;

(2)在步骤(1)中得到的基板的另一面,涂覆第一铂浆带和第二铂浆带,完成铂浆带基板的制备;

(3)将固体电解质中空纤维膜风干,1300℃烧结,完成固体电解质中空纤维的制备;

(4)将敏感电极材料涂覆在步骤(3)制备的固体电解质中空纤维的敏感电极端,在敏感电极外涂覆上一圈铂浆带,在固体电解质中空纤维的参考电极端也涂覆一圈铂浆带,完成涂覆有敏感电极和参考电极的固体电解质中空纤维的制备;

(5)将步骤(4)中制备的涂覆有敏感电极和参考电极的固体电解质中空纤维,与铂浆带基板上涂覆有第一铂浆带和第二铂浆带的一面相固定,使敏感电极上的铂浆带与第一铂浆带相连接,参考电极上的铂浆带与第二铂浆带相连接,经过1300℃烧结、固定,完成固体电解质传感器的制备,如图3所示。

所述基板的材质为Al2O3、SiO2、非导电的绝缘材料或涂覆有绝缘层的导电材料;所述基板为单层或多层结构。

所述步骤(2)中,第一铂浆带为连续或间断的。

所述步骤(3)中,固体电解质中空纤维膜的制备如下:

a. 取一定量的N-甲基吡咯烷酮、聚乙烯吡咯烷酮和聚醚砜,混合搅拌均匀至完全溶解形成聚合物溶液,之后向其中加入YSZ电解质粉体,搅拌均匀得到铸膜液,其中YSZ电解质粉体:N-甲基吡咯烷酮:聚乙烯吡咯烷酮:聚醚砜的质量比为:4.5:3.5:0.3:0.7;YSZ中钇的掺杂量为1-12 wt%;

b. 向中空纤维纺丝设备的喷丝头的内环中注入去离子水作为内轴,,然后将铸膜液注入纺丝装置的储料罐中,连接喷丝头的外环,真空除气泡后,进行纺丝,向接收纺丝的水箱中注入N-甲基吡咯烷酮,这样从喷丝头喷出的丝落入有N-甲基吡咯烷酮的水箱中,内轴的水脱去,外轴的铸膜液中溶剂脱去固化,形成中空纤维膜。

所述步骤(4)中,敏感电极材料为金属氧化物、复合金属氧化物、Pt中的一种或多种,参考电极材料为贵金属单质或金属氧化物中的一种或多种;固体电解质中空纤维上涂覆敏感电极和参考电极后,再涂覆一层催化层;所述催化层为Pd,Ru,通过溶液浸渍法涂覆在敏感电极和参考电极上,以提高传感器的选择性。

实施例1

(1)通过丝网印刷法在Al2O3单层基板上涂覆一条蛇形的铂浆带,于1300℃烧结,形成一条蛇形铂电极,在电极两端分别黏上一根铂丝用于外接电流源;

(2)在步骤(1)中基板的另一面,涂覆第一铂浆带和第二铂浆带,完成铂浆带基板的制备;

(3)固体电解质中空纤维的制备,以8%的YSZ(钇稳定氧化锆)纳米颗粒为固体电解质粉料,NMP(N-甲基吡咯烷酮)为溶剂,聚乙烯吡咯烷酮(PVP)为粘结剂,聚醚砜(PESf)为相转化剂混合搅拌均匀至完全溶解形成聚合物溶液,之后在其中加入制备好的YSZ电解质粉体,搅拌均匀得到铸膜液,向中空纤维纺丝设备的喷丝头的内环中注入去离子水(内凝结液),向距喷丝头一定高度的水箱中注入NMP(外凝结液),将铸膜液注入纺丝装置的储料罐中,真空除气泡后,以氮气为驱动力进行纺丝,可以通过调节内凝结液,铸膜液的流量调节微管状中空纤维电解质的厚度。本实施例中铸膜液中YSZ,NMP,PVP,PESf的质量分别为45g, 35g, 3g, 7g,电解质铸膜液的流速为0.1ml/min,纺丝成的纤维经过1300℃的烧结,制备得到的中空纤维管厚度为200nm;

(4)将敏感电极材料MnCr2O4通过浸渍法,涂覆在步骤(2)制备的固体电解质中空纤维的敏感电极端,在敏感电极外涂覆上一圈铂浆带,在固体电解质中空纤维的参考电极端也涂覆一圈铂浆带,完成涂覆有敏感电极和参考电极的固体电解质中空纤维的制备;

(5)将步骤(4)中制备的4根涂覆有敏感电极和参考电极的固体电解质中空纤维,与铂浆带基板上涂覆有第一铂浆带和第二铂浆带的一面相固定,使敏感电极上的铂浆带与第一铂浆带相连接,参考电极上的铂浆带与第二铂浆带相连接,经过1300℃烧结、固定,完成固体电解质传感器的制备,如图1所示。

检测:在气敏检测系统中通入4.8% CO2,5% H2O,100 ppm NO2,13.5% O2,10ppm NH3,平衡气体为N2,在500℃的工作温度下,测试制备的传感器对混合气体的响应值(EMF)。

实施例2

(1)通过丝网印刷法在Al2O3双层基板上涂覆一条蛇形的铂浆带,于1300℃烧结,形成一条蛇形铂电极,在电极两端分别黏上一根铂丝用于外接电流源;

(2)在步骤(1)中基板的另一面,涂覆第一铂浆带和第二铂浆带,完成铂浆带基板的制备;

(3)固体电解质中空纤维的制备,以8%的YSZ纳米颗粒为固体电解质粉料,NMP(N-甲基吡咯烷酮)为溶剂,聚乙烯吡咯烷酮(PVP)为粘结剂,聚醚砜(PESf)为相转化剂混合搅拌均匀至完全溶解形成聚合物溶液,之后在其中加入制备好的YSZ电解质粉体,搅拌均匀得到铸膜液,向中空纤维纺丝设备的喷丝头的内环中注入去离子水(内凝结液),向距喷丝头一定高度的水箱中注入NMP(外凝结液),将铸膜液注入纺丝装置的储料罐中,真空除气泡后,以氮气为驱动力进行纺丝,可以通过调节内凝结液,铸膜液的流量调节微管状中空纤维电解质的厚度。本实施例中铸膜液中YSZ,NMP,PVP,PESf的质量分别为45g, 35g, 3g, 7g,电解质铸膜液的流速为0.3mL/min,纺丝成的纤维经过1300℃的烧结,制备得到的中空纤维管厚度为500nm;

(4)将敏感电极材料MnCr2O4通过浸渍法,涂覆在步骤(2)制备的固体电解质中空纤维的敏感电极端,在敏感电极外涂覆上一圈铂浆带,在固体电解质中空纤维的参考电极端也涂覆一圈铂浆带,完成涂覆有敏感电极和参考电极的固体电解质中空纤维的制备;

(5)将步骤(4)中制备的10根涂覆有敏感电极和参考电极的固体电解质中空纤维,与铂浆带基板上涂覆有第一铂浆带和第二铂浆带的一面相固定,使敏感电极上的铂浆带与第一铂浆带相连接,参考电极上的铂浆带与第二铂浆带相连接,经过1300℃烧结、固定,完成固体电解质传感器的制备,如图1所示。

检测:在气敏检测系统中通入4.8% CO2,5% H2O,100 ppm NO2,13.5% O2,10ppm NH3,平衡气体为N2,在500℃的工作温度下,测试制备的传感器对混合气体的响应值(EMF)。

实施例3

(1)通过丝网印刷法在SiO2单层基板上涂覆一条蛇形的铂浆带,于1300℃烧结,形成一条蛇形铂电极,在电极两端分别黏上一根铂丝用于外接电流源;

(2)在步骤(1)中基板的另一面,涂覆第一铂浆带和第二铂浆带,完成铂浆带基板的制备;

(3)固体电解质中空纤维的制备,以8%的YSZ纳米颗粒为固体电解质粉料,NMP(N-甲基吡咯烷酮)为溶剂,聚乙烯吡咯烷酮(PVP)为粘结剂,聚醚砜(PESf)为相转化剂混合搅拌均匀至完全溶解形成聚合物溶液,之后在其中加入制备好的YSZ电解质粉体,搅拌均匀得到铸膜液,向中空纤维纺丝设备的喷丝头的内环中注入去离子水(内凝结液),向距喷丝头一定高度的水箱中注入NMP(外凝结液),将铸膜液注入纺丝装置的储料罐中,真空除气泡后,以氮气为驱动力进行纺丝,可以通过调节内凝结液,铸膜液的流量调节微管状中空纤维电解质的厚度。本实施例中铸膜液中YSZ,NMP,PVP,PESf的质量分别为45g, 35g, 3g, 7g,电解质铸膜液的流速为5 mL/min,纺丝成的纤维经过1300℃的烧结,制备得到的中空纤维外径管厚度为1mm;

(4)将敏感电极材料MnCr2O4通过浸渍法,分别涂覆在步骤(2)制备的固体电解质中空纤维的敏感电极端,在敏感电极外涂覆上一圈铂浆带,在固体电解质中空纤维的参考电极端也涂覆一圈铂浆带,完成涂覆有敏感电极和参考电极的固体电解质中空纤维的制备;

(5)将步骤(4)中制备的涂覆有MnCr2O4敏感电极材料和参考电极Pt的固体电解质中空纤维,与铂浆带基板上涂覆有第一铂浆带和第二铂浆带的一面相固定,使敏感电极上的铂浆带与第一铂浆带相连接,参考电极上的铂浆带与第二铂浆带相连接,经过1300℃烧结、固定,完成固体电解质传感器的制备,如图1所示。

检测:在气敏检测系统中通入4.8% CO2,5% H2O,100 ppm NO2,13.5% O2,10ppm NH3,平衡气体为N2,在500℃的工作温度下,测试制备的传感器对混合气体的响应值(EMF)。

实施例4

(1)通过丝网印刷法在SiO2双层基板上涂覆一条蛇形的铂浆带,于1300℃烧结,形成一条蛇形铂电极,在电极两端分别黏上一根铂丝用于外接电流源;

(2)在步骤(1)中基板的另一面,涂覆第一铂浆带和第二铂浆带,完成铂浆带基板的制备;

(3)固体电解质中空纤维的制备,以8%的YSZ纳米颗粒为固体电解质粉料,NMP(N-甲基吡咯烷酮)为溶剂,聚乙烯吡咯烷酮(PVP)为粘结剂,聚醚砜(PESf)为相转化剂混合搅拌均匀至完全溶解形成聚合物溶液,之后在其中加入制备好的YSZ电解质粉体,搅拌均匀得到铸膜液,向中空纤维纺丝设备的喷丝头的内环中注入去离子水(内凝结液),向距喷丝头一定高度的水箱中注入NMP(外凝结液),将铸膜液注入纺丝装置的储料罐中,真空除气泡后,以氮气为驱动力进行纺丝,可以通过调节内凝结液,铸膜液的流量调节微管状中空纤维电解质的厚度。本实施例中铸膜液中YSZ,NMP,PVP,PESf的质量分别为45g, 35g, 3g, 7g,电解质铸膜液的流速为3 mL/min,纺丝成的纤维经过1300℃的烧结,制备得到的中空纤维管厚度为500um;

(4)将敏感电极材料MnCr2O4通过浸渍法,涂覆在步骤(2)制备的固体电解质中空纤维的敏感电极端,在敏感电极外涂覆上一圈铂浆带,在固体电解质中空纤维的参考电极端也涂覆一圈铂浆带,完成涂覆有敏感电极和参考电极的固体电解质中空纤维的制备;

(5)将步骤(4)中制备的1涂覆有MnCr2O4敏感电极材料和参考电极Pt的固体电解质中空纤维,与铂浆带基板上涂覆有第一铂浆带和第二铂浆带的一面相固定,使敏感电极上的铂浆带与第一铂浆带相连接,参考电极上的铂浆带与第二铂浆带相连接,经过1300℃烧结、固定,完成固体电解质传感器的制备。

检测:在气敏检测系统中通入4.8% CO2,5% H2O,100 ppm NO2,13.5% O2,10ppm NH3平衡气体为N2,在500℃的工作温度下,测试制备的传感器对混合气体的响应值(EMF)。

实施例5

(1)通过丝网印刷法在SiO2单层基板上涂覆一条蛇形的铂浆带,于1300℃烧结,形成一条蛇形铂电极,在电极两端分别黏上一根铂丝用于外接电流源;

(2)在步骤(1)中基板的另一面,涂覆第一铂浆带和第二铂浆带,完成铂浆带基板的制备;

(3)固体电解质中空纤维的制备,以8%的YSZ纳米颗粒为固体电解质粉料,NMP(N-甲基吡咯烷酮)为溶剂,聚乙烯吡咯烷酮(PVP)为粘结剂,聚醚砜(PESf)为相转化剂混合搅拌均匀至完全溶解形成聚合物溶液,之后在其中加入制备好的YSZ电解质粉体,搅拌均匀得到铸膜液,向中空纤维纺丝设备的喷丝头的内环中注入去离子水(内凝结液),向距喷丝头一定高度的水箱中注入NMP(外凝结液),将铸膜液注入纺丝装置的储料罐中,真空除气泡后,以氮气为驱动力进行纺丝,可以通过调节内凝结液,铸膜液的流量调节微管状中空纤维电解质的厚度。本实施例中铸膜液中YSZ,NMP,PVP,PESf的质量分别为45g, 35g, 3g, 7g,电解质铸膜液的流速为3 mL/min,纺丝成的纤维经过1300℃的烧结,制备得到的中空纤维管厚度为500um;

(4)将敏感电极材料CoWO3和MnCr2O4通过浸渍法,分别涂覆在步骤(2)制备的固体电解质中空纤维的敏感电极端,在敏感电极外涂覆上一圈铂浆带,在固体电解质中空纤维的参考电极端也涂覆一圈铂浆带,完成涂覆有敏感电极和参考电极的固体电解质中空纤维的制备;

(5)将步骤(4)中制备的10根涂覆有CoWO3敏感电极材料和参考电极Pt的固体电解质中空纤维和10根涂覆有MnCr2O4敏感电极材料和参考电极Pt的固体电解质中空纤维,与铂浆带基板上涂覆有第一铂浆带和第二铂浆带的一面相固定,使敏感电极上的铂浆带与第一铂浆带相连接,参考电极上的铂浆带与第二铂浆带相连接,经过1300℃烧结、固定,完成固体电解质传感器的制备,如图2所示。

检测:在气体敏感检测系统中通入4.8% CO2,5% H2O,100 ppm NO2,13.5% O2,平衡气体为N2,10ppm NH3在500℃的工作温度下,测试制备的传感器对混合气体的响应值(EMF)。

对比例:

以传统构造的YSZ基平板型传感器,即在3*3*1.5mm(长宽厚)规格尺寸的YSZ平板上涂覆一条NiO带作为敏感电极,一条Pt带作为参考电极,进行气体敏感检测。

通过测试可以得到两组响应信号,以MnCr2O4为敏感电极的中空纤维组成的部分输出响应值为134mV,而以CoWO3为敏感电极的中空纤维组成部分输出响应值为-20mV,两者分别对应NO2和NH3的测量。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1