接合装置的制作方法

文档序号:7162223阅读:187来源:国知局
专利名称:接合装置的制作方法
技术领域
本发明涉及一种对具有金属的接合部的基板彼此进行按压而将该基板彼此接合起来的接合装置。
背景技术
近年来,在半导体器件(以下,称为“器件”)的制造中,器件的高集成化不断提高。 另一方面,存在如下问题利用配线连接高集成化后的多个器件而产品化的情况下,配线长度增大,由此配线的阻抗变大,并且配线延迟变大。因此,人们提出了使用将半导体器件呈三维层叠的三维集成技术。在该三维集成技术中,例如使用粘合装置进行两片半导体晶圆(以下,称为“晶圆”)的粘合。粘合装置例如具有固定工作台,该固定工作台用于在其上表面载置晶圆;可动工作台,其与该固定工作台相对配置,该可动工作台能够在其下表面吸附保持晶圆地进行升降。在固定工作台和可动工作台内分别内置有加热器。而且在该粘合装置中,在使两片晶圆叠合后,一边利用加热器对晶圆进行加热,一边利用固定工作台和可动工作台施加载荷来按压晶圆,从而两片晶圆被粘合在一起(专利文献1)。专利文献1 日本特开2004-207436号公报但是,在接合两片晶圆时,有时使形成于晶圆表面的金属的接合部彼此接合。该情况下,需要一边以高温的规定温度加热接合部一边进行按压。即,需要依次进行如下工序 首先将晶圆加热至规定的温度的前热处理工序、随后在将晶圆的温度维持在规定温度的状态下按压该晶圆的接合工序、随后冷却晶圆的后热处理工序。然而,在前热处理工序中,由于上述规定的温度为高温,若使用专利文献1的粘合装置,则将晶圆加热至规定的温度需要花费时间。而且,若急速加热晶圆,则接合部彼此有可能不被均勻地加热,因此需要以规定的加热速度以下加热晶圆。并且由于上述规定温度为高温,在后热处理工序中冷却高温的晶圆也需要花费时间。而且,使接合部彼此合金化而进行接合的情况下,若急速冷却晶圆,接合部的强度、物性有可能会发生改变,因此需要以规定的冷却速度以下冷却晶圆。另外,由于接合工序所花费的时间是由接合部所使用的材料等决定的,因此该接合工序所花费的时间不能缩短。这样在进行具有金属的接合部的晶圆彼此的接合时,由于需要进行晶圆的温度调整,其结果,晶圆彼此的接合需要大量的时间。因此导致晶圆接合处理的生产率下降。

发明内容
本发明是鉴于该点做成的,其目的在于高效地进行具有金属的接合部的基板彼此的温度调整,使基板接合处理的生产率提高。为了实现上述目的,本发明提供一种用于将具有金属的接合部的基板彼此接合的接合装置,该接合装置包括处理容器,其在下表面形成有开口 ;热处理板,其配置在上述处理容器内,用于载置上述基板并对该基板进行热处理;加压机构,其在上述处理容器内与上述热处理板相对设置,用于向上述热处理板侧按压上述基板;环状的支承台,其在上述处理容器的内表面沿该处理容器的开口设置,该环状的支承台用于将上述处理容器和上述热处理板之间气密地密封且用于支承上述热处理板;冷却机构,其设于上述热处理板的下方且设于上述支承台的内侧,用于冷却上述热处理板,上述冷却机构包括冷却板,其内部为中空且上表面设为与上述热处理板平行;连通管,其与上述冷却板的内部相连通,用于向该冷却板的内部供给空气;升降机构,其用于使上述冷却板上下移动,在上述冷却板的下表面形成有与该冷却板的内部连通的多个贯通孔,自上述连通管供给至上述冷却板的内部的空气被自上述冷却板的贯通孔排出。采用本发明,由于在热处理板的下方设有用于冷却该热处理板的冷却机构,因此能够高效地调节基板的温度。即,在利用热处理板将基板加热至规定的温度时,在将要超过规定的加热速度、或者将要超过规定的温度的情况下,例如通过使冷却机构上升而与热处理板的下表面接触,能够冷却热处理板。并且,通过调整供给至冷却机构的空气的量,还能够调整冷却机构的冷却速度,因此能够高效地进行基板的温度调整。上述冷却机构还具有冷却水流通板,该冷却水流通板在上述冷却板的下方以封闭该处理容器的整个开口的方式设置,在该冷却水流通板的内部形成有供冷却水流通的冷却水路,在上述冷却水流通板中形成有在铅垂方向上贯通该冷却水流通板的多个贯通孔,自上述冷却板的贯通孔排出的空气也可以通过上述冷却水流通板的贯通孔而被自该冷却水流通板的上表面向下表面排出。上述加压机构具有弹性构件,其气密地连接于上述处理容器的顶板;按压构件, 其气密地连接于上述弹性构件的下端;空气供给管,其用于向由上述处理容器的顶板、上述弹性构件及上述按压构件围成的空间内供给压缩空气;空气排出管,其用于将供给的压缩空气排出,也可以在上述空气排出管上设置有用于冷却在该空气排出管的内部流通的压缩空气的冷却套。根据本发明,高效地进行具有金属的接合部的基板彼此的温度调整,能够提高基板接合处理的生产率。


图1是表示具有按压用附件的接合装置的概略构成的纵剖视图。图2是表示具有按压用附件的接合装置的概略构成的横剖视图。图3是叠合晶圆的剖视图。图4是表示第一热处理板的概略构成的纵剖视图。图5是表示输送机构及输送环(ring)的概略构成的纵剖视图。图6是表示输送机构及输送环的概略构成的立体图。图7是表示利用输送机构保持输送环的状态的说明图。图8是表示接合方法的概略的纵剖视图。图9是表示接合方法的概略的纵剖视图。图10是表示按压用附件的材质以及缩颈量与最大应力差的关系。图11是表示晶圆的直径、按压用附件的缩颈量以及最大应力差之间的关系的图表。
图12是表示另一按压用附件的侧视图。图13是表示另一按压用附件的侧视图。图14是表示另一按压用附件的侧视图。图15是表示另一按压用附件的侧视图。图16是表示另一按压用附件的侧视图。图17是表示冷却机构附近的概略构成的纵剖视图。图18是表示卡定构件附近的概略构成的纵剖视图。图19是表示卡定构件弯曲的状态的说明图。图20是表示晶圆接合处理的主要工序的流程图。图21是表示接合装置的各机器的工作状态的时序图。图22是表示概略的以往的接合方法的纵剖视图。附图标记说明1、按压用附件10、接合装置20、热处理单元21、接合单元22、闸阀30、处理容器35、真空泵40、第一热处理板41、上部加热部件42、输送机构43、加热器44、制冷剂流路45、制冷剂供给管46、制冷剂排出管47、空气源48、冷却水源49、混合器50、换热器51、循环配管52、冷冻机53、升降销54、贯通孔55、保持部60、输送环61、保持构件 62、突出部70、处理容器71、容器主体72、顶板73、密封波纹管74、输入输出口 75、吸气口 76、真空泵77、吸气管78、底部开口 80、加压机构81、按压构件8la、加热器82、支承构件83、加压波纹管83a、空气供给管83b、空气排出管83c、冷却套84、上部附件85、下部附件86、缩颈部87、中间部88、圆盘部90、第二热处理板95、支承台100、冷却机构 101、槽部102、密封件103、卡定构件104、上部卡定构件105、下部卡定构件106、连结部 110、冷却板111、连通管112、冷却水流通板120、接触部121、散热部122、外周部123、 贯通孔124、突出部130、冷却水路131、冷却水管200、控制部Ju叉、接合部Wu、上晶圆 Wp下晶圆Wt、叠合晶圆
具体实施例方式以下,对本发明的实施方式进行说明。图1是表示具有按压用附件(adapter) 1的接合装置10的概略构成的纵剖视图。图2是表示具有按压用附件1的接合装置10的概略构成的横剖视图。在接合装置10中,如图3所示那样将例如两片作为基板的晶圆WpW^相接合。以下,有时将配置于上侧的晶圆称为“上晶圆W/,将配置于下侧的晶圆称为“下晶圆WJ。各晶圆WuA分别具有多个金属的接合部Ju、Jp并且,使各接合部Ju、Jl抵接而使晶圆Wu^ 叠合以形成作为叠合基板的叠合晶圆Wt,然后将晶圆WpWJ皮此接合。另外,在进行晶圆W 、 Wl彼此的接合之前的状态下,如图3所示,在晶圆WpW^之间涂布粘接剂2,在该粘接剂2的作用下,晶圆W 、W^成为被临时接合的状态。这样,通过借助粘接剂进行临时接合,即使在进行晶圆WpW^的对准(alignment)后输送该晶圆WpWy也能够防止晶圆W1^Wl产生错位。 并且,如图3所示,在临时接合的状态下,接合部J 、叉之间成为形成有间隙的状态。由此, 还能够获得如下效果在进行接合时的抽真空时接合部Ju、l之间的气氛被抽吸,能够防止在接合部Ju、叉之间产生空隙(void)。另外,粘接剂2使用因接合时的热处理而蒸发升华的粘接剂。而且,在本实施方式中,例如接合部Ju使用铝,接合部1使用锗。如图1和图2所示,接合装置10具有将热处理单元20和接合单元21按照该顺序沿水平方向的Y方向排列且一体连接的结构。热处理单元20和接合单元21借助闸阀(gate valve) 22气密地被连接在一起。热处理单元20具有能够对内部进行密封的处理容器30。处理容器30的侧面上形成有叠合晶圆Wt的输入输出口 31,在该输入输出口 31上设有闸阀32。并且,在处理容器 30的靠接合单元21 —侧的侧面上形成有叠合晶圆Wt的输入输出口 33,该输入输出口 33上设有上述闸阀22。在处理容器30的底面上形成有吸气口 34。在吸气口 34上连接有与用于将处理容器30的内部的气氛减压至规定的真空度的真空泵35相连通的吸气管36。在处理容器30的内部设有第一热处理板40,其用于载置叠合晶圆Wt而进行加热和冷却;上部加热部件41,其用于自上方加热被载置于第一热处理板40上的叠合晶圆 Wt ;输送机构42,其用于在热处理单元20和接合单元21之间与后述输送环60 —起输送叠合晶圆WT。作为上部加热部件41,使用例如利用辐射热进行加热的卤素加热器(halogen heater)、或者使用电加热器等。在第一热处理板40中内置有作为加热机构的加热器43及作为冷却机构的制冷剂流路44,该加热器43通过供电而发热,使冷却剂在该制冷剂流路44 的内部流通而对热处理板40进行冷却。制冷剂流路44配置在加热器43的上方。如图4所示,在制冷剂流路44上分别连接有用于向该制冷剂流路44供给制冷剂的制冷剂供给管45和用于自该制冷剂流路44排出制冷剂的制冷剂排出管46。作为制冷齐U,使用雾状的水与干燥空气的混合物。在制冷剂供给管45上分别连接有用于向该制冷剂供给管45供给作为制冷剂的干燥空气和水的空气源47和冷却水源48。在干燥空气与水合流的部位设置有混合器49,利用该混合器49将干燥空气和水混合而使水雾化,从而将雾状的水与干燥空气的混合物作为制冷剂经由制冷剂供给管45被供给至制冷剂流路44。在制冷剂排出管46上设有用于对通过制冷剂流路44后的制冷剂进行冷却的换热器50,通过冷却在制冷剂排出管46内流动的制冷剂而使该制冷剂中的水凝结,作为冷凝水进行回收。回收的冷凝水经由循环配管51被供给至制冷剂供给管45上的混合器49的上游,从而又在混合器49处与干燥空气混合而再次作为制冷剂被利用。另外,如图4所示,作为换热器50使用例如与冷冻机52相连接的换热器。并且,利用例如后述的控制部20来控制第一热处理板40的加热温度和冷却温度、上部加热部件41的加热温度。在第一热处理板的下方设有例如三根用于自下方支承叠合晶圆Wt而使该晶圆Wt 进行升降的升降销53。升降销53借助未图示的升降驱动部而能够上下移动。在第一热处理板40的中央部附近的例如三个部位形成有在厚度方向上贯通该第一热处理板40的贯通孔M。并且,升降销53穿过贯通孔M,成为能够自第一热处理板40的上表面突出。如图1所示,输送机构42具有在上下方向上水平地分别设置的上部输送机构42a 和下部输送机构42b。上部输送机构4 和下部输送机构42b为相同形状。上部输送机构 42a和下部输送机构42b构成为能够在未图示的驱动机构的驱动下分别独立地沿水平方向和上下方向移动。如图5和图6所示,上部输送机构4 和下部输送机构42b是一对具有大致U字状的截面形状的保持部55以U字的开口部分相面对的方式连接起来而形成的。上部输送机构4 和下部输送机构42b构成为借助保持部55来保持输送环60,从而能够与该输送环60 —起输送叠合晶圆WT。如图5和图6所示,输送环60形成为设有比叠合晶圆 Wt的直径略大的直径的开口的大致圆盘状,在输送环60的底面且在开口的内周缘部设有用于保持叠合晶圆Wt的保持构件61。如图6所示,在输送环60的外周部设有一对突出部62, 该突出部62被输送机构42的保持部55保持。利用输送机构42来保持输送环60时,如图 7的(a)所示,使输送机构42移动至输送环60位于保持部55的开口部分之间的高度,接下来如图7的(b)所示,使输送机构42在维持上述高度的情况下进一步沿水平方向移动。 随后,使输送机构42上升,利用保持部55来保持输送环60的突出部62,从而如图7的(c) 所示,输送环60被输送机构42保持。接合单元21具有能够对内部进行密封的处理容器70。处理容器70具有容器主体 71和顶板72被密封波纹管(sealed bellows) 73连接起来的结构。密封波纹管73构成为在铅垂方向上伸缩自如,顶板72借助该密封波纹管73而在铅垂方向上移动自如。在容器主体71的靠热处理单元20 —侧的侧面上形成有叠合晶圆Wt的输入输出口 74,在该输入输出口 74处设置有上述闸阀22。在容器主体71的侧面形成有吸气口 75。 在吸气口 75上连接有与用于将处理容器70的内部的气氛减压至规定的真空度的真空泵76 相连通的吸气管77。另外,在本实施方式中,由吸气口 75、真空泵76、吸气管77构成第二减压机构。并且,为了设置后述冷却机构100而在容器主体71的底面上形成有例如圆形的底部开口 78。在处理容器70的内部且在顶板72上设有加压机构80,该加压机构80用于向第二热处理板90侧按压后述第二热处理板90之上的叠合晶圆WT。加压机构80具有按压构件81,其用于隔着按压用附件1按压叠合晶圆Wt ;支承构件82,其呈环状地安装于顶板72 ; 加压波纹管83,其将按压构件81和支承构件82连接起来,且在铅垂方向上伸缩自如。按压构件81的直径构成得比叠合晶圆Wt的直径大。在加压波纹管83上设有空气供给管83a 和空气排出管83b,该空气供给管83a用于向加压机构80的内部、即向被按压构件81、加压波纹管83、支承构件82以及顶板72围成的内部空间供给例如压缩空气,该空气排出管83b 用于排出被供给至内部空间的空气。因此,通过经由空气供给管83a向加压机构80的内部空间供给压缩空气,加压波纹管83伸缩,从而按压构件81在铅垂方向上移动自如。在空气排出管8 上设有冷却套83c,该冷却套83c用于冷却在该空气排出管8 的内部流通而被排气的空气。冷却套83c能够使用例如水冷式的管壳(shell and tube)式的换热器那样的冷却套。在空气排出管8 上设有用于调整自该空气排出管8 排出的空气的量的调整机构(未图示)。因此,通过调整经由空气供给管83a供给的压缩空气的供给量、供给压力以及自空气排出管8 排出的空气的量,能够一边自空气排出管8 排出压缩空气一边将加压波纹管83内的压力调整至规定压力。换言之,能够分别独立地控制加压波纹管83内的压力和在加压波纹管83内流通的压缩空气的量。并且,在按压构件81的内部内置有例如通过供电而发热的加热器81a,通过调整供给至加压波纹管83内的压缩空气的量,从而能够调整自加热器81a向加压波纹管83内的压缩空气散发的热量。因此,通过分别进行供给至加压波纹管83内的压缩空气的流量的调整和加热器81a的温度调整,从而能够借助按压构件81的热传递而使按压用附件1的温度成为期望的温度。另外,由于要在加压机构80 的内部封入压缩空气,为了承受该压缩空气的内压,加压机构80的加压波纹管83的刚性比处理容器70的密封波纹管73的刚性大。
按压用附件1与按压构件81的下表面连接。设置按压用附件1的目的在于,使用具有比叠合晶圆Wt的直径大的直径的按压构件81以面内均勻的载荷按压叠合晶圆Wt,如图1所示,按压用附件1是大致圆盘状的上部附件84和大致圆台形状的下部附件85 —体形成的结构。上部附件84和下部附件85配置为俯视呈同心圆状。而且,具有大致圆台形状的下部附件85的下底具有与叠合晶圆Wt相同的直径,下部附件85的上底具有比上部附件的直径小的直径,由此,按压用附件1成为具有作为中间部的缩颈部86的形状。接下来详细说明按压用附件1的形状。如前所述,本发明的发明人们确认了在如下情况下载荷依然集中于叠合晶圆Wt的周缘部,即,将如图22所示的大致圆台形状的附件 301以台形的上底朝下的方式配置,利用具有比晶圆W的直径大的直径的按压构件302,隔着具有与晶圆W不同直径的附件301进行按压。关于该点,本发明的发明人们进行了验证, 发现使用附件301按压叠合晶圆Wt时,由于在附件301的外周缘部施加有例如图8所示的应力F1,因此附件301产生弯曲,从而在附件301的中心附近集中有向上的应力F2,在附件301的外周缘部集中有向下的应力F3,因此在按压叠合晶圆Wt时不能够获得面内均勻的载荷。关于该点,本发明的发明人们确认了如下情况即使在使用与附件301相同地大致圆台形状的附件的情况下,例如,如图9所示,以上底朝向上方的方式配置大致圆台形状的附件310的话,作用于该附件310的应力F4分散于附件310的下底,能够避免应力集中于该附件310的外周缘部。但是,在比较附件310和附件301的情况下,由于附件310的上底的面积比附件301的上底的面积小,为了借助附件310获得规定的按压载荷,与使用附件 301的情况下相比需要提高供给至波纹管300的加压用空气的压力,在空气源设备方面存在问题。因此,作为在使按压用波纹管与附件的接触面积增大的同时能够在按压时获得面内均勻的载荷的形状,本发明的发明人们考虑了按压用附件1那样的形状,即,一体形成大致圆盘状的上部附件84和大致圆台形状的下部附件85,在上部附件84和下部附件85之间设置作为中间部的缩颈部86。而且,利用试验确认了如下情况分别改变上部附件84和下部附件85的尺寸而进行叠合晶圆Wt的按压的结果,只要叠合晶圆Wt的直径与缩颈部86 的直径的比值为0.7 1 1 1就能够良好地进行叠合晶圆Wt的按压。以下,说明本发明的发明人们实施的试验。在使用按压附件1进行叠合晶圆Wt的接合时,进行如下试验改变用于构成按压用附件1的材料的弹性模量、上部附件84的直径和下部附件85的直径、叠合晶圆Wt的直径,对作用于叠合晶圆Wt的面内的载荷进行确认。 此时,第一热处理板40和上部加热部件41的加热温度为350°C,后述的第二热处理板90的加热温度为430°C。另外,作为上部加热部件41,使用卤素加热器。关于按压用附件1的形状,上部附件84的直径为350mm,叠合晶圆Wt的直径和下部附件85的下底的直径为200mm,按压用附件1的高度、换言之自上部附件84的上表面至下部附件85的下底的距离为35mm,自下部附件85的下底至缩颈部86的高度、换言之自下部附件85的下底至上底的距离为19mm。并且,按压用附件1的材质分别为弹性模量为200GP a的不锈钢、弹性模量为410GPa的碳化硅(SiC)、弹性模量为620GP a的硬质合金,确认了在利用各材质形成的按压用附件1中使缩颈部86的直径X在IOOmm 200mm间变化时,作用于叠合晶圆Wt的面内的应力的最大值和最小值之差、即最大应力差。其结果在图10中
8示出。图10是将缩颈部86的直径X作为缩颈量表示为横轴、将最大应力差作为纵轴,用来表示使用弹性模量不同的各按压用附件1按压叠合晶圆Wt时的最大应力差和缩颈量之间的关系的图。如图10所示,确认了将缩颈量设为160mm 180mm的情况下,不论按压用附件1的弹性模量如何,各按压用附件1的最大应力差变得极小。由该结果可知,按压用附件1的缩颈量存在最优值,该最优的缩颈量不依赖于用于形成按压用附件1的材料的弹性模量。接下来,在使用弹性模量为410GPa的碳化硅的按压用附件1中,在使上部附件84 的直径为350mm、下部附件85的下底的直径以及叠合晶圆Wt的直径为300mm的情况下,使上部附件84的直径为525mm、下部附件85的下底的直径以及叠合晶圆Wt的直径为300mm 的情况下,以及使上部附件84的直径为350mm、下部附件85的下底的直径以及叠合晶圆Wt 的直径为200mm的情况下,使各按压用附件1的缩颈量改变,确认此时的叠合晶圆Wt的面内的最大应力差。确认了该应力的最大值和最小值之差、即最大应力差。其结果在图11中表不。图11是将缩颈量和叠合晶圆Wt的直径(下部附件85的下底的直径)的比值表示为横轴、将最大应力差作为纵轴,用来表示利用各按压用附件1按压叠合晶圆Wt时的最大应力差与缩颈量和叠合晶圆Wt的直径的比值的关系的图。如图11所示,确认了通过使缩颈量和叠合晶圆Wt的直径的比值大约为0.7 1 1 1,不论上部附件84的直径、下部附件85的下底的直径的尺寸如何,各按压用附件1的最大应力差极小。因此,由图10和图11所示结果可确认,对于按压用附件1,不论形成该按压用附件1的材料的弹性模量、上部附件84的直径和下部附件85的下底的直径的尺寸如何,通过使缩颈量和下部附件85的下底的直径的比值成为规定值,能够使叠合晶圆Wt的面内的最大应力差极小。此外,也可以判断为只要叠合晶圆Wt的面内的最大应力差为15MPa以内,就能够以面内均勻的载荷进行按压。因此,为了使用具有比叠合晶圆Wt大的直径的按压构件81而以面内均勻的载荷按压叠合晶圆Wt,按压附件1的缩颈量、即缩颈部86的直径与下部附件 85的下底的直径的比值为0.7 1 1 1即可,更加优选为0.8 1 0.9 1即可。另外,在上述试验中,使用上部附件84和下部附件85—体地形成的、具有缩颈部 86的按压用附件1,但是按压用附件1的形状不限定于以上的实施方式。本发明的发明人们确认,代替按压用附件1,例如,如图12所示,也可以使用按压用附件210,该按压用附件 210的形状为在上部附件84和下部附件85之间形成作为中间部的缩颈部86时具有圆筒形状的连接部87,如图13所示,也可以使用按压用附件220,对于该按压用附件220,与下部附件85的底面一体地形成具有与下部附件85的下底的直径相同直径的大致圆盘状的圆盘部88。并且,如图14所示,也可以使用具有中间部87和圆盘部88这两者的附件230。使用任一种的附件都能够使作用于较大的面积的均勻载荷均勻地作用于较小的面积。并且,虽然缩颈部86的形状形成为锐角、直角,但缩颈部86也可以形成为具有规定的曲率的球状。将附件230作为例子,如图15所示,也可以通过使连接部87的外周部在侧视时成为向该连接部87的中心方向凹陷的形状而使缩颈部86形成为半圆形状。该情况下,由按压载荷引起的应力集中于缩颈部86,从而能够防止按压用附件1、210、220、230的缩颈部86破损。
此外,以上的按压用附件与加压机构80的按压构件81分别形成,但也可以将按压构件81和按压用附件一体形成。具体而言,例如,如图16所示,也可以在按压构件81的下表面仅接合按压用附件1中的下部附件85的部分。该情况下,也可以代替内置于按压构件 81的加热器81a而在下部附件85中内置加热器85a。在下部附件85中内置有加热器85a 的情况下,不用再考虑介于加热器81a和叠合晶圆Wt之间的按压用附件1的热容量,能够精度更好地进行叠合晶圆Wt的温度控制,而且,能够缩短叠合晶圆Wt的升温所需的时间。并且,通过一体形成按压构件81和按压用附件1,也不会产生在按压构件81和按压用附件1 的接触面处的热传递的损耗,加热器85a向叠合晶圆Wt的热传递的效率也提高。另外,在图16中,示出了一体地形成按压用附件1和按压构件81的情况,当然,也可以一体地形成按压用附件210、220、230和按压构件81。接下来对第二热处理板90进行说明。如图1所示,在处理容器70的内部且加压机构80的下方,在与该加热机构80相对的位置设有用于载置叠合晶圆Wt而进行热处理的作为载置部的第二热处理板90。在第二热处理板90内例如内置有借助供电而发热的加热器91。例如使用氮化铝这样的陶瓷作为第二热处理板90的材料。加热器91例如由内周加热器92和外周加热器93构成,该内周加热器92内置在与叠合晶圆Wt相对应的位置,该外周加热器93呈同心圆状地设于内周加热器92的外侧,能够与内周加热器92独立地进行温度控制。例如由后述控制部200控制内周加热器92和外周加热器93的加热温度。此外, 如图1所示,在第二热处理板90的外周部形成有缺口槽94,该缺口槽94用于收容被输送机构42输送来的输送环60的保持构件61。如图2所示,缺口槽94在第二热处理板90的外周部且在与输送环60的保持构件61相对应的位置形成有三处。如图1和图17所示,第二热处理板90的外周部被例如圆环状的支承台95的上表面支承,该支承台95设于容器主体71的内表面且沿容器主体71的底部开口 78设置。因此,第二热处理板90的下表面成为经由底部开口 78向处理容器71的外部暴露出的状态。 在第二处理板90的下表面侧、换言之在处理容器70的外部设有用于冷却叠合晶圆Wt的冷却机构100。支承台95是用于防止来自热处理板90的热量传递至容器主体71的构件,其具有大致圆筒形状,由例如具有绝热性的氮化硅这样的陶瓷构成。在支承台95的与第二热处理板90相对的面上,与第二热处理板90呈同心圆状地形成有凹陷为凹状的槽部101。在槽部101中配置有密封件102,支承台95和热处理板90之间被保持为气密状态。作为密封件102,例如使用耐热性的金属0形环等。如图17和图18所示,在第二热处理板90和支承台95的外周缘部分别形成有凸缘部90a、95a。凸缘部90a和凸缘部9 被卡定构件103把持,从而向按压密封件102的方向作用有力。例如,如图17和图18所示,卡定构件103具有与凸缘部90a接触的上部卡定部104、与凸缘部9 接触的下部卡定部105、将上部卡定部104和下部卡定部105连结起来的连结部106。连结部106例如是具有螺纹牙的外螺纹,通过与设于上部卡定部104和下部卡定部105的未图示的内螺纹螺纹接合,利用上部卡定部104和下部卡定部105使力作用于按压密封件102的方向,从而能够维持处理容器70内的气密状态。此外,上部卡定构件104和下部卡定构件105以及连结部106例如由不锈钢等具有作为卡定构件所必需的强度且具有弹性的金属材料构成。通过使用具有弹性的材料作为连结部106,在利用加热器91加热第二热处理板90而在第二热处理板90和支承台95之间产生热膨胀差时,例如,如图19所示,通过使连结部106弯曲而防止卡定构件103损坏,同时能够保持第二热处理板90与支承台95之间的气密状态。另外,如图18所示,在上部卡定部104上设有向凸缘部90a的上表面突出的爪部104a,在下部卡定部105上设有向凸缘部90a的下表面突出的爪部10 ,如图19所示,构成为即使在连结部106弯曲的情况下,也可以防止卡定构件103 自各凸缘部90a、9fe脱落。如图17所示,冷却机构100具有冷却板110,其为大致圆盘状,设置为与热处理板90平行且内部中空;连通管111,其在铅垂方向上延伸设置且与冷却板110的中空部分相连通;冷却水流通板112,其在冷却板110的下方与该冷却板110平行设置。冷却板110、 连通管111及冷却水流通板112由导热性优异的例如铜合金等形成。冷却板110与热处理板90的背面平行设置,其包括接触部120,其通过与热处理板90的背面接触来冷却热处理板;散热部121,其与接触部120平行设置且以规定的配置形成有贯通孔;外周部122,其围在接触部120和散热部121的外周。在散热部121上以规定的图案形成有多个与冷却板110的内部相连通的贯通孔123。在散热部121的中心,连通设置有连通管111。并且,连通管111设置为穿过冷却水流通板112且相对于冷却水流通板 112滑动自如。由此,构成为能够借助未图示的升降机构使连通管111上下移动,从而使冷却板110上下移动。用于向冷却板110供给作为冷却剂的空气的空气源(未图示)与连通管111相连接。经由连通管111被供给至冷却板110的中空部分的空气自散热部121的贯通孔123排
出ο在散热部121的下表面设有向下方呈凸状地突出的突出部124。并且,外周部122 也形成为延伸至与突出部IM的顶端相同的位置,构成为使冷却板110下降时,能够形成由突出部124、外周部122和冷却水流通板112围成的空间S。如图17所示,在冷却水流通板112中形成有用于使冷却水在其内部流通的冷却水路130。用于将自冷却水源(未图示)供给的冷却水供给至冷却水路130的冷却水管131 与冷却水路130相连接。而且,冷却水流通板112中与散热部121同样地形成有规定图案的贯通孔132,从而能够将自散热部121排出的作为制冷剂的空气排出到冷却机构100的外部。因此,冷却机构100通过经由连通管111向冷却板110的内部供给作为制冷剂的空气,能够冷却冷却板110,通过利用升降机构(未图示)使连通管111上升且使冷却板110 接触第二热处理板90的下表面,能够利用冷却板110冷却热处理板90。此时,通过将冷却水供给至冷却水流通板112的冷却水路130而冷却冷却水流通板112,从而对通过贯通孔 132的空气进行冷却,能够防止高温的空气排出至冷却机构100的外部。更进一步使连通管 111下降,使散热部121的下表面的突出部IM与冷却水流通板112接触,从而能够将冷却板110与供给至连通管111的空气一起高效地冷却。如图1所示,在以上的接合装置10中设有控制部200。控制部200例如为计算机, 其具有程序存储部(未图示)。程序存储部中存储有用于控制接合装置10中的叠合晶圆Wt 的处理的程序。而且,在程序存储部中还存储有用于控制上述各种处理装置、输送装置等的驱动系统的动作而实现接合装置10的后述接合处理的程序。另外,上述程序是例如记录在计算机可读取的硬盘(HD)、软盘(FD)、光盘(CD)、光磁盘(MO)、存储卡等的计算机可读取的存储介质H中的程序,也可以是自该存储介质H安装入控制部200的程序。
接下来,说明使用以上那样构成的接合装置10进行的叠合晶圆Wt的接合处理方法。图20是表示该晶圆接合处理的主要工序的例子的流程图,图21是表示接合装置10的各机器的工作状态的时序图。图21示出了以下参数的时效变化接合装置10中的叠合晶圆Wt的加热温度、供给至加压机构80的加压波纹管83内的压缩空气的压力换言之作用于叠合晶圆Wt的载荷、热处理单元20内的气氛的压力以及接合单元21内的气氛的压力。首先,在外部的对准装置(未图示)中调整上晶圆%和下晶圆I的位置而使两者叠合。此时,在使两者叠合之前在晶圆Wu、晶圆\中的一者或两者上涂布粘接剂2,使两者叠合时,借助粘接而进行临时接合,形成叠合晶圆Wn(图20的工序Si)。随后,叠合晶圆Wn被晶圆输送装置(未图示)输送至接合装置10。在接合装置10中,首先,打开热处理单元20的闸阀32,利用晶圆输送装置(未图示)将叠合晶圆Wn输送至第一热处理板40的上方。接下来使升降销53上升,在将叠合晶圆Wn自未图示的晶圆输送装置交接至升降销53后,使升降销53下降,将叠合晶圆Wn载置于被预先载置于第一热处理板40的输送环60的上表面。随后,关闭闸阀32,利用真空泵35 使处理容器30的内部的气氛减压。之后,利用第一热处理板40将叠合晶圆Wn加热至第一温度、例如350°C (图20和图21的工序S2)。此时,由于对叠合晶圆Wn的接合部JuJl彼此进行均勻地加热,因此以规定的加热速度、例如10°C /分 50°C /分的加热速度进行加热。此时,与第一热处理板40的加热同时也由上部加热部件41进行加热。在叠合晶圆Wn 的上晶圆Wu和下晶圆I之间不产生温度差地进行加热。并且,热处理单元20内的压力减压至规定的真空度、例如lOI^a。叠合晶圆Wn被加热至第一温度时,打开闸阀22。接下来,利用输送机构42使与输送环60 —同载置于第一热处理板40的叠合晶圆Wn移动至接合单元21,叠合晶圆Wn与输送环60 —同载置于第二热处理板90。叠合晶圆Wn与输送环60 —同载置于第二热处理板90时,输送机构42自接合单元21退避至热处理单元20,闸阀22关闭。之后,利用第二热处理板90将叠合晶圆Wn加热至第二温度、例如430°C。例如以 IO0C /分 50°C /分的加热速度加热叠合晶圆WT1。另外,处理容器70的内部的气氛在闸阀22关闭后被减压至规定的真空度、例如0. OOlPa,并维持在该真空度。此时,由于处理容器70的内部成为负压,由于例如作用于顶板70的压力和处理容器70的内部的压力之差, 向下的力作用于顶板70。由此波纹管73收缩,按压用附件1和叠合晶圆Wn接近至规定的距离。并且,如图21所示,在压缩空气供给到加压机构80、S卩加压波纹管83内之前且处理容器70内的压力正被减压的状态下,维持加压机构80的内部的压力也被减压为规定的压力的状态。借助加压机构80内部的压力和处理容器70的压力之差来避免在意料之外的时刻载荷作用于叠合晶圆Wn。随后,一边将叠合晶圆Wn的温度维持为第二温度,一边向加压机构80内供给压缩空气,使按压构件81下降。由此,使连接于按压构件81的下表面的按压用附件1的下部附件85抵接于叠合晶圆Wn,以规定的载荷、例如50kN向第二热处理板90侧按压该叠合晶圆 Wno然后,叠合晶圆Wti被按压规定的时间、例如10分钟,从而叠合晶圆Wn被接合(图20 和图21的工序S3)。此时,由于处理容器内的气氛成为负压,因此接合部Ju、叉间的气氛被抽吸,在接合部J 、JJ旬不产生空隙地进行接合。另外,可以进一步使用例如按压构件81内的加热器、冷却机构100而将叠合晶圆Wn的温度维持于第二温度。并且,也可以通过调整被供给至加压波纹管83内的压缩空气的量来调整按压构件81的温度,从而使叠合晶圆Wn 的上晶圆Wu和下晶圆I的温度同步。在进行接合单元21中的叠合晶圆Wn的接合的同时,新的叠合晶圆Wt2被晶圆输送装置(未图示)输入热处理单元20且被载置于第一热处理板40之上。另外,在将叠合晶圆Wt2输入热处理单元20时,为了减小热处理板40和叠合晶圆Wt2之间的温度差,热处理板 40的温度被冷却至例如150°C。叠合晶圆Wt2被载置于第一热处理板40之上时,利用第一热处理板40和上部加热部件41将叠合晶圆Wt2加热至第一温度、例如350°C (图20和图 21的工序Tl)。之后,叠合晶圆Wn在载置于第二热处理板90的状态下被冷却至例如作为第一温度的350°C。为了防止接合部J 、Jl的强度、物性改变,叠合晶圆Wn以规定的冷却速度、例如10°C /分 50°C /分的冷却速度被冷却。通过使冷却机构100的冷却板110上升,使该冷却板110与第二热处理板90的下表面接触来进行叠合晶圆Wn的冷却。叠合晶圆Wn被冷却至350°C时,首先,载置于第二热处理板90的被加热至350°C 的叠合晶圆Wt2被上部输送机构4 保持。接下来,打开闸阀22,利用下部输送机构42b将接合结束的叠合晶圆Wn与输送环60 —同自第二热处理板90输送至热处理单元20。然后, 维持闸阀22的打开状态,将被上部输送机构4 保持的叠合晶圆Wt2输送至接合单元21, 将该叠合晶圆Wt2与保持环60 —起载置于第二热处理板90。接下来,上部输送机构4 退避至热处理单元20,关闭闸阀22。随后,利用第二热处理板90将叠合晶圆Wt2加热至作为第二温度的430°C,利用按压构件80和按压用附件1按压叠合晶圆Wt2而使该叠合晶圆Wt2 接合(图20和图21的工序T2)。在进行叠合晶圆Wt2的按压的同时,在热处理单元20中, 被上部输送机构4 保持的叠合晶圆Wn与保持环60 —同载置于第一热处理板40。在接合单元21中进行叠合晶圆Wt2的接合的期间内,在接合单元21中完成接合而载置于第一热处理板40的状态的叠合晶圆Wn被第一热处理板40冷却至第三温度、例如 150°C (图20和图21的工序S4)。此时,干燥空气与雾化后的水的混合物被供给至第一热处理板40的制冷剂流路44。随后,将热处理单元20内的压力释放至大气压,使升降销53上升,将叠合晶圆Wn 自第一热处理板40交接至升降销53。接下来,打开闸阀32,叠合晶圆Wn自升降销53交接至晶圆输送装置(未图示),叠合晶圆Wn自接合装置10被输出。叠合晶圆Wn自热处理单元20被输出时,接着在闸阀32打开的状态下新的叠合晶圆Wt3被交接至升降销53,然后被载置于第一热处理板40。随后,利用第一热处理板40和上部加热部件41将叠合晶圆Wt3加热至作为第一温度的350°C (图20和图21的工序Ul)。然后,接合单元21中的叠合晶圆Wt2的接合结束时,叠合晶圆Wt2与叠合晶圆Wti同样地在载置于第二热处理板90的状态下被冷却至350°C。接下来,载置于第二热处理板90 且被加热至350°C的叠合晶圆Wt3被上部输送机构4 保持。随后,打开闸阀22,叠合晶圆 Wt2被下部输送机构42b自接合单元21输出。接下来,维持打开闸阀22的状态,保持于上部输送机构42a的叠合晶圆Wt3被输入接合单元21且被载置于第二热处理板90之上。叠合晶圆Wt3载置于接合单元21的第二热处理板90时,上部输送机构4 退避至热处理单元 20,闸阀22关闭。之后,该叠合晶圆Wt3被按压用附件1按压而接合(图20和图21的工序 U2)。
1
在接合单元21内进行叠合晶圆Wt3的接合的期间内,载置于第一热处理板40的状态的叠合晶圆Wt2被第一热处理板40冷却至第三温度、例如150°C (图20和图21的工序 T3)。接下来,将热处理单元20内的压力释放至大气压,使升降销53上升,将叠合晶圆Wt2 自第一热处理板40交接至升降销53,然后,打开闸阀32,将叠合晶圆Wt2自升降销53交接至晶圆输送装置(未图示),叠合晶圆Wt2自接合装置1被输出。随后,接着在闸阀32打开的状态下将新的叠合晶圆Wt4交接至升降销53,然后将该叠合晶圆Wt4载置于第一热处理板 40。这样,连续地进行一系列的叠合晶圆Wt的接合,在一台接合装置10中,同时进行针对多个叠合晶圆Wt的处理。采用以上的实施方式,由于在接合单元21的第二热处理板90的下方设有用于冷却第二热处理板90的冷却机构100,因此能够高效地调节叠合晶圆Wt的温度。S卩,在利用第二热处理板90将叠合晶圆Wt加热至规定的温度时,在将要超过规定的加热速度、或者将要超过规定的温度的情况下,通过使冷却机构100上升而与第二热处理板90的下表面接触,能够冷却第二热处理板90。并且,通过调整供给至冷却机构100的空气的量,还能够调整冷却机构100的冷却速度,从而能够高效地进行叠合晶圆Wt的温度调整。而且,在加压机构80的按压构件81的内部内置加热器81a,另一方面通过调整供给至加压波纹管83的压缩空气的量及自加压波纹管83排出的压缩空气的量,一边维持加压波纹管83内的压力为期望值,一边调整自加热器81a向加压波纹管83内的压缩空气发散的热量,能够调整按压构件81的温度,因此,能够使叠合晶圆Wt的上晶圆Wu与下晶圆\ 的温度同步。从而,采用本发明,能够防止因上晶圆Wu和下晶圆I成为不同温度分布而导致接合部的强度、物性改变。在以上的实施方式中,接合部J 、Jl分别使用铝和锗,但是使用其他金属的情况下也适用于本发明。该情况下,与接合部丄、叉所使用的金属的种类相应地来决定接合单元 21中的处理条件、例如叠合晶圆Wt的加热温度、按压载荷等。而且,在以上的实施方式中, 在晶圆W 、Wl上设有金属的接合部J 、Jl,但是,基板自身为金属的情况下也能够适用本发明。并且,基板为晶圆之外的FPD(平板显示器)、光掩模用的中间掩模(7 7夕> f夕> ) 等其他的基板的情况下也能够适用本发明。以上,参照

了本发明的优选实施方式,但本发明并不限定于该例子。对于本领域技术人员,在权利要求书记载的构思范围内能够想到各种变形例或修改例是显而易见的,对于这些变形例或修改例也属于本发明的保护范围。 本发明在将具有金属的接合部的基板彼此接合时是有用的。
权利要求
1.一种接合装置,该接合装置用于将具有金属的接合部的基板彼此接合,其特征在于, 该接合装置具有处理容器,其在下表面形成有开口 ;热处理板,其配置在上述处理容器内,用于载置上述基板并对该基板进行热处理; 加压机构,其在上述处理容器内与上述热处理板相对设置,用于向上述热处理板侧按压上述基板;环状的支承台,其在上述处理容器的内表面沿该处理容器的开口设置,该环状的支承台用于将上述处理容器和上述热处理板之间气密地封闭且用于支承上述热处理板;冷却机构,其设于上述热处理板的下方且设于上述支承台的内侧,用于冷却上述热处理板,上述冷却机构包括冷却板,其内部为中空且其上表面设为与上述热处理板平行;连通管,其与上述冷却板的内部相连通,用于向该冷却板的内部供给空气;升降机构,其用于使上述冷却板上下移动,在上述冷却板的下表面形成有与该冷却板的内部连通的多个贯通孔, 自上述连通管供给至上述冷却板的内部的空气被自上述冷却板的贯通孔排出。
2.根据权利要求1所记载的接合装置,其中,上述冷却机构还具有冷却水流通板,该冷却水流通板在上述冷却板的下方以封闭该处理容器的整个开口的方式设置,在该冷却水流通板的内部形成有供冷却水流通的冷却水路,在上述冷却水流通板上形成有在铅垂方向上贯通该冷却水流通板的多个贯通孔, 自上述冷却板的贯通孔排出的空气通过上述冷却水流通板的贯通孔而被自该冷却水流通板的上表面向下表面排出。
3.根据权利要求1或2所记载的接合装置,其中,上述加压机构具有 弹性构件,其气密地连接于上述处理容器的顶板;按压构件,其气密地连接于上述弹性构件的下端;空气供给管,其用于向由上述处理容器的顶板、上述弹性构件及上述按压构件围成的空间内供给压缩空气;空气排出管,其用于将供给的压缩空气排出,在上述空气排出管上设置有用于冷却在该空气排出管的内部流通的压缩空气的冷却套。
全文摘要
本发明提供一种接合装置,高效地进行具有金属的接合部的基板彼此的温度调整,使基板接合处理生产率提高。接合装置具有在下表面形成开口的处理容器;配置在处理容器内且用于载置叠合晶圆并对叠合晶圆进行热处理的第二热处理板;在处理容器内与第二热处理板相对设置且用于向第二热处理板侧按压叠合晶圆的加压机构;在处理容器的内表面沿该处理容器的开口设置的将处理容器和第2热处理板之间气密地封闭的环状的支承台;设于第二热处理板的下方且支承台的内侧的冷却机构,冷却机构包括上表面与第二热处理板平行地设置的冷却板;与冷却板的内部相连通且用于向该冷却板的内部供给空气的连通管;使冷却板上下移动的升降机构。
文档编号H01L21/603GK102456589SQ20111031778
公开日2012年5月16日 申请日期2011年10月18日 优先权日2010年10月18日
发明者古家元, 杉山雅彦, 秋山直树 申请人:东京毅力科创株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1