使用金属纳米粒子的接合构造以及接合方法

文档序号:7055388阅读:323来源:国知局
使用金属纳米粒子的接合构造以及接合方法
【专利摘要】本发明的目的在于提供一种技术,该技术能够实现在将2个部件接合的情况下的接合强度以及接合可靠性的提高。使用金属纳米粒子的接合构造具有:第1部件(1),其至少在一个表面上具有金属面;第2部件(2),其至少在一个表面上具有金属面,并且该金属面配置在与第1部件(1)的金属面相对的位置处;以及接合材料(3),其通过将金属纳米粒子烧结接合,从而将第1部件(1)与第2部件(2)接合。第1部件(1)和第2部件(2)中的至少一者的金属面形成为具有0.5μm~2.0μm范围的表面粗糙度的粗糙面。
【专利说明】使用金属纳米粒子的接合构造以及接合方法

【技术领域】
[0001]本发明涉及一种使用微小尺寸的金属粒子(金属纳米粒子)而将两个部件接合的技术。

【背景技术】
[0002]现有的接合方法,特别是作为将半导体接合至绝缘基板的方法,使用焊料。但是,存在下述问题,即,焊料的耐热性低,相对于200°C左右的温度可靠性下降。
[0003]因此,如专利文献I的记载所示,提出了下述技术,即,取代焊料,对金属纳米粒子进行加热而将两个部件接合。在该接合方法中,将使用有机物对平均直径小于或等于10nm左右的金属粒子进行接合.包覆而得到的复合型金属纳米粒子作为接合材料的主要成分。在该接合方法中,在将使该复合型金属纳米粒子分散于有机溶剂中而成的金属纳米膏填充至2个部件的接合部之间的状态下,至少通过加热而使有机成分挥发,从而将2个部件接口 ο
[0004]另外,在非专利文献I中记载有下述内容,即,使用利用由有机溶剂包覆的银纳米粒子所构成的银纳米膏,使作为接合条件的温度、时间、加压力变化而进行铜之间的接合,并测定该接合强度和观察接合剖面的组织。
[0005]此处,对金属纳米粒子的接合原理进行说明。通常,如果粒子的直径减小,则粒子与块状金属相比具有活性的表面状态。因此,互相烧结并且使粒子生长,反应容易向减少表面能量的方向进行。该现象,如非专利文献2中的记载所示,特别是在纳米粒子(通常,粒子的直径小于或等于10nm)下可明显地观察到。
[0006]通过利用该现象,能够在远低于块状状态的熔点的低温下进行接合,并且接合实现后的接合层在达到块状的熔点之前不会再熔融。在实际接合中所使用的粒子的表面,为了抑制烧结而通过有机保护膜进行保护,但是通过接合中的加热使保护膜分解?脱气,从而实现接合。
[0007]为了容易地使用上述的带有机保护膜的金属纳米粒子,或者为了防止分解时的氧化,使有机溶剂分散而降低粘度。将加入该金属的溶剂作为金属纳米膏。
[0008]另外,在专利文献2中提出了下述方法,S卩,通过在一者的部件的接合部处形成凹部,并且在另一者的部件的接合部处形成凸部,从而增加接合面积。
[0009]专利文献1:日本特开2004 - 107728号公报
[0010]专利文献2:日本特开2006 - 202586号公报
[0011]非专利文献I 使用银纳米粒子的接合过程-与Cu的接合性的研究”井出英一、安形真治、广濑明夫、小林法二郎 Proc.1Oth Symp0.0n Microjoining and AssemblyTechnologies for Electronics, 2004,Yokohama Japan, (2004)213
[0012]非专利文献2:Ph.Buffat and J-P.Borel, Phys.Rev.A13 (6) 2287 (1976)
[0013]按照专利文献I以及非专利文献I的记载所示,在利用金属纳米粒子的烧结性的接合方法中,为了得到高可靠性,需要加压。为了进行加压,填充金属纳米粒子的部件需要承受加压力,但是在不能承受加压力时,在半导体与绝缘基板中,有可能发生芯片破裂以及基板破裂。
[0014]因此,为了使加压力降低,考虑采用在专利文献2中所记载的接合方法。但是,在该接合方法中,在部件的接合部处的凹部内没有完全密布金属纳米粒子的情况下,存在接合强度以及接合可靠性可能降低的问题。


【发明内容】

[0015]因此,本发明的目的在于提供一种技术,该技术能够实现在将2个部件接合的情况下的接合强度以及接合可靠性的提高。
[0016]本发明所涉及的使用金属纳米粒子的接合构造具有:第I部件,其至少在一个表面上具有金属面;第2部件,其至少在一个表面上具有金属面,并且该金属面配置在与上述第I部件的金属面相对的位置处;以及接合材料,其通过将金属纳米粒子烧结接合,从而将上述第I部件与上述第2部件接合,上述第I部件和上述第2部件中的至少一者的金属面形成为具有0.5 μ m?2.0 μ m的表面粗糙度的粗糙面。
[0017]本发明所涉及的使用金属纳米粒子的接合方法是使用金属纳米粒子将第I部件与第2部件接合的接合方法,其中,该第I部件至少在一个表面上具有金属面,该第2部件至少在一个表面上具有金属面,该使用金属纳米粒子的接合方法具有:工序(a),在该工序中,在上述第I部件和上述第2部件中的至少一者的金属面上形成具有0.5μπι?2.Ομ--的表面粗糙度的粗糙面;工序(b),在该工序中,在上述第2部件的金属面上以一定厚度印刷金属纳米膏;工序(c),在该工序中,在印刷在上述第2部件的金属纳米膏上载置上述第I部件;以及工序(d),在该工序中,在印刷在上述第2部件的金属纳米膏上载置有上述第I部件的状态下进行加热,将包含在金属纳米膏中的金属纳米粒子烧结接合。
[0018]发明的效果
[0019]根据本发明,由于第I部件与第2部件中的至少一者的金属面,形成为具有表面粗糙度的粗糙面,因此,不必使第I部件和第2部件大型化,就能够使第I部件与第2部件的接合面积增加,另外,基于锚固效应,能够得到足够的接合强度。并且,由于粗糙面形成为0.5 μ m?2.0 μ m的表面粗糙度,因此能够大幅抑制裂纹面积率(剥离面积的比例),能够实现在接合第I部件与第2部件的情况下的接合可靠度的提高。

【专利附图】

【附图说明】
[0020]图1是实施方式I所涉及的接合构造的剖面图。
[0021]图2是实施方式I所涉及的接合构造中的实用化例子的剖面图。
[0022]图3是第2部件的俯视图。
[0023]图4是在将第2部件的接合面的表面粗糙度变更后的情况下的可靠性实验结果的对比图。
[0024]图5是表示图1的接合构造的制造过程中的剖面图。
[0025]图6是实施方式2所涉及的接合构造的第2部件的俯视图。
[0026]图7是实施方式3所涉及的接合构造的第2部件的俯视图。
[0027]图8是实施方式4所涉及的接合构造的第2部件的俯视图。
[0028]标号的说明
[0029]I第I部件,2第2部件,3接合材料,25第I粗糙度区域,26第2粗糙度区域。

【具体实施方式】
[0030]<实施方式1>
[0031]下面,使用附图对本发明的实施方式I进行说明。
[0032](结构的说明)
[0033]图1是实施方式I所涉及的接合构造的剖面图。如图1所示,接合构造具有--第I部件1、第2部件2、以及接合材料3。第I部件I由导电性金属构成。第2部件2由导电性金属构成,并配置在与第I部件I相对的位置处。接合材料3是将金属纳米粒子烧结而得到集合体,填充于第I部件I与第2部件2之间。另外,在第2部件2的表面形成有作为粗糙面的第I粗糙度区域25。此外,对第I粗糙度区域25的详细内容在下述中说明。
[0034]下面,对接合构造中的实用化例子进行说明。图2是实施方式I所涉及的接合构造中的实用化例子的剖面图,是图1的接合构造的实用化例子。另外,图3是第2部件2的俯视图。图1是第I部件I与第2部件2分别通过单一的金属构成的接合构造,与此相对,图2是金属纳米粒子界面由金属层21、24构成的接合构造。
[0035]如图2所示,接合构造具有--第I部件1、第2部件2、以及接合材料3。第I部件I为半导体元件,具有半导体主体20和金属层21。在半导体主体20的第2部件2侧(第I部件I的一个表面侧)配置有金属层21。S卩,在第I部件I的一个表面上具有金属层21的表面(金属面)。
[0036]半导体主体20例如是Si或者SiC。在金属层21的背面(半导体主体20侧的面)上形成有用于欧姆接合的钛层,在最外面(第2部件2侧的面)上形成有难以氧化并且与银的接合性优异的金层。在钛层与金层之间形成有用于防止不同金属扩散的镍层。
[0037]接合材料3是由平均直径小于或等于10nm的金属粒子(例如银粒子)构成的烧结体。第2部件2是散热器,具有铜制的散热器主体23和金属层24。在散热器主体23的第I部件I侧(第2部件2的一个表面侧)配置有金属层24。S卩,在第2部件2的一个表面具有金属层24的表面(金属面)。
[0038]如图2与图3所示,金属层24的表面(第I部件I侧的面)是与第I部件I的接合面,在金属层24的表面的整个区域形成有作为粗糙面的第I粗糙度区域25。第I粗糙度区域25形成为粗糙面,具有在表面粗糙度Rz-JIS = 0.5μπι?2.0μπι的范围内预先确定的表面粗糙度。
[0039]对表面粗糙度形成在上述范围内的理由进行说明。图4是在变更第2部件2的接合面上的表面粗糙度后的情况下可靠性实验结果的对比图。在图4中,纵轴表示裂纹面积率(剥离面积的比例),横轴表示Η/C循环的循环次数。此处,所谓低粗糙度是指表面粗糙度为0.3 μ m?0.5 μ m,中粗糙度是指表面粗糙度为0.5 μ m?2.0 μ m,高粗糙度是指表面粗糙度为2.0ym?3.7μπι。如图4所示,在中粗糙度的情况下裂纹面积率最小,接合可靠性最高。因此,第I粗糙度区域25形成为在0.5 μ m?2.0 μ m范围内预先确定的表面粗糙度。
[0040]另外,第2部件2的接合面形成为比第I部件I的接合面大,第2部件2的粗糙面形成在第2部件2的接合面(金属层24的表面)的整个区域。因此,第2部件2的粗糙面形成为比第2部件2中的与第I部件I的接合面的接合区域还大的区域。
[0041](接合方法)
[0042]下面,对在图4的可靠性试验时使用的接合构造以及接合方法进行说明。图5是表示图1的接合构造的制造过程中的剖面图。
[0043]在图2中示出了接合构造完成后的状态,使用Si作为第I部件I的半导体主体20,在金属层21的最外面使用金。使用铜制品作为第2部件2的散热器主体23,作为金属层24的表面粗糙度,准备低粗糙度、中粗糙度、高粗糙度这3种第2部件2,在金属层24的表面的整个区域使表面粗糙度相同。
[0044]金属层24的第I粗糙度区域25是使用砂纸或者锉刀形成的。此外,第I粗糙度区域25也能够使用铣削加工、磨削加工、放电加工、研磨加工或者化学方法(蚀刻加工)等而形成。
[0045]在第I部件I与第2部件2之间准备将被有机保护膜包覆的金属纳米分散于有机溶剂而成的金属纳米膏,该金属纳米膏处在形成金属纳米粒子的烧结体即接合材料3的前一阶段。在本实验中,金属纳米粒子的金属是银。
[0046]下面使用上述部件进行接合。首先,在作为第2部件2的铜制散热器上,使用丝网印刷法以一定厚度印刷金属纳米膏以形成与和作为第I部件I的半导体元件的接合面相同尺寸的大小。然后,在印刷在第2部件2上的金属纳米膏上载置第I部件I。
[0047]然后,如图5所示,在印刷在第2部件2的金属纳米膏上载置有第I部件I的状态下,放置在加热加压装置10中。加热加压装置10具有固定部8和按压部4。加热加压装置10以在固定部8与按压部4之间载置接合对象物,并且通过固定部8和按压部4 一边对接合对象物加压一边加热的方式构成。
[0048]在固定部8与按压部4之间,以在印刷在第2部件2的金属纳米膏上载置有第I部件I的状态进行载置,通过固定部8与按压部4 一边对第I部件I和第2部件2加压一边加热。通过一边对第I部件I和第2部件2加压一边加热,从而使金属纳米膏中含有的有机成分分解.挥发,对金属纳米粒子进行烧结接合。其结果,完成图2所示的接合构造。
[0049](效果)
[0050]通常,在金属间的接合中,与异类金属相比,同类金属的接合容易。另外,金属纳米粒子的接合原理是利用粒子表面的接合能量,根据上述理由,通过使金属纳米粒子相对于异类金属的绝对接触面积增加,从而能够防止在异类金属间界面处产生的剥离。通过调整表面粗糙度,从而能够使其接触面积增加。由此,能够进行界面剥离率低、可靠性高的接合。另外,利用使用该微小的金属膏的接合方法,能够得到高品质、高可靠性的接合构造。
[0051]按照以上方式,在实施方式I所涉及的接合构造中,由于第I部件I与第2部件2中的至少一者的金属面形成为粗糙面,因此,不必使第I部件I和第2部件2大型化,就能够使第I部件I与第2部件2的接合面积增加,另外,基于锚固效应,能够得到足够的接合强度。
[0052]并且,由于作为粗糙面的第I粗糙度区域25形成为在0.5μπι?2.Ομπι范围内预先确定的表面粗糙度,因此如使用图4进行的说明所示,能够大幅抑制裂纹面积率,能够实现在将第I部件I与第2部件2接合的情况下的接合可靠性的提高。由此,在第I部件I和第2部件2的接合构造中,能够实现耐久性的提高和成品率的提高。另外,通过针对接合面而设置粗糙面,从而能够以所需最小限的面积确保接合面积,因此能够实现接合构造的小型化。
[0053]另外,由于第2部件2的粗糙面形成为比第2部件2中的与第I部件I接合面的接合区域还大的区域,因此特别是经由第2部件2的粗糙面中的除了该接合区域以外的区域,能够使金属纳米膏中包含的有机溶剂更加容易脱离。
[0054]另外,由于第I部件I是半导体元件,第2部件2是散热器,因此通过使用能够得到足够的接合强度和高可靠性的实施方式I所涉及的接合构造,从而能够取得较好的效果。并且,在半导体元件是SiC的情况下,由于在高温状态下使用,因此能够取得更好的效果。
[0055]另外,使用金属纳米粒子的接合方法,具有:工序(a),在该工序中,在第I部件I和第2部件2中的至少一者的金属面上,形成具有在0.5 μ m?2.0 μ m范围内预先确定的表面粗糙度的粗糙面即第I粗糙度区域25 ;工序(b),在该工序中,在第2部件2的金属面上以一定厚度印刷金属纳米膏;工序(c),在该工序中,在印刷在第2部件2的金属纳米膏上载置第I部件I ;以及工序(d),在该工序中,在印刷在第2部件2的金属纳米膏上载置有第I部件I的状态下进行加热,将包含在金属纳米膏中的金属纳米粒子烧结接合。
[0056]因此,由于第I部件I和第2部件2中的至少一者的金属面形成为粗糙面,因此,不必使第I部件I与第2部件2大型化,就能够使第I部件I与第2部件2的接合面积增力口,另外,基于锚固效应,能够得到足够的接合强度。
[0057]并且,由于在第I部件I和第2部件2中的至少一者的金属面上,形成具有在0.5 μ m?2.0 μ m范围内预先确定的表面粗糙度的粗糙面,因此能够大幅抑制裂纹面积率,并实现在将第I部件I与第2部件2接合的情况下的接合可靠性的提高。
[0058]另外,当前提出了下述方法,S卩,通过在一者的部件的接合部处形成凹部,并且在另一者的接合部处形成凸部,从而使接合面积增加而进行接合。对此,在本实施方式所涉及的接合方法中,由于能够将形成凹部和凸部的工序置换为工序(a),因此能够不增加工时而容易地实施。
[0059]<实施方式2>
[0060]下面,对实施方式2所涉及的接合构造进行说明。图6是实施方式2所涉及的接合构造的第2部件2的俯视图。此外,在实施方式2中,对于与在实施方式I中所说明的内容相同的结构要素标注相同符号,并省略说明。
[0061 ] 在实施方式I中,如图3所示,在第2部件2的接合面整个区域中表面粗糙度相同,与此相对,在本实施方式中,如图6所示,粗糙面具有第I粗糙度区域25和第2粗糙度区域26,分别形成为平行的直线条纹状。
[0062]第I粗糙度区域25形成为在表面粗糙度Rz-JIS = 0.5μπι?2.0μπι的范围内预先确定的表面粗糙度(第I表面粗糙度)。第2粗糙度区域26形成为在表面粗糙度Rz-JIS= 0.5μπι?2.0μπι的范围内比第I粗糙度区域25的表面粗糙度还粗糙的预先确定的表面粗糙度(第2表面粗糙度)。
[0063]S卩,通过将表面粗糙度不同的第I粗糙度区域25和第2粗糙度区域26分别形成为平行的直线条纹状,从而使表面粗糙度具有方向性。其中,表面粗糙度的方向设置为条纹状的第2粗糙度区域26的延伸方向。
[0064]此处,金属层24的第2粗糙度区域26是使用砂纸或者锉刀而形成的。此外,第2粗糙度区域26也能够使用铣削加工、磨削加工、放电加工、研磨加工或者化学方法(蚀刻加工)等而形成。
[0065]如上所述,在实施方式2所涉及的接合构造中,由于粗糙面具有:第I粗糙度区域25,其具有作为第I表面粗糙度的表面粗糙度;以及第2粗糙度区域26,其具有作为比第I表面粗糙度还粗糙的第2表面粗糙度的表面粗糙度,因此在第2部件2中的同一平面上的接合面上,通过使表面粗糙度不同,从而能够确保足够的接合强度。另外,由于第I粗糙度区域25和第2粗糙度区域26分别形成为平行的直线条纹状,因此使表面粗糙度具有方向性,由此,经由第2粗糙度区域26,能够使包含在金属纳米膏中的有机溶剂容易脱离,对成为使接合品质以及可靠性劣化的主要原因的空隙的产生进行抑制。
[0066]另外,如实施方式I中的说明所示,由于第2部件2的粗糙面形成为比第2部件2中的与第I部件I的接合面的接合区域还大的区域,因此特别是经由第2部件2的粗糙面中的除了该接合区域以外的第2粗糙度区域26,能够使包含在金属纳米膏中的有机溶剂更加容易脱离。
[0067]<实施方式3>
[0068]下面,对实施方式3所涉及的接合构造进行说明。图7是实施方式3所涉及的接合构造的第2部件2的俯视图。此外,在实施方式3中,对与在实施方式1、2中所说明的内容相同的结构要素标注相同的符号并省略说明。
[0069]在实施方式I中,如图3所示,在第2部件2的接合面的整个区域中,表面粗糙度相同,与此相对,在本实施方式中,如图7所示,粗糙面具有第I粗糙度区域25和第2粗糙度区域26,第2粗糙度区域26形成为十字状。
[0070]第I粗糙度区域25形成为在表面粗糙度Rz-JIS = 0.5μπι?2.0μπι的范围内预先确定的表面粗糙度(第I表面粗糙度)。第I粗糙度区域25在第2部件2的接合面上,形成在除了形成为十字状的第2粗糙度区域26以外的区域上。第2粗糙度区域26形成为在表面粗糙度Rz-JIS = 0.5 μ m?2.0 μ m的范围内比第I粗糙度区域25的表面粗糙度还粗糙的预先确定的表面粗糙度(第2表面粗糙度)。
[0071]S卩,通过将比第I粗糙度区域25的表面粗糙度还粗糙的第2粗糙度区域26形成为十字状,从而使表面粗糙度具有方向性。其中,表面粗糙度的方向设置为十字状的第2粗糙度区域26的延伸方向。
[0072]如上所述,在实施方式3所涉及的接合构造中,粗糙面具有:第I粗糙度区域25,其具有作为第I表面粗糙度的表面粗糙度;以及第2粗糙度区域26,其具有作为比第I表面粗糙度还粗糙的第2表面粗糙度的表面粗糙度,该第2粗糙度区域26形成为十字状。
[0073]因此,由于通过使表面粗糙度具有方向性,经由形成为十字状的第2粗糙度区域26而向四面八方,能够使金属纳米膏中包含的有机溶剂更加容易脱离,因此能够进一步对成为使接合品质以及可靠性劣化的主要原因的空隙的产生进行抑制。
[0074]另外,如实施方式I的说明所示,由于第2部件2的粗糙面形成为比第2部件2中的与第I部件I的接合面的接合区域还大的区域,因此特别是经由第2部件2的除了粗糙面中的该接合区域以外的第2粗糙度区域26,能够使包含在金属纳米膏中的有机溶剂更加容易脱离。
[0075]<实施方式4>
[0076]下面,对实施方式4所涉及的接合构造进行说明。图8是实施方式4所涉及的接合构造的第2部件2的俯视图。此外,在实施方式4中,对与在实施方式I?3中所说明的内容相同的结构要素标注相同符号并省略说明。
[0077]在实施方式I中,如图3所示,在第2部件2的接合面的整个区域中,表面粗糙度相同,与此相对,在本实施方式中,如图8所示,粗糙面具有第I粗糙度区域25和第2粗糙度区域26,第2粗糙度区域26形成为格子状。
[0078]第I粗糙度区域25形成为在表面粗糙度Rz-JIS = 0.5μπι?2.0μπι的范围内预先确定的表面粗糙度(第I表面粗糙度)。第I粗糙度区域25在金属层24的接合面上形成在除了形成为格子状的第2粗糙度区域26以外的区域上。第2粗糙度区域26形成为在表面粗糙度Rz-JIS = 0.5 μ m?2.0 μ m的范围内比第I粗糙度区域25的表面粗糙度还粗糙的预先确定的表面粗糙度(第2表面粗糙度)。
[0079]S卩,通过将比第I粗糙度区域25的表面粗糙度还粗糙的第2粗糙度区域26形成为格子状,从而使表面粗糙度具有方向性。其中,将表面粗糙度的方向设置为格子状的第2粗糙度区域26的延伸方向。
[0080]如上所述,在实施方式4所涉及的接合构造中,粗糙面具有:第I粗糙度区域25,其具有作为第I表面粗糙度的表面粗糙度;以及第2粗糙度区域26,其具有比第I表面粗糙度还粗糙的第2表面粗糙度,该第2粗糙度区域26形成为格子状。
[0081]因此,由于通过使表面粗糙度具有方向性,从而经由形成为十字状的第2粗糙度区域26而向四面八方,能够使包含在金属纳米膏中的有机溶剂更加容易脱离,因此能够进一步对成为使接合品质以及可靠性劣化的主要原因的空隙的产生进行抑制。
[0082]另外,如实施方式I的说明所示,由于第2部件2的粗糙面形成为比第2部件2中的与第I部件I的接合面的接合区域还大的区域,因此特别是经由第2部件2的除了粗糙面中的该接合区域以外的第2粗糙度区域26,能够使金属纳米膏中包含的有机溶剂更加容易脱离。
[0083]此外,在实施方式I?4中,对半导体元件作为第I部件I,散热器作为第2部件2的情况进行了说明,但是并不限定于此,也能够采用除此以外的部件。另外,通过在第I部件I的两面侧配置金属层,可以在第I部件I的两面形成金属面,通过在第2部件2的两面侧配置金属层,可以在第2部件2的两面形成金属面。
[0084]另外,在实施方式I?4中,对在第2部件2的金属面上形成粗糙面的情况进行了说明,但是并不限定于此,可以在第I部件I的金属面上形成粗糙面,并且,可以在第I部件I的金属面上和第2部件2的金属面上分别形成粗糙面。
[0085]此外,本发明在其发明的范围内,能够对各实施方式进行自由组合,或者对各实施方式进行适当的变形、省略。
【权利要求】
1.一种使用金属纳米粒子的接合构造,其具有: 第I部件,其至少在一个表面上具有金属面; 第2部件,其至少在一个表面上具有金属面,并且该金属面配置在与所述第I部件的金属面相对的位置处;以及 接合材料,其通过将金属纳米粒子烧结接合,从而将所述第I部件与所述第2部件接I=I, 所述第I部件与所述第2部件中的至少一者的金属面形成为具有0.5 μ m?2.0 μ m的表面粗糙度的粗糙面。
2.根据权利要求1所述的使用金属纳米粒子的接合构造,其中, 所述粗糙面具有--第I粗糙度区域,其具有第I表面粗糙度;以及第2粗糙度区域,其具有比第I表面粗糙度还粗糙的第2表面粗糙度, 所述第I粗糙度区域和所述第2粗糙度区域分别形成为平行的直线条纹状。
3.根据权利要求1所述的使用金属纳米粒子的接合构造,其中, 所述粗糙面具有--第I粗糙度区域,其具有第I表面粗糙度;以及第2粗糙度区域,其具有比第I表面粗糙度还粗糙的第2表面粗糙度, 所述第2粗糙度区域形成为十字状或者格子状。
4.根据权利要求1?3中任I项所述的使用金属纳米粒子的接合构造,其中, 所述粗糙面在所述第I部件和所述第2部件中的至少一者的金属面上,形成为比与另一者的金属面的接合区域还大的区域。
5.根据权利要求1所述的使用金属纳米粒子的接合构造,其中, 所述第I部件是半导体元件,所述第2部件是散热器。
6.根据权利要求5所述的使用金属纳米粒子的接合构造,其中, 所述半导体元件是SiC。
7.一种使用金属纳米粒子的接合方法,其使用金属纳米粒子将第I部件与第2部件进行接合,该第I部件至少在一个表面上具有金属面,该第2部件至少在一个表面上具有金属面, 该使用金属纳米粒子的接合方法具有: 工序(a),在该工序中,在所述第I部件和所述第2部件中的至少一者的金属面上形成具有0.5 μ m?2.0 μ m的表面粗糙度的粗糙面; 工序(b),在该工序中,在所述第2部件的金属面上以一定厚度印刷金属纳米膏; 工序(c),在该工序中,在印刷在所述第2部件上的金属纳米膏上载置所述第I部件;以及 工序(d),在该工序中,在印刷在所述第2部件上的金属纳米膏上载置有所述第I部件的状态下进行加热,将包含在金属纳米膏中的金属纳米粒子烧结接合。
【文档编号】H01L23/488GK104347564SQ201410389464
【公开日】2015年2月11日 申请日期:2014年8月8日 优先权日:2013年8月8日
【发明者】岩田彩, 日野泰成 申请人:三菱电机株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1