陶瓷结构体、基板保持装置用部件及陶瓷结构体的制法的制作方法

文档序号:12513915阅读:243来源:国知局
陶瓷结构体、基板保持装置用部件及陶瓷结构体的制法的制作方法

本发明涉及陶瓷结构体、基板保持装置用部件及陶瓷结构体的制法。



背景技术:

在对硅基板、玻璃基板、各种单晶基板等板状的材料进行精密加工,制造半导体等元件或设备时,大多使用基板保持装置。该基板保持装置存在具有吸附基板的功能的静电卡盘或真空卡盘、具有加热功能的加热器、或者这些部件组合而成的装置等多个种类。其中,对于静电卡盘或加热器,在具有基板保持面的基体的内部以图案状埋设有导电性物质作为电极,具有产生静电力或用于加热的焦耳热等的功能。

例如专利文献1中公开一种静电卡盘,其具备各种陶瓷基体和埋设在其内部的电极。作为陶瓷基体的材料,可以举出:氧化铝、氮化铝、氮化硅、氧化硅、氧化锆、氧化钛、硅铝氧氮陶瓷、氮化硼、碳化硅或者这些物质的混合物。另一方面,作为电极的材料,可以举出:铝、铁、铜、银、金、钛、钨、钼、铂等金属;石墨、碳、碳化硅、氮化钛、碳化钛等陶瓷;或者这些物质的混合物。

现有技术文献

专利文献

专利文献1:日本特开平7-297265号公报



技术实现要素:

但是,近年来,对于使用了主成分为氧化铝或稀土氧化物的陶瓷基体的基板保持装置,希望减薄其厚度。然而,例如通过将陶瓷基体和电极于高温一体烧成来制造该基板保持装置的情况下,存在以下问题:厚度越薄,越会因陶瓷基体与电极的热膨胀差而发生翘曲。

本发明是为了解决这样的课题而实施的,其主要目的是提供一种制造在主成分为氧化铝或稀土金属氧化物的陶瓷基体的表面或内部具备电极的陶瓷结构体时不易发生翘曲的方法。

本发明的陶瓷结构体是在主成分为氧化铝或稀土金属氧化物的陶瓷基体的表面或内部具备电极的陶瓷结构体,所述陶瓷基体的热膨胀系数在40~1200℃下为7.5~9.5ppm/K,所述电极的主成分为金属钌。应予说明,所谓“主成分”,是指体积比例占50体积%以上的成分或全部成分中体积比例最高的成分。

本发明的基板保持装置用部件具备上述的陶瓷结构体。

本发明的陶瓷结构体的制法如下:在主成分为氧化铝或稀土金属氧化物的成型体、预烧体或烧结体的第一基体的一面配置主成分为金属钌的电极或电极前驱体,在该电极或电极前驱体上层叠主成分与所述第一基体相同的氧化物的成型体、预烧体或烧结体的第二基体,制成层叠体,对该层叠体进行热压烧成,由此得到陶瓷结构体。

本发明的陶瓷结构体中,陶瓷基体的热膨胀系数在40~1200℃下为7.5~9.5ppm/K。另一方面,电极的主成分为金属钌,金属钌的热膨胀系数在40~1200℃下为7.9ppm/K。因此,由于陶瓷基体与电极的热膨胀系数差较小,所以制造本发明的陶瓷结构体时,既便于高温将陶瓷基体和电极一体烧成,也不易发生翘曲。

本发明的基板保持装置用部件具备上述的陶瓷结构体,因此,能够得到与通过该陶瓷结构体得到的效果同样的效果。

本发明的陶瓷结构体的制法适合于制造上述的陶瓷结构体。

附图说明

图1是陶瓷结构体10的立体图。

图2是图1的A-A截面图。

图3是陶瓷结构体10的制造工序图。

具体实施方式

本发明的陶瓷结构体在陶瓷基体的表面或内部具备电极。

陶瓷基体是主成分为氧化铝或稀土金属氧化物的烧结体,热膨胀系数在40~1200℃下为7.5~9.5ppm/K,优选为8~9ppm/K。主成分为氧化铝的情况下,除包含氧化铝以外,还可以包含源自于烧结助剂的成分。作为氧化铝的烧结助剂,例如可以举出碱土金属的氟化物(MgF2、CaF2等)或氧化物(MgO、CaO等)。使用碱土金属的氟化物作为氧化铝的烧结助剂的情况下,烧结后仍以该状态作为构成相存在,或者发生反应而成为酰基氟。使用碱土金属的氧化物作为氧化铝的烧结助剂的情况下,烧结后,其氧化物与氧化铝的反应物成为主要的构成相。例如使用MgO作为氧化铝的烧结助剂的情况下,作为构成相,包含MgAl2O4。主成分为稀土金属氧化物的情况下,除包含稀土金属氧化物以外,还可以包含源自于烧结助剂的成分。作为稀土金属氧化物的烧结助剂,例如可以举出稀土金属或碱土金属的氟化物(YF3、YbF3、CaF2等)。

电极的主成分为金属钌。金属钌的热膨胀系数在40~1200℃下为7.9ppm/K。因此,陶瓷基体与电极在40~1200℃下的热膨胀系数的差的绝对值成为较小的值。另外,由于金属钌在室温下的电阻率低至6~10×10-6Ωcm,所以例如将电极用作加热电极的情况下容易高精度地控制发热量。特别是减薄基板保持装置的情况下,也希望减薄形成于陶瓷基体的电极的厚度,因此,要求电极的电阻率较低。并不特别限定电阻率的下限,认为5×10-6Ωcm为实际上的极限。

电极除包含金属钌以外,还可以包含填料成分、其它金属元素、钌与其它金属的合金中的至少1种。这种情况下,优选使其包含填料成分、钌以外的金属、钌与其它金属的合金,以使陶瓷基体与电极在40~1200℃下的热膨胀系数的差的绝对值减小。优选使该绝对值为1.0ppm/K以下。由此,陶瓷基体与电极在40~1200℃下的热膨胀系数差非常小,因此,即便陶瓷结构体的厚度较薄,也几乎不会发生翘曲。

作为填料成分,优选从由氧化锆、氮化钛及构成陶瓷基体的主成分物质构成的组中选择的至少1种。氧化锆的热膨胀系数在40~1200℃下为12~12.5ppm/K,因此,作为想要提高电极的热膨胀系数时的填料成分非常有用。亦即,只要在电极中添加少量的氧化锆就能够提高电极的热膨胀系数。进而,氧化锆即便在高温下也不与金属钌发生反应或者不易发生反应,因此,金属钌对电阻率的影响较小,就这一点而言,作为填料成分非常理想。氮化钛的热膨胀系数在40~1200℃下为9~9.5ppm/K,因此,作为想要提高电极的热膨胀系数时的填料成分非常有用。氮化钛为导电性物质,因此,作为想要抑制电极的电阻率使其较低时的填料成分非常有用。氮化钛即便在高温下也不与金属钌发生反应或者不易发生反应,因此,金属钌对电阻率的影响较小,就这一点而言,作为填料成分非常理想。关于构成陶瓷基体的主成分物质的热膨胀系数,通过添加到电极当中,能够减小电极与陶瓷基体的热膨胀系数差。应予说明,作为填料成分,还可以使用热膨胀系数较高的MgO,但是,在陶瓷基体的主成分为氧化铝的情况下,会在高温下与氧化铝发生反应而生成尖晶石。关于尖晶石,需要注意:热膨胀系数与氧化铝同等、绝缘性也与氧化铝同等且较高、电极内的尖晶石的体积量与添加的MgO的体积量相比有所增加。

作为钌以外的其它金属,优选钛及铌中的至少一者。钛、铌的热膨胀系数比钌高,因此,作为想要提高电极的热膨胀系数时的添加物非常有用。另外,钛、铌为具有导电性的成分,因此,作为想要抑制电极的电阻率使其较低时的添加物非常有用。进而,钛、铌的磁化率较小,因此,即便将陶瓷结构体用于利用磁场这样的磁控式的装置,也不会对磁场造成不良影响。

作为钌与其它金属的合金,优选RuAl合金。RuAl合金的热膨胀系数在40~1200℃下比钌高出11ppm/K左右,因此,作为想要提高电极的热膨胀系数时的添加物非常有用。另外,RuAl合金的导电性较高,因此,作为想要抑制电极的电阻率使其较低时的添加物非常有用。将该合金添加到电极当中的情况下,可以在钌中添加与钌形成合金的其它金属,并预设烧成时与钌发生反应而生成合金来确定添加量。

电极在室温下的电阻率优选为3.0×10-5Ωcm以下。由此,将电极用作加热电极的情况下,容易高精度地控制发热量。因此,优选使金属钌包含填料成分、钌以外的金属、钌与其它金属的合金,以使电极在室温下的电阻率在该数值范围内。将电极用作加热电极的情况下,在室温下的电阻率更优选为2.5×10-5Ωcm以下,进一步优选为2.0×10-5Ωcm以下。

将本发明的陶瓷结构体的一个实施方式示于图1及图2。图1是陶瓷结构体10的立体图,图2是A-A截面图。陶瓷结构体10是在圆盘状的陶瓷基体12的内部内置有电极14的陶瓷结构体。陶瓷基体12是主成分为氧化铝或稀土金属氧化物的烧结体,热膨胀系数在40~1200℃下为7.5~9.5ppm/K。电极14的主成分为金属钌。电极14可以形成为片状,也可以按一笔画的要领以在整个面上扩展的方式形成图案。进而,可以形成多个被形成为片状或图案状的电极。将该陶瓷结构体10的制法之一例示于图3。该制法中,首先,准备作为第一基体21的陶瓷烧结体(参照图3(a))。接下来,在第一基体21的上表面形成电极图案24(参照图3(b))。接下来,以覆盖该电极图案24的方式层叠作为第二基体22的陶瓷成型体,制成层叠体20(参照图3(c))。然后,对该层叠体20进行热压烧成。热压烧成后,第一基体21和第二基体22成为一体,得到陶瓷基体12,电极前驱体24成为电极14,完成陶瓷结构体10(参照图3(d))。第一基体21及第二基体22的主成分为氧化铝的情况下,优选将热压烧成的烧成温度设定为1500℃以下(例如1100℃~1500℃)。另外,第一基体21及第二基体22的主成分为稀土金属氧化物的情况下,优选将热压烧成的烧成温度设定为1600℃以下(例如1400℃~1600℃)。该制法中,可以使第一基体21为陶瓷成型体,也可以使其为陶瓷预烧体。另外,可以使第二基体22为陶瓷预烧体,也可以使其为陶瓷烧结体。另外,电极14在热压烧成前后没有发生变化的情况下,电极前驱体24与电极14相同。进而,通过使用陶瓷结构体10或层叠体20代替第一基体21,能够制作包含多层电极的陶瓷结构体。应予说明,关于陶瓷结构体10,例示了在陶瓷基体12的内部内置有电极14的陶瓷结构体,也可以使其为在陶瓷基体12的表面配置有电极14的陶瓷结构体。

但是,国际公开第2013/54806号小册子中公开一种陶瓷结构体,其具备以氧化镁中固溶有Al、N成分的Mg(Al)O(N)为主相的陶瓷基体和埋设在其内部的电极。该文献中,作为电极,举出了在金属钌中配合MgO的部件。但是,该文献的陶瓷基体以Mg(Al)O(N)为主相,热膨胀系数为10.2~12.8ppm/K。因此,就这一点而言,与本发明的陶瓷结构体不同。另外,为了使电极与陶瓷基体的热膨胀系数匹配,在金属钌中配合有大量的MgO。由于MgO为绝缘体,所以配合了大量的MgO的电极成为高电阻。因此,将电极用作加热电极的情况下,需要增大电极截面积等,所以有可能无法高精度地控制发热量,另外,由于需要对加热器施加高电压,所以有可能要求加热器控制用的电源具有非常大的功率等。

本发明的基板保持装置用部件具备上述的陶瓷结构体。作为基板保持装置用部件,除了对半导体用的Si基板、SiC基板、GaN基板等半导体用的基板进行保持的装置中所使用的部件以外,还可以举出对照明用或显示器用的玻璃基板进行保持的装置中所使用的部件等。

实施例

以下,对本发明的实施例进行说明。应予说明,以下的实施例并不对本发明作任何限定。另外,纯度、杂质含量的“%”是指质量%。

(1)陶瓷结构体的制法

(1-1)第一基体的准备

(1-1-1)原料粉末的制备

对于Al2O3粉末,使用市售的高纯度Al2O3(纯度99.99%以上、平均粒径0.5μm)。作为用于使Al2O3成型体烧结的烧结助剂,使用MgF2粉末和MgO粉末。对于MgF2粉末,使用将市售的MgF2(纯度99.9%以上)粉碎而使平均粒径为1μm以下的MgF2。对于MgO粉末,使用市售的MgO粉末(纯度99.95%以上、平均粒径1μm)。MgF2粉末及MgO粉末的添加量相对于Al2O3100质量%分别为0.3质量%及0.1质量%。以异丙醇为溶剂,使用尼龙制的罐、直径5mm的Al2O3石球,将按上述组成称量的Al2O3粉末、MgF2粉末及MgO粉末湿式混合4小时,制成浆料。将从罐中取出的浆料在氮气流中于110℃进行干燥,将干燥物过30目的筛子,将筛下的粉末作为第一基体(Al2O3烧结体)制作用的原料粉末。

(1-1-2)圆盘状成型体的制作

将上述原料粉末以200kgf/cm2的压力进行单轴加压成型,制作直径50mm、厚度20mm左右的圆盘状成型体。

(1-1-3)圆盘状成型体的烧成

将上述圆盘状成型体收纳于热压用的石墨模具后,安置在热压炉中,使压制力为200kgf/cm2,于烧成温度(最高温度)1200℃保持4小时,制作烧结体。使升温速度及降温速度均为300℃/hr,升温过程中抽真空直至达到1000℃,然后,导入氮气。维持导入后的气体压力为1.5atm左右。降温时,于1000℃停止温度控制,进行炉冷。将得到的烧结体加工成直径50mm、厚度10mm左右,制成将其用作第一基体的Al2O3烧结体。

以上,对用作实验例1~8、10~30的第一基体的Al2O3烧结体进行了说明,实验例9中,将Al2O3预烧体用作第一基体。Al2O3预烧体使用将以依据1-1-2的方法制作的圆盘状成型体在氩气氛下于900℃进行热处理后将形状调整为直径50mm、厚度20mm左右得到的物质。另外,关于用作实验例31、32的第一基体的Y2O3烧结体及Yb2O3烧结体,如下制作。实验例31中,使用市售的高纯度Y2O3粉末,使烧成温度为1575℃,除此以外,以依据上述(1-1)的方法制作Y2O3烧结体。另外,实验例32中,使用市售的高纯度Yb2O3粉末,使烧成温度为1500℃,除此以外,以依据上述(1-1)的方法制作Yb2O3烧结体。应予说明,Y2O3粉末、Yb2O3粉末使用纯度99.9%以上、平均粒径1μm以下的物质。

(1-2)电极糊的印刷

将市售的Ru粉末(纯度99.9%)粉碎,使平均粒径为4μm左右,用于原料粉末。关于引入Ru电极的填料成分、Ru以外的金属成分,使用如下物质。应予说明,所谓填料成分,是指与Ru的反应性低的成分,本发明中,是指引入了陶瓷成分的情形。将例如Al2O3或ZrO2、TiN、Y2O3、Yb2O3等称为填料成分。另一方面,作为金属成分的Al或Ti、Nb与作为填料成分举出的陶瓷成分相比,容易与Ru发生反应,例如Al的情况下,成为RuAl合金(以摩尔比计Ru:Al=1:1),另外,Nb的情况下,能够明确确认到固溶于Ru,因此,总称为Ru以外的金属成分。作为用于填料成分的Al2O3、Y2O3、Yb2O3,使用与第一基体中使用的物质相同的物质。作为ZrO2,使用纯度99.9%、平均粒径1μm以下的市售品。作为TiN,使用除氧以外的杂质含量为0.1%以下且平均粒径为0.9μm的市售品。作为Al,使用高纯度Al粉末且#500以下的市售品。作为Ti,使用纯度99.9%且平均粒径为10μm的市售品。作为Nb,使用纯度99%且平均粒径为20μm的市售品。按表1中记载的比例称量Ru粉末和各种填料成分或者Ru以外的金属成分,作为粘合剂,使用聚甲基丙烯酸正丁酯,作为有机溶剂,使用丁基卡必醇,制成印刷用的电极糊。

将印刷用的电极糊通过丝网以宽度5mm×长度15mm的大小印刷于上述(1-1-3)中得到的烧结体的上表面(实验例1~8、10~32)。此时,使电极糊的印刷厚度为50~100μm,印刷后,在大气中,于100℃干燥1小时。应予说明,实施例9中,作为第一基体,使用将混合粉末的圆盘状成型体在不活泼性气氛中于900℃进行热处理得到的成型体,在该成型体的一面印刷电极糊。

(1-3)第二基体的配置

在至上述(1-2)为止制作的第一基体的电极糊印刷面上重叠第二基体,制成层叠体。实验例1~9、11~30中,作为第二基体,使用上述(1-1-2)中得到的Al2O3成型体。实验例10中,作为第二基体,使用上述(1-1-3)中得到的Al2O3烧结体。实验例31、32中,作为第二基体,使用得到上述(1-1-3)的Y2O3烧结体及Yb2O3烧结体之前的成型体。

(1-4)烧成一体化

将上述(1-3)中制作的层叠体收纳于热压炉,在与上述(1-1-3)基本相同的条件下进行热压烧成,将层叠体一体化,由此,得到在陶瓷基体的内部具备烧结电极的陶瓷结构体。其中,各实验例中的烧成温度(最高温度)如表1所记载。

表1

(2)陶瓷结构体的评价项目

·单质的热膨胀系数

制作Ru粉碎粉末的烧结体,利用依据JIS-R1618的方法测定Ru单质的热膨胀系数。此处,由于关注因通过烧成将陶瓷基体和电极糊一体化后的热膨胀系数的不一致而发生的形变问题,所以使热膨胀系数的温度范围为40~1200℃(1200℃为实验例1~30中的最低烧成温度)。对于在超过1200℃的烧成温度下制作的结构体,认为:如果在这样的高温下通过热压对陶瓷材料负载载荷,则不仅以Ru为主成分的金属系的电极材料发生塑性变形,陶瓷材料也稍有塑性变形,由此,能够缓和因热膨胀系数的不一致等而发生的形变。因此,使热膨胀系数的温度范围为40~1200℃。使用从Al2O3的陶瓷基体上切出的Al2O3烧结体试样,利用依据JIS-R1618的方法测定Al2O3的热膨胀系数。应予说明,使Al2O3填料的热膨胀系数也为与Al2O3相同的值。填料成分及Ru以外的金属的热膨胀系数使用文献中报告的值、或者、与Al2O3同样地制作烧结体并利用依据JIS-R1618的方法测定的值。这些单质的热膨胀系数如表1所记载。

·电极的热膨胀系数

由使用的材料单质在40~1200℃下的热膨胀系数和电极的调合比例通过计算求出各电极在40~1200℃下的热膨胀系数。将其结果记载于表1。

·热膨胀系数差

计算陶瓷基体与电极在40~1200℃下的热膨胀系数差的绝对值。

·电极的电阻率

以成为宽度9mm×长度9mm×厚度6mm左右的长方体状且在中央的宽度5mm×长度9mm左右内置有电极的方式,从制作的陶瓷结构体上切出试验片。应予说明,电极的端面在试验片的两端面以宽度5mm暴露出来,通过显微镜测量电极的宽度和厚度,求出电极端面的截面积S(cm2)。另外,通过游标卡尺测定电极的长度L(cm),用于计算电阻率。在电极的两端面涂布导电性糊后连接导线构成电阻测定用的电路,在大气中,于室温使微电流I(mA)以0~150mA的范围流通,测定此时产生的微电压值V(mV),由R=V/I求出电极的电阻R(Ω)。然后,由ρ=R×S/L计算电极的电阻率ρ(Ωcm)。

·微结构

对得到的部件的切割面进行镜面研磨后,使用扫描型电子显微镜(SEM)及电子探针微量分析仪(EPMA),观察电极、陶瓷基体的界面及其周边等的微结构。

·烧结体密度、开口气孔率

使用切成棒状的试样,以纯水为介质,利用阿基米德法进行测定。

(3)陶瓷结构体的评价结果

以下,对各实验例的评价结果进行说明。

·实验例1

实验例1是将按从上侧开始依次为Al2O3成型体(第二基体)/Ru100%电极/Al2O3烧结体(第一基体)进行层叠而成的层叠体于1200℃进行4小时热压烧成,制作陶瓷结构体的例子。陶瓷基体与电极的热膨胀系数差较小为0.7ppm/K,截面观察中,在界面及其附近没有确认到产生裂纹等异常。电极的电阻率非常小为1.3×10-5Ωcm,可知足够作为加热器用的电极发挥作用。应予说明,从第一基体、第二基体上切出的Al2O3烧结体的体积密度为3.97g/cm3以上,开口气孔率为0.02%以下,具有充分的致密性。

·实验例2~4

实验例2中,在电极中添加Al2O3填料,使电极组成为Ru90vol%、Al2O310vol%,除此以外,以与实验例1同样的条件制作部件。实验例3、4中,与实验例2相比增加了Al2O3填料的添加量。Al2O3填料的热膨胀系数比Ru大,因此,随着Al2O3填料的添加量增多,电极的热膨胀系数变大,接近于Al2O3基体的热膨胀系数。这些例子中,电极的热膨胀系数为8.0~8.2ppm/K,与Al2O3的热膨胀系数差变小为0.6~0.4ppm/K。电极的电阻率为1.6×10-5~2.8×10-5Ωcm,虽然随着填料的添加量增加而升高,但即便是实验例4的40vol%也为2.8×10-5Ωcm,非常小且良好。另外,与实验例1同样地,在电极的界面及其附近没有产生裂纹等异常,Al2O3基体的致密性也良好。

·实验例5~8

实验例5~8中,改变Al2O3填料的添加量、烧成温度,除此以外,通过与实验例2同样的方法制作陶瓷结构体。实验例5是使Al2O3填料为20vol%且于1300℃进行烧成的例子,但是,电极的电阻率与相同组成的1200℃烧成材料(实验例3)相比,稍微降低,为1.6×10-5Ωcm且良好。实验例6是没有加入Al2O3填料且于1500℃进行烧成的例子,但是,电极的电阻率为1.0×10-5Ωcm,在实验例1~30中是最低的电阻。添加了20vol%、40vol%的Al2O3填料的实验例7、8中,电阻率分别为1.5×10-5Ωcm、2.1×10-5Ωcm,也良好。另外,实验例5~8均与实验例1同样地,在电极的界面及其附近没有产生裂纹等异常,Al2O3基体的致密性也良好。应予说明,对实验例6~8和实验例1、3、4进行比较,发现烧结温度1500℃的实验例6~8与烧结温度1200℃的实验例1、3、4相比,电极的电阻率降低,推测其理由是:在1500℃下充分进行电极的烧结,并且各粒子变大,晶界处的电阻减少。

·实验例9、10

作为第一基体,实验例9中使用Al2O3预烧体,实验例10中使用Al2O3烧结体,除此以外,通过与实验例5同样的方法制作陶瓷结构体。实验例9、10中的电极的电阻率分别为1.6×10-5Ωcm、1.5×10-5Ωcm,低电阻且良好。像实验例9那样使用预烧体作为第一基体的情况下,具有以下优点:能够1次完成用于制作陶瓷结构体的高温下的烧成(正式烧成),能够缩短制造工序。像实验例10那样使用烧结体作为第一基体的情况下,能够进一步提高电极面的平坦性。因此,能够期待在将实验例10的陶瓷结构体用作保持晶片的陶瓷加热器时温度均匀性进一步提高。

·实验例11~13

实验例11中,填料使用ZrO2,除此以外,以与实验例2同样的方法制作陶瓷结构体。根据文献推定ZrO2的热膨胀系数为12.2ppm/K。由于ZrO2的热膨胀系数较高,所以像实验例11那样通过添加16vol%,能够使热膨胀系数差为0.0ppm/K,能够使电极的热膨胀系数与Al2O3基体的热膨胀系数完全一致。实验例12是使烧成温度为1300℃、除此以外、以与实验例11同样的方法制作陶瓷结构体的例子,此处,也能够制作使热膨胀系数完全一致的陶瓷结构体。实验例13中,使ZrO2的添加量为22vol%,使烧成温度为1300℃,除此以外,以与实验例11同样的方法制作陶瓷结构体。该实验例13是使电极的热膨胀系数比Al2O3的热膨胀系数大的例子。实验例11~13中,在电极的界面及其附近均没有产生裂纹等异常,并且,Al2O3基体的致密性也良好。电极的电阻也低至1.5×10-5~1.8×10-5Ωcm,良好。

·实验例14、15

实验例14中,填料使用TiN,除此以外,以与实验例2同样的方法制作陶瓷结构体。实验例15中,使TiN的添加量为30vol%,除此以外,以与实验例14同样的方法制作陶瓷结构体。根据制作的烧结体的测定,TiN的热膨胀系数为9.4ppm/K。由于TiN为导电性的物质,所以实验例14的电极的电阻率比Al2O3填料为相同添加量的实验例2的情形低,为1.4×10-5Ωcm。另外,实验例15的电极的电阻率为1.8×10-5Ωcm,但是,与Al2O3填料少至20vol%的实验例3相比,电阻率较低。实验例14、15中,在电极的界面及其附近均没有产生裂纹等异常,并且,Al2O3基体的致密性也良好。

·实验例16~22

实验例16~22中,为了调整电极的热膨胀系数,在Ru中添加了作为金属成分的Al,通过Al与Ru的反应使电极内生成RuAl合金,制成Ru/RuAl电极。陶瓷结构体的基本制作方法依据实验例2。根据烧结体中的实际测量,可知RuAl合金的热膨胀系数及密度为10.9ppm/K、7.97g/cm3,假设添加的Al全部与Ru发生反应成为RuAl合金来设定Al的添加量。表1的备注栏中,以vol%表示电极中的RuAl合金的量。RuAl合金为导电性较高,且热膨胀系数也较大的材料,因此,如实验例16~22所示,通过添加少量的Al能够接近于Al2O3基体的热膨胀系数,并且,能够使电极的电阻率低至1×10-5~2×10-5Ωcm。特别是实验例16、18、21中,通过添加11vol%的Al而生成18vol%的RuAl合金,能够使电极的热膨胀系数与Al2O3基体的热膨胀系数差接近0.2ppm/K。实验例16~22中,在电极的界面及其附近均没有产生裂纹等异常,并且,Al2O3基体的致密性也良好。

·实验例23~30

实验例23~28中,添加了作为金属成分的Ti,实验例29、30中,添加了作为金属成分的Nb。实验例23~30中,以依据实验例2的方法制作陶瓷结构体。实验例23~30中,均能够使电极的热膨胀系数接近于Al2O3基体的热膨胀系数,并且,Ti、Nb为热膨胀系数较高且具有导电性的成分,因此,可得到电阻率低的电极。特别是实验例24、27中,能够使电极的热膨胀系数与Al2O3基体的热膨胀系数完全一致。Ti、Nb为容易固溶于Ru的成分,但是,由利用EPMA进行电极的元素分布解析确认到:特别是Nb广泛扩散在Ru内。电极的电阻率在添加了Ti的实验例23~28中低至1×10-5Ωcm~2×10-5Ωcm,但是,添加Nb与这些实验例相比,电阻稍微升高,实验例30中通过添加30vol%达到1.6×10-4Ωcm。应予说明,实验例23~30中,在电极的界面及其附近均没有产生裂纹等异常,并且,Al2O3基体的致密性也良好。

·实验例31、32

实验例31、32是以稀土金属氧化物为陶瓷基体的主成分的例子,使烧成温度分别为1575℃、1500℃,除此以外,利用与实验例2同样的方法制作陶瓷结构体。使用从陶瓷结构体上切出的试样实际测量陶瓷基体的热膨胀系数。两个实验例的电极中均添加了20vol%的与第一基体同种成分的填料,能够得到电极与陶瓷基体的热膨胀系数差小至0.3~0.5ppm/K、电极的电阻率均低至1.4×10-5、且良好的陶瓷结构体。关于从陶瓷结构体上切出的陶瓷基体的试样,Y2O3的体积密度为5.00g/cm3以上,Yb2O3的体积密度为9.17g/cm3以上,开口气孔率均为0.03%以下,致密性良好。另外,在电极的界面及附近也没有确认到裂纹等异常。

·比较例1~5

比较例1~5是在Al2O3基体中埋设了目前使用的电极的例子。分别在表2中记载的导电成分中添加规定量的Al2O3填料,以依据实验例1的方法制作陶瓷结构体。应予说明,作为用于促进WC电极烧结的助剂,分别添加5vol%的Ni、Co。另外,各导电成分的热膨胀系数采用文献值。比较例1~5中,Al2O3基体、电极的致密性均良好,但是,由于电极的热膨胀系数较小,所以即便在电极中添加相当量的Al2O3填料,Al2O3基体与电极的热膨胀系数差也大于1ppm/K。并且,通过添加相当量的Al2O3填料,导致电极的电阻率大于3.0×10-5Ωcm。

表2

基于比较例1~5的结果,现有技术很难相对于氧化铝或稀土金属氧化物(三氧化二钇等)所代表的热膨胀系数为7.5~9.5ppm/K(特别是8~9ppm/K)的陶瓷基体组合与陶瓷基体的热膨胀系数差在1ppm/K以内、并且3×10-5Ωcm以下的低电阻率的电极。另外,得到能够作为加热电极呈现出更高的性能、电极的电阻率为2.5×10-5Ωcm以下、或者1×10-5Ωcm以上、低于2×10-5Ωcm、并且适当调整了电极的热膨胀系数的陶瓷结构体是非常困难的。另外,比较例所示的电极中,Ni、Co为磁化率非常高的元素。对于这样的容易带磁性的元素,有可能在利用磁场这样的磁控式的装置中对磁场环境造成影响,因此,优选尽可能避免其包含在电极中。应予说明,实验例1~32所示的电极的磁化率均较小,无需担心对磁场造成影响。

·实验例33、34

实验例33是与实验例16~22同样地在Ru中添加作为金属成分的Al来制作Ru/RuAl电极的例子。使Al的添加量为14vol%,除此以外,以与实验例21同样的条件制作陶瓷结构体,评价特性。本例中,通过使电极中的Al的添加量为14vol%,能够使Ru/RuAl电极的热膨胀系数与Al2O3基体的热膨胀系数完全一致,能够得到在电极与Al2O3的界面没有裂纹等的良好的埋设有电极的Al2O3基体。电极的电阻率低至1.3×10-5Ωcm且良好。实验例34中,使加入到Al2O3粉末中的烧结助剂仅为0.25质量%的MgO粉末,使热压烧成温度在第一基材的制作、层叠体的制作时均为1500℃,除此以外,以与实验例33同样的方法制作埋设有Ru/RuAl电极的Al2O3基体。本例中,也得到了Al2O3与电极材料的热膨胀系数差为零,没有裂纹的良好的结构体。电极电阻率低至1.1×10-5Ωcm且良好。

本申请以2014年9月16日申请的日本专利申请第2014-187868号为主张优先权的基础,通过引用将其全部内容包含在本说明书中。

应予说明,上述的实施例当然不对本发明作任何限定。

产业上的可利用性

本发明可利用于在制造半导体等元件或设备时使用的基板保持装置。

符号说明

10陶瓷结构体、12陶瓷基体、14电极、20层叠体、21第一基体、22第二基体、24电极图案。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1