一种金属氧化物/铂纳米颗粒复合催化剂的制备方法

文档序号:9313767阅读:1285来源:国知局
一种金属氧化物/铂纳米颗粒复合催化剂的制备方法
【技术领域】
[0001]本发明属于复合纳米材料制备领域,更具体地,涉及一种金属氧化物/铀纳米颗粒复合催化剂的制备方法。
【背景技术】
[0002]催化剂在能源、化工、环保等领域具有广泛的应用和意义。在实际的催化剂使用过程中,有很大一部分催化剂使用了纳米颗粒作为催化剂的活性反应中心。这是因为纳米颗粒一般具有较高的活性,且具有极大的比表面积提供给催化反应的进行。
[0003]铂纳米颗粒作为催化剂,主要用于氨氧化、石油烃重整、不饱和化合物氧化及加氢、气体中一氧化碳、氮氧化物的脱除等过程,是化学、石油和化工反应过程经常采用的一种催化剂。具有催化活性高、选择性强、制作方便、使用量少、应用领域广,可再生等特点。
[0004]然而长时间在不断升温和降温的催化反应条件下使用,纳米颗粒很容易发生迀移和融合。这种现象将导致纳米颗粒的团聚长大而使可提供给催化反应的表面积减少,这是催化剂失活的一个主要原因。因此保持纳米颗粒形貌和性质的稳定性具有重大的价值和意义。
[0005]目前稳定纳米颗粒催化剂的主要方法是在贵金属纳米颗粒中添加金属氧化物,这可以有效的抑制贵金属催化剂的纳米颗粒的烧结现象。目前一些传统的沉积薄膜的方法有气相沉积、液相沉积等等,与这些方法相比,由于原子层沉积工艺的非连续性以及自身反应的自限制性,这种沉积方法在薄膜厚度和均匀性的控制上具有极大的优势。已经有一些研究尝试利用原子层沉积技术在金属钯的纳米颗粒表面包覆一层渗透的氧化铝薄膜,这能有效地防止贵金属纳米颗粒的烧结,但还未有金属氧化物包覆铂催化剂的报导。在这种催化剂体系中,氧化物层的厚度和材料是十分重要的。

【发明内容】

[0006]针对现有技术的以上缺陷或改进需求,本发明提供了一种金属氧化物/铂纳米颗粒复合催化剂的制备方法,其目的在于提高铂纳米颗粒的稳定性,由此解决铂纳米颗粒在使用中性质不稳定的技术问题。
[0007]为实现上述目的,按照本发明的一个方面,提供了一种金属氧化物/铂纳米颗粒复合催化剂的制备方法,其特征在于,利用原子层沉积在基底上先沉积一层金属氧化物,再沉积一层铂纳米颗粒,或者先沉积一层铂纳米颗粒,再沉积一层金属氧化物,金属氧化物层和铂纳米颗粒共同组成所需的复合催化剂;
[0008]其中,以金属有机盐和相应的氧化剂作为反应物,通过控制原子层沉积的循环次数沉积所需厚度的金属氧化物层;以三甲基(甲基环戊二烯基)铂和氧气或臭氧作为反应物,通过控制原子层沉积的循环次数沉积所需粒径的铂纳米颗粒。
[0009]优选地,其特征在于,铀纳米颗粒的粒径为7nm?8nm,金属氧化物的厚度为0.9nm ?1.1nm0
[0010]优选地,其特征在于,所述基底为硅片。
[0011]优选地,所述金属氧化物的沉积中,所述金属有机盐为二茂钴,所述氧化剂为臭氧,反应温度为150°c?250°C,沉积循环次数为20?30次。
[0012]优选地,所述金属氧化物的沉积中,所述金属有机盐为三甲基铝,所述氧化剂为去离子水,反应温度为70°C?350°C,沉积循环次数为8?10次。
[0013]优选地,所述铂纳米颗粒的制备中,反应温度为280°C?300°C,沉积循环次数为90?110次。
[0014]按照本发明的另一个方面,还提供了以该方法制备的金属氧化物/铂纳米颗粒复合催化剂,其特征在于,用于CO的催化氧化反应。
[0015]按照本发明的金属氧化物/铂纳米颗粒复合催化剂的制备方法,具有如下优点:
[0016]1、使用活性金属氧化物和纳米催化剂颗粒组成复合催化剂,一方面能减少贵金属的消耗量,另一方面能提供更多的反应表面,在催化反应中起到协同效果,增强铂催化剂的低温活性,改善冷启动性能;
[0017]2、活性氧化物可以使催化剂颗粒有了良好的抗烧结性能,延长了催化剂的寿命,降低了使用成本;
[0018]3、通过调节金属氧化物原子层沉积的循环次数来实现对金属氧化物层薄膜厚度的精确控制,有利于提尚纳米颗粒的催化性能。
【附图说明】
[0019]图1是实施例1-2和对比例制备的催化剂在催化CO反应中速度的比较;
[0020]图2是实施例1和对比例制备的催化剂烧结前后在催化CO反应中速度的比较;
[0021]图3是对比例和实施例3制备的催化剂烧结前后在催化CO反应中速度的比较;
[0022]图4是对比例中的Pt纳米催化剂烧结前后的原子力显微镜图像和表面高度曲线;
[0023]图5是实施例3中的Pt/Co304包覆型催化剂烧结前后的原子力显微镜图像和表面高度曲线。
【具体实施方式】
[0024]为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
[0025]实施例lPt/Co304基底型催化剂的制备
[0026](I)将硅片在去离子水、氨水以及双氧水的体积比为5:1:1的混合溶液中煮沸20min,随后使用高纯氮气吹干硅片。
[0027](2)将(I)中处理过的硅片放入原子层沉积设备中;使用二茂钴和臭氧在硅片表面生长氧化钴。将高纯氧气(99.999%)通入臭氧发生器中生成体积浓度约为11%的臭氧)。沉积过程中钴前驱体温度保持在100°C。反应温度为150°C。载气仍为高纯氮气,钴前驱体脉冲时间为1.6s,臭氧前驱体脉冲时间为2s,氮气清洗时间为8s。重复25个循环,在硅片上生成四氧化三钴薄膜。
[0028](3)将(2)中沉积过氧化物薄膜的样品放入原子层沉积设备中,使用铂源和氧气在样品表面沉积铂纳米颗粒,这里用的铂源为三甲基(甲基环戊二烯基)铂(IV)。整个原子层沉积反应过程中持续通入高纯氮(99.999%)作为载气,腔体内的压强控制在4mbar以下。原子层沉积的反应温度范围为300°C。为保证足够蒸汽压,将铂源加热到65°C;为防止冷凝,管路被加热到80°C,铂前驱体脉冲时间为1.6s,氧气前驱体脉中时间为2s,氮气清洗时间为8s。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1