工程化改造酶易感性蛋白质的制作方法

文档序号:531075阅读:1010来源:国知局

专利名称::工程化改造酶易感性蛋白质的制作方法
技术领域
:一般而言,本发明涉及分子生物学,计算生物学领域,且更具体地,涉及通过理性设计来生成具有升高的酶易感性(enzymaticsusceptihbility)的蛋白质的蛋白质工程方法。
背景技术
:工业方法常常需要添加蛋白质来实施方法内的特定功能。对具有新的或不同特性的蛋白质的需要随着工业方法发展并变得更高效而增长。一种用于开发具有新特性的蛋白质的方法是将当前所使用的蛋白质工程化改造成含有新特征,且如此创建蛋白质的新变体。蛋白质工程已经聚焦于在多种酶中开发耐热性。本申请描述了使用蛋白质工程技术来工程化改造蛋白质的酶易感性变体。可以对多种蛋白质使用所描述的方法。另外,可以使用所描述的方法来工程化改造对多种蛋白酶的酶易感性。发明_既述描述了一种工程化改造具有升高的对蛋白酶的易感性的蛋白质的方法。通过理性设计进行的蛋白质工程基于蛋白质的三维结构模型及随后鉴定可以进行改变但对结合位点、活性位点和总体三维结构没有不利影响的蛋白质域。可以在对任何蛋白酶的易感性升高方面工程化改造任何蛋白质。发明详述工业方法使用蛋白质作为制造成分。作为酶的蛋白质作为工业方法中的成分是特别有用的,因为它们催化将底物从一种形式转化成另一种的反应。蛋白质的特征,且特别是酶的活性谱(即最佳温度、PH、盐浓度、离子等)促成蛋白质对于一种特定方法的有用性。随着新的工业方法发展,越来越多地需要具有改变了特性的蛋白质。所寻求的新特性可以在蛋白质当前的特性组之外或者可以牵涉改变特性。蛋白质特性可以包括但不限于活性谱的特征、吸水能力、预防吸水的能力、凝胶化能力等。例如,可能想要用对蛋白酶消化的易感性增强的额外特性工程化改造展示出耐热性和酸稳定性的蛋白质。在这个例子中,需要在添加新特性(对蛋白酶的敏感性增强)时维持蛋白质的初始特性(耐热性和酸稳定性)。还可以考虑酶的比活,其中酶的“比活”定义为酶在给定的时间单位里能够转化或催化的底物量。有数种可用于使蛋白质演化以创建具有改变了的特性的变体的技术。例如,基于随机氨基酸变化或随机诱变的技术包括化学诱变(Smith,Ann.Rev.Genet.19423-462(1985))、DirectEvolution(美国专利No.5,830,696);基因位点饱和诱变(GSSM)(美国专利No.6,171,820和6,579,258)、定向进化中的外切核酸酶介导的基因装配(美国专利No.6,361,974和6,352,842)、定向进化中的末端选择(endselection)(美国专利No.6,358,709和6,238,884)、基于重组的合成改组(美国专利No.5,965,408和6,440,668,和澳大利亚专利No.AU724521)、和嗜热酶的定向进化(美国专利No.5,830,696和6,335,179)。这些技术产生具有随机突变的变体的集合(pool),然后筛选变体的这种集合以鉴定那些具有想要特性组的个体变体。随机诱变的备选是理性设计,其中基于关于蛋白质自身知道什么来对蛋白质的特定区域鉴定改变。理性设计掺入三维结构、活性位点位置和重要结合位点位置的知识来预测可以改变的蛋白质区域。通过此信息,可以生成具有特定改变的蛋白质,并对其测试活性。特定的改变可以单独地进行或者与其它改变组合进行以观察对蛋白质结构的数个改变的组合效果(Fersht等AngewandteChemieInt.Ed.23:467_538(1984))。理性设计考虑到蛋白质的特性、三维模型和蛋白质可以改变的程度之间的关系是复杂的。将要在蛋白质中产生的突变定位至三维模型上,并且存在有结合位点、活性位点和蛋白质结构的考虑;此分析意图增加生成在展示新特性外维持活性的变体的可能性。另外,所筛选的变体数目与使用随机诱变筛选的变体数目相比相对较低。通过了解蛋白质的三维模型来促进理性设计。三维模型可以通过在物理上测定蛋白质三维结构的方法诸如X射线晶体学和NMR(核磁共振)来阐明或者可以以计算机方式建模。用于在物理上解析(solve)蛋白质晶体结构的方法是本领域中公知的(Schuetz等EMBOJ.254245-4252(2006);Peterson等Mol.Cell13:665-676(2004);Allingham等Cell128:1161-1172(2007))。在计算生物学中,蛋白质的三维结构有三种不同预测/建模方法;即从头开始(abinitio)、同源性建模和蛋白质穿引(proteinthreading)。从头开始或从头蛋白质建模方法设法“从零开始”建造三维蛋白质模型,即,基于物理原理而非直接基于先前解析的物理结构。有许多可能的如下规程,它们或是试图模拟蛋白质折叠或是将一些随机方法应用于搜索可能的解法(solution)。这些规程趋于需要大量计算资源,而且已经对小蛋白质实施过。同源性建模(modeling)基于合理的假设,即两种同源蛋白质会共享极其相似的结构。因为蛋白质的折叠比其氨基酸序列在进化方面更保守,可以在极其远缘的模板上以合理的精确性为靶序列建模,只要靶物与模板之间的关系可以经由序列比对辨别。已经提示了,比较建模的主要瓶颈源于比对困难,而非源于结构预测错误,假设有已知的良好比对。不令人吃惊的是,同源性建模在靶物和模板具有相似序列时是最精确的。可以使用同源性建模方法(如由计算机程序Modeler(AccelrysInc.)所提供的)来为同源蛋白质的三维结构建模,而不需要通过X射线或NMR来解析真实的结构(Webster"ProteinStructurePrediction,MethodsandProtocols";MethodsinMolecularBiology;HumanaPress第143卷(2000)及Bourne和ffeissig,"StructuralBioinformatics",Wiley-LissPublisher(2003))。蛋白质穿引方法将具有未知结构的靶序列的氨基酸序列穿引通过分类蛋白质结构折叠的文库。在每种情况中,使用评分函数来评估序列与结构的相容性,如此选择最佳的有可能的三维模板来为靶蛋白质建模。此类方法又称为3D-1D折叠识别,这是由于其在三维结构与线性蛋白质序列之间的相容性分析。此方法还已经产生实施反向折叠搜索的方法,其通过评估给定结构与序列的大数据库的相容性,如此预测哪些序列具有生成给定折叠的潜力来进行。一旦创建蛋白质的三维模型,这便充当用于添加关于蛋白质已知的别的信息的基础。鉴定已知为基本活性所需要的蛋白质区域诸如结合域和活性位点是重要的。蛋白质的保守区可提供对在进行修饰时应当避免的蛋白质区域的了解。了解活性所需要的蛋白质物理结构有助于鉴定可以进行修饰的区域。一般而言,可以进行修饰的区域是那些并不促成结合域或活性位点形成的。另外,一旦进行了改变,选择进行修饰的蛋白质区域不应当干扰结合域或活性位点。因此,使用计算技术诸如AccelyrsMODELER程序来将所有对蛋白质的改变定位至三维模型上,以便测定蛋白质的基本结构是否得到维持。评估通过随机诱变或理性设计生成的变体蛋白质的活性以选择满足特定标准的变体。这些特定的标准与蛋白质中想要的新特性一致。这些新的特性可以包括但不限于酶催化活性的改变、在较高或较低温度的活性、在宽的或窄的温度范围中的活性、在较高或较低PH的活性、在宽的或窄的pH范围中的活性、在较高或较低pH对降解的敏感性、对蛋白酶消化的易感性升高、或对蛋白酶消化的抗性升高。本领域中的普通技术人员会能够采用本文中所公开的信息,并设计和生成一系列具有改变了的蛋白质特性或活性的蛋白质变体。已经采用理性设计技术来开发具有特定特性诸如耐受性(Perry和Wetzel,Science226555-557(1984);Sauer等Biochemistry255992-5998(1986);Volkin等J.ofBiol.Chem.2622945-2950(1987);Roesler等ProteinScience91642-1650(2000))、在存在蛋白酶的情况中的稳定性(Wyss等AppliedandEnviro.Micro.65359-366(1999))和在低pH的稳定性(Kim等AppliedandEnviro.Micro.724397-4403(2006))的蛋白质变体。也已经采用理性设计技术来开发杀昆虫性原毒素,其在暴露于昆虫肠时受到昆虫肠蛋白酶切割以释放杀昆虫性毒素(美国专利申请10/229,346)。本文中描述了出于开发具有增强的对蛋白酶的易感性的蛋白质(其中易感性导致蛋白质失活)的目的而使用理性设计技术的方法。涉及蛋白质结构的下列因素可促成提高蛋白质对蛋白酶的敏感性糖基化程度和位置、二硫键形成的程度、潜在蛋白酶切割位点和可改变成含有高度有利的蛋白酶切割位点的蛋白质环的位置和序列。糖基化对酶的特性可以具有许多影响。第一,它对蛋白质的稳定性可以具有影响,或者它可以影响催化特性。第二,在酸性碳水化合物修饰的情况中,它可以影响蛋白质的pl,而且由此改变纯化过程中的蛋白质行为。并且第三,通过使代谢能量转向,它可以降低酶的表达水平。(Wyss等AppliedandEnviro.Micro.65:359_366(1999))。对蛋白质的糖基化牵涉将聚糖链添加至蛋白质,这能在物理上干扰蛋白酶接触结合位点的能力(Bagger等BiOChemiStry4210295-10300(2003))。降低蛋白质的糖基化可以通过展开蛋白质结构以容许蛋白酶与潜在的结合位点的相互作用来提高对蛋白酶的敏感性。高度稳定性蛋白质结构(或蛋白质折叠)能阻止蛋白质解折叠得足以容许蛋白酶接近三维蛋白质结构内的潜在切割位点。二硫键通过在蛋白质折叠时在彼此进入物理接近的半胱氨酸残基之间形成桥来促成三维结构的稳定性。这些半胱氨酸残基在检查蛋白质的线性氨基酸序列时并不必然彼此接近。参见Stryer,Biochemistry第4版,W.H.FreemanandCo,NewYork(1995)。替换特定的半胱氨酸残基可以降低分子内半胱氨酸键的程度,这可以使蛋白质脱稳定化(destabilize)得足以容许蛋白酶接近折叠蛋白质内部的切割位点ο掺入蛋白酶切割位点可以提高对蛋白酶的敏感性。可以改变与高亲和力蛋白酶切割位点相似的天然蛋白质序列以反映高度有利的位点。对蛋白质序列的此类修饰代表对蛋白质的次要修饰。或者,可以将高度有利的蛋白酶切割位点从头引入蛋白质中,这代表对蛋白质的主要修饰。在任一种情况,即对蛋白质的次要或主要改变中,使用三维模型来鉴定折叠蛋白质中作为此类修饰候选的区域。具体地,暴露于周围介质的蛋白质环是改变的候选。另外,这些环不应干扰蛋白质中的结合位点或活性位点。一般认为,蛋白质的结构稳定性与蛋白质耐受极端条件诸如温度和pH的能力有联系。结构特征诸如糖基化和二硫键形成促成蛋白质的稳定性,而且还可以促成提高蛋白质耐受温度和PH的极端条件的能力。靶向这些相同的结构特征,即糖基化和二硫键形成来工程化改造酶易感性。在极端条件时的活性与增强折叠蛋白质稳定性的特征的解偶联是工程化改造酶易感性蛋白质的一项挑战。上文所述关于工程化改造具有增强的对蛋白酶的易感性的蛋白质的考虑导致设计影响糖基化、二硫键形成和创建高度有利的蛋白酶切割位点的多个突变。蛋白质序列中预测的改变可以作为单一改变或者以各种组合产生(Roesler等ProteinScience91642-1650(2000))。例如,有可能的是,发现多个糖基化位点存在于特定的蛋白质上。这些位点可以每次改变一个或者它们可以在单一变体中全部改变。作为另一个例子,可以将糖基化位点和改变二硫键组合入单一变体中。实质上,可以认为经由对三维模型的分析鉴定的变异是可以任意组合以生成供测试用的变体的模块。术语域和位点在提及蛋白质时可互换使用,可以指蛋白质内鉴定的线性氨基酸序列或者可以指在蛋白质处于折叠状态时存在的结构区域。本发明的一个实施方案是一种通过理性设计技术来提高酶易感性的方法,其中为蛋白质的三维结构建模,随后对蛋白质进行特征鉴定,其选自下组结合位点、活性位点、糖基化位点、二硫键、和暴露于周围介质的蛋白质环。本发明的另一个实施方案是一种通过理性设计技术来提高酶易感性的方法,其中首先将靶蛋白质工程化改造成具有更加稳定的三维结构。可以经由理性设计或随机诱变技术来提高稳定性。可以通过蛋白质在较高的温度条件(热力学稳定性)或极端PH条件下发挥功能的能力来测量稳定性。在促成更加紧凑的三维结构(构象稳定性)的对折叠结构的改变外,稳定性还可以采用许多形式诸如稳定化分子内相互作用的二硫键。用于将热稳定性工程化改造入蛋白质中的技术是本领域中已知的诸如Nosoh等TIBTECH卷816-20(1990)和Imanaka等Nature卷324:695_697(1986)。热力学稳定性关于温度和活性进行定义,并通过比较变体与起始蛋白质的活性来测定。如下测定蛋白质的温度最高值,即在规定的温度保持蛋白质,然后测量蛋白质的活性。温度最高值定义为蛋白质于规定的温度保持5分钟后保留约50%活性所处的温度。热稳定性变体指其中所述变体于比蛋白质的最高温度高5°C的温度保持5分钟时展示至少50%的活性的。例如,若起始蛋白质于45°C保持5分钟时保留50%的活性,则热稳定性变体会是于50°C保持5分钟时保留至少50%活性的所有变体。基于上述公开内容,可以将任何蛋白质工程化改造为更加酶易感性的。在工业方法中具有功能的蛋白质充当用于靶向工程化改造的良好候选物,因为可已经知道蛋白质的结构和功能特性。结构和功能信息起基础的作用,用于进一步鉴定要为酶易感性的蛋白质。存在对工业方法具有重要性的多种蛋白质,包括促成增值性状的酶或蛋白质、在转基因植物中赋予对疾病或有害生物的抗性的蛋白质、对转基因植物赋予除草剂耐受性的蛋白质或酶。赋予或促成增值性状的基因的例子包括但不限于分解植酸盐(即一种在基于谷物的动物饲料中的非营养元素)的肌醇六磷酸酶。例如,参见VanHartingsveldt等,Gene127:87(1993),其关于黑曲霉(Aspergillusniger)肌醇六磷酸酶基因的核苷酸序列的公开内容。可以引入降低植酸盐含量的基因。在玉蜀黍中,这可以例如如下实现,即克隆与对特征为低水平植酸的玉蜀黍突变体负责的单一等位基因有关的DNA,然后将其再导入。参见Raboy等,Maydica35:383(1990)。通过例如用编码改变淀粉分支样式的酶的基因转化植物来实现经修饰的碳水化合物组成。参见Shiroza等,J.Bacteriol.170:810(1988)(变异链球菌(Sti^ptococcusmutans)果糖基转移酶基因的核苷酸序列)、Steinmetz等,MolGen.Genet.200=220(1985)(枯草芽孢杆菌(Bacillussubtilis)果聚糖蔗糖酶基因的核苷酸序列)、Pen等,Bio/Technology10=292(1992)(生成表达地衣芽孢杆菌(Bacilluslicheniformis)α-淀粉酶的转基因植物)、Elliot等,PlantMolec.Biol.21515(1993)(番茄转化酶基因的核苷酸序列)、S.o-gaard等,J.Biol.Chem.268:22480(1993)(大麦α-淀粉酶基因的定点诱变)、及Fisher等,PlantPhysiol.1021045(1993)(玉蜀黍胚乳淀粉分支酶II)。改变食物味道的蛋白质诸如蛋白质甜蛋白(brrazein)。也可以将赋予对有害生物或疾病的基因工程化改造为酶易感性的。植物防御常常受到植物中的疾病抗性基因产物与病原体中的相应无毒力基因产物之间的特异性相互作用激活。可以用克隆的抗性基因转化植物以工程化改造对特定病原体菌株有抗性的植物。参见例如Jones等,Science266789(1994)(克隆关于对叶霉菌(Cladosporiumfulvum)的抗性的番茄Cf-9基因);Martin等,Science2621432(1993)(关于对丁香假单胞菌番茄致病变种(Pseudomonassyringaepv.tomato)的抗性的番茄Pto基因编码蛋白质激酶);Mindrinos等Cell781089(1994)(关于对丁香假单胞菌(Pseudomonassyringae)的抗性的拟南芥(Arabidopsis)RSP2基因)。苏云金芽孢杆菌(Bacillusthuringiensis)蛋白、其衍生物或模仿其的合成多肽。参见例如Geiser等,Gene48:109(1986),其披露了Btδ-内毒素基因的克隆和核苷酸序列。此外,编码δ-内毒素基因的DNA分子可以以例如ATCC编号40098、67136、31995和31998购自美国典型培养物保藏中心(AmericanTypeCultureCollection)(Rockville,Md.)。存在苏云金芽孢杆菌蛋白的许多例子,包括但不限于Cry1A、CrylB,Cry3A、Cry4A、和Cry9C。如由VanDamme等,PlantMolec.Biol.2425(1994)(其披露了数种君子兰(Cliviaminiata)甘露糖结合凝集素基因的核苷酸序列)所描述的凝集素。如PCT申请US93/06487(其教导了抗生物素蛋白和抗生物素蛋白同源物作为针对昆虫有害生物的杀幼虫剂的用途)中所描述的维生素结合蛋白诸如抗生物素蛋白。酶抑制剂,例如蛋白酶抑制剂或淀粉酶抑制剂,例如Abe等,J.Biol.Chem.26216793(1987)(稻半胱氨酸蛋白酶抑制剂的核苷酸序列)、Huub等,PlantMolec.Biol.21985(1993)(编码烟草蛋白酶抑制剂I的cDNA的核苷酸序列)、和Sumitani等,Biosci.Biotech.Biochem.571243(1993)(硝孢链霉菌(Streptomycesnitrosporeus)χ-淀粉酶抑制剂的核苷酸序列)。昆虫特异性肽或神经肽,其在表达后破坏受到影响的有害生物的生理学。例如参见Regan,J.Biol.Chem.269:9(1994)(表达克隆产生编码昆虫利尿激素受体的DNA)和Pratt等,Biochem.Biophys.Res.Comm.1631243(1989)(在太平洋折翅蠊(Diplopterapuntata)中鉴定出抑咽侧体神经肽(allostatin))的公开内容。还可参见美国专利No.5,266,317,其披露了编码昆虫特异性、麻痹性神经毒素的基因。本质上由蛇、黄蜂等生成的昆虫特异性毒液。例如参见Pang等,Gene116:165(1992),关于编码蝎昆虫毒性肽的基因在植物中的异源表达的公开内容。对生物学活性分子的修饰(包括翻译后修饰)中牵涉的酶,例如糖酵解酶、蛋白水解酶、脂肪分解酶、核酸酶、环化酶、转氨酶、酯酶、水解酶、磷酸酶、激酶、磷酸化酶、聚合物、弹性蛋白酶、几丁质酶和葡聚糖酶,无论是天然的还是合成的。参见以Scott等名义的PCT申请WO93/02197,其披露了纤维二糖酶(callase)基因的核苷酸序列。含有几丁质酶编码序列的DNA分子可以例如以编号39637和67152获自ATCC。还可参见Kramer等,InsectBiochem.Molec.Biol.23691(1993)(其教导了编码烟草钩虫几丁质酶的cDNA的核苷酸序列)和Kawalleck等,PlantMolec.Biol.21673(1993)(其提供了欧芹ubi4-2多聚泛素基因的核苷酸序列)。刺激信号转导的分子。例如参见Botella等,PlantMolec.Biol.24=757(1994)(其关于绿豆钙调蛋白cDNA克隆的核苷酸序列)和Griess等,PlantPhysiol.104=1467(1994)(其提供了玉蜀黍钙调蛋白cDNA克隆的核苷酸序列)的公开内容。膜通透酶、通道形成剂或通道阻断剂,例如参见Jaynes等,PlantSci.8943(1993)的公开内容,其关于异源表达杀菌肽-β-溶解酶类似物以给予对茄假单胞菌(Pseudomonassolanacearum)有抗性的转基因烟草植物。病毒侵入性蛋白或自其衍生的复合毒素(complextoxin)。例如,病毒外壳蛋白在经转化的植物细胞中的积累赋予对由衍生外壳蛋白基因的病毒以及相关病毒招致的病毒感染和/或疾病形成的抗性。参见Beachy等,Ann.Rev.Phytopathol.28451(1990)。已经对经转化的植物赋予针对苜蓿花叶病毒、黄瓜花叶病毒、烟草线条病毒、马铃薯病毒X、马铃薯病毒Y、烟草蚀斑病毒、烟草脆裂病毒和烟草花叶病毒的外壳蛋白介导的抗性。自其衍生的昆虫特异性抗体或免疫毒素。如此,靶向昆虫肠中至关重要的代谢功能的抗体会使受影响的酶失活,杀死昆&。JiLTaylor,,才商胃#497,SeventhInt'1SymposiumOnMolecularPlant-MicrobeInteractions(Edinburgh,Scotland,1994)(在转基因烟草中经由单链抗体片段的生成的酶促失活)。病毒特异性抗体。参见例如Tavladoraki等,Nature366:469(1993),其显示了表达重组抗体基因的转基因植物免于病毒攻击。本质上由病原体或寄生物生成的发育阻滞蛋白。如此,真菌a-l,4_D-内聚半乳糖醛酸酶通过使植物细胞壁同-a-l,4-D-半乳糖醛酸酶溶解来促进真菌定殖和植物营养物释放。参见Lamb等,Bio/Technology101436(1992)。Toubart等,PlantJ.2=367(1992)描述了编码豆内聚半乳糖醛酸酶抑制蛋白的基因的克隆和表征。本质上由植物生成的发育阻滞蛋白。例如Logemarm等,Bio/Technology10=305(1992)已经显示了,表达大麦核糖体失活基因的转基因植物具有升高的对真菌疾病的抗性。也可以将例如赋予对除草剂的抗性的基因工程化改造为酶易感性的。例如,介导对抑制生长点或分生组织的除草剂诸如咪唑啉酮(imidazalinone)或磺酰脲(sulfonylurea)的耐受性的蛋白质。在此种类中的例示性基因编码突变型ALS和AHAS酶,如分别由例如Lee等,EMBOJ.71241(1988)和Miki等,Theor.Appl.Genet.80:449(1990)所描述的。草甘膦(分别由突变型5-烯醇丙酮酰-3-磷酸莽草酸合醇(5-enolpyruvl-3-phosphikimatesynthase,EPSP)禾口aroA基因贝武予的抗性)和其它膦酰基化合物诸如草丁磷(glufosinate)(膦丝菌素乙酰转移酶(PAT)和吸水链霉菌(Str印tomyceshygroscopicus)膦丝菌素乙酰转移酶(bar)基因)、和吡啶氧(pyridinoxy)或苯氧丙酸类和环己烷类(cycloshexone)(ACC酶抑制剂编码基因)。参见例如美国专利No.4,940,835,其披露了能赋予草甘膦抗性的EPSP形式的核苷酸序列。编码突变型aroA基因的DNA分子可以以ATCC编号39256获得,而突变型基因的核苷酸序列披露于美国专利No.4,769,061。欧洲专利申请No.0333033和美国专利No.4,975,374披露了赋予对除草剂诸如L-膦丝菌素的抗性的谷氨酰胺合成酶基因的核苷酸序列。欧洲申请No.0242246中提供了膦丝菌素乙酰转移酶基因的核苷酸序列。DeGreef等,Bio/Technology761(1989)描述了表达编码膦丝菌素乙酰转移酶活性的嵌合bar基因的转基因植物的生成。赋予对苯氧丙酸类和环己烷类诸如稀禾定(sethoxydim)和吡氟氯禾灵(haloxyfop)的抗性的基因的例子是由Marshall等,Theor.Appl.Genet.83=435(1992)所描述的Accl-Sl、Accl-S2和Accl-S3基因。抑制光合作用的除草剂诸如三嗪(psbA和gs+基因)和苯基氰(benzonitrile)(腈水解酶基因)。Przibilla等,PlantCell3169(1991)描述了用编码突变型psbA基因的质粒转化衣滴虫(Chlamydomonas)。腈水解酶基因的核苷酸序列披露于美国专利No.4,810,648,而含有这些基因的DNA分子以ATCC编号53435、67441和67442可获得。Hayes等,BiochemJ.285173(1992)描述了编码谷胱甘肽S-转移酶的DNA的克隆和表达。可以工程化改造酶易感性以使蛋白质对任何蛋白酶易感。蛋白酶指水解肽键的酶(Barrett,等HandbookofProteolyticEnzymes,AcademicPress,SanDiego,SanFrancisco,NewYork,Boston,London,Sydney,Tokyo(1998))。蛋白酶可称为肽酶,而且一般落入丝氨酸肽酶、半胱氨酸肽酶、天冬氨酸肽酶、和金属肽酶的种类之一中。特定的蛋白酶包括但不限于胃蛋白酶、胰蛋白酶、胰凝乳蛋白酶、胰内肽酶、组织蛋白酶G、类胰凝乳蛋白酶(chymase)、类胰蛋白酶、木瓜蛋白酶、弹性蛋白酶、羧肽酶、木瓜凝乳蛋白酶、胱天蛋白酶-1、和二肽酶E。蛋白酶的广泛列表可参见上文所提及的HandbookofProteolyticEnzymes。本发明的另一个实施方案是一种表达盒,其中酶易感性蛋白质与至少一种调控元件诸如启动子、增强子、内含子、终止序列,或其任何组合,和任选地,与信号序列(其将酶易感性蛋白质引导至特定的细胞位置,例如液泡、糊粉、胚或内质网)可操作连接。表达盒还可以包含表达酶易感性蛋白质需要或选择的任何别的元件。此类元件包括但不限于转录终止子、增强表达的外部序列诸如内含子、病毒序列、和意图用于将基因产物靶向特定细胞器和细胞区室的序列。可操作连接的指作为同一核酸分子中合适地定位和定向的一部分连接的。在调控元件的情况中,调控元件的定向(即有义或反义)不能影响调控元件影响转录的能力。启动子的代表性例子包括但不限于已知在原核或真核细胞或其病毒中控制基因表达的启动子。原核细胞定义为没有细胞核的细胞,并且意图包括最近鉴定的古细菌种类。在一个实施方案中,表达盒包含细菌启动子。细菌启动子的例子包括但不限于大肠杆菌Iac或trp、噬菌体入卩[启动子、1肌1、1肌233、174扒和APro真核启动子包括但不限于CMV即时早期、HSV胸苷激酶、早期和晚期SV40、来自逆转录病毒的LTR、和小鼠金属硫蛋白-I。原核和真核启动子一般记载于Sambrook等MolecularCloning:ALaboratoryManual,第二版,ColdSpringHarborLaboratoryPress,(1989);Ausubel等,CurrentProtocolsinMolecularBiology,JohnWiley&Sons,NewYork,(1987);Kriegler,GeneTransferandExpression:ALaboratoryManual(1990)。本发明的另一个实施方案是一种表达盒,其中酶易感性蛋白质与能够在酵母细胞中表达的启动子可操作连接。能够在酵母宿主中表达的任何启动子可以作为启动子使用。例子包括糖酵解途径中的己糖激酶等基因的启动子和诸如gal1启动子、gal10启动子、热休克蛋白启动子、MFa-I启动子和CUP1启动子等启动子。酵母启动子的例子可参见MacPherson等Micro,andMolec.Bio.Revs.70583-604(2006)。本发明的另一个实施方案是一种表达盒,其中酶易感性蛋白质与能够在丝状真菌中表达的启动子可操作连接。可以使用能够在丝状真菌中表达的任何启动子。例子是来自曲霉属(Aspergillus)的葡糖淀粉酶或α-淀粉酶(DeVries等Micro,andMolec.Bio.Revs.65=497-522(2001))或来自木霉属(Trichoderma)的纤维素酶(纤维二糖水化酶)的启动子、糖酵解途径中的酶诸如磷酸甘油酸酯激酶(Pgk)和甘油醛3-磷酸脱氢酶(gpd)等的启动子。丝状真菌中表征的启动子的例子可参见Lorang等Appl.andEnviro.Micro.671987-1994(2001)。本发明的另一个实施方案是一种表达盒,其中酶易感性蛋白质与能够在植物中表达的启动子可操作连接。要在表达盒中使用的启动子的选择会决定酶易感性蛋白质在转基因植物中的空间和时间表达样式。选定的启动子会在优选的细胞类型(诸如叶表皮细胞、叶肉细胞、根皮层细胞)中或在优选的组织或器官(例如根、叶或花)中或在优选的植物发育阶段(例如花发育、叶发育或植物的生长阶段)中表达转基因,并且选择应当反映基因产物想要的积累位置。或者,选定的启动子可以在多种诱导条件下驱动基因的表达。启动子在其强度,即促进转录的能力方面有所变化。根据所利用的宿主细胞系统,可以使用众多合适的启动子之任一种,包括基因的天然启动子。对于植物转基因表达有用的启动子包括那些诱导型的,病毒的、合成的、组成性的、时间调节性的、空间调节性的、组织特异性的、和时空调节性的。本发明的一个实施方案是一种表达盒,其中酶易感性蛋白质与能够在植物中表达的组成性启动子可操作连接。已经描述过的一些组成性启动子的例子包括稻肌动蛋白1(Wang等,Mol.Cell.Biol.,123399(1992);美国专利No.5,641,876;McElroy等PlantCell2163-171(1990))。CaMV35S(Odell等,Nature313:810(1985))、CaMV19S(Lawton等,Mol.Cell.Biol.7:335(1987))、蔗糖合酶、和泛素启动子(Binet等PlantScience7987-94(1991);Christensen等PlantMolec.Biol.12:619_632(1989);Norris等,PlantMol.Biol.21895-906(1993))。本发明的一个实施方案是一种表达盒,其中酶易感性蛋白质与诱导型植物启动子可操作连接。已经描述过的诱导型启动子包括ABA和膨压诱导型启动子、生长素结合蛋白基因启动子(Schwob等,PlantJ.4:423(1993))、UDP葡萄糖类黄酮糖基转移酶基因启动子(Ralston等,Genetics,119185(1988))、MPI蛋白酶抑制剂启动子(Cordero等,PlantJ.6:141(1994))、和甘油醛-3-磷酸脱氢酶基因启动子(Kohler等,PlantMo.Biol.291293(1995);Quigley等,J.Mol.Evol.29:412(1989);Martinez等,J.Mol.Biol,208551(1989));美国专利No.5,614,395中描述的化学诱导型PR-Ia启动子;PR-Ia启动子还是伤口诱导型的(Lebel等,PlantJ.16:223_233(1998))。可以采用多种化学调节剂来诱导选定的多核苷酸序列在转基因植物中的表达,包括美国专利No.5,523,311和5,614,395中所披露的水杨酸化合物、苯并噻二唑、和异烟酸。此类启动子是例如来自构巢曲霉(Aspergillusnidulans)的alcA基因启动子(Caddick等Nat.Biotechnol16:177-180(1998))。在构巢曲霉中,alcA基因编码醇脱氢酶I,其表达在存在化学诱导的情况中受到AlcR转录因子调节。还可以使用糖皮质激素介导的诱导系统(Aoyama和Chua(1997)ThePlantJournal11:605_612)。伤口诱导型启动子也可适合于基因表达。已经描述了多种此类启动子(例如Xu等PlantMolec.Biol.22:573_588(1993),Logemann等PlantCell1151-158(1989),Rohrmeier和Lehle,PlantMolec.Biol.22:783_792(1993),Firek等PlantMolec.Biol.22129-142(1993),Warner等PlantJ.3191-201(1993))。数种诱导型启动子是本领域中已知的。许多记载于综述Gatz,CurrentOpinioninBiotechnology7168(1996)(还可参见Gatz,AnnualRev.PlantPhysiol.PlantMol.Biol48:891997)。例子包括四环素阻抑物系统、Lac阻抑物系统、铜诱导型系统、水杨酸盐诱导型系统(诸如I3Rla系统)、糖皮质激素诱导型(AoyamaT.等,N_HPlantJournal,11=605(1997))和蜕皮激素诱导型系统(专利申请WO01/52620)。还包括苯磺酰胺诱导型(美国专利No.5364,780)和乙醇诱导型(WO97/06269、WO97/06268和WO02/061102)系统和谷胱甘肽S转移酶启动子和WO02/061102中所描述的嵌合昆虫激素和受体系统。本发明的一个实施方案是一种表达盒,其中酶易感性蛋白质与能够在植物中表达的组织优选性启动子可操作连接。已经描述过的组织优选性启动子的例子包括但不限于凝集素(Vodkin,Prog.Glin.Bio.Res.,13887(1983);Lindstrom等,Der.Genet.,(1990))、玉米醇脱氢酶1(Vogel等,EMBOJ.,11:157(1989);Dennis等,NucleicAcidsRes.,12:3983(1984))、玉米集光复合物(Simpson,PlantMo.Bio.,19699(1986);Bansal等,Proc.Natl.Acad.Sci.USA,89:3654(1992))、玉米热休克蛋白(Odell等,Nature,313810(1985))、豌豆小亚基RuBP羧化酶(Poulsen等,Mol.Gen.Genet.205193(1986))、Ti质粒甘露碱合酶(Langridge等,Cell34:1015(1989))、Ti质粒胭脂碱合酶(Langridge等,Cell34:1015(1989))、矮牵牛查耳酮异构酶(vanTunen等,EMBOJ.71257(1988))、豆富含甘氨酸的蛋白质l(Keller等,EMBOJ.81309(1989))、截短的CaMV35s(Odell等,Nature313:810(1985))、马铃薯Patatin(Wenzler等,PlantMol.Biol.13:347(1989))、根细胞(Yamamoto等,NucleicAcidsRes.18:7449(1990))、玉蜀黍玉米醇溶蛋白(ReinaNucleicAcidsRes.187449(1990);KrizMol.Gen.Genet207:90(1987));Wandelt等,NucleicAcidsRes.17:2354(1989);Langridge等,Cell34:1015(1983);Reina等,NucleicAcidsRes.18:7449(1990))、球蛋白-1(Belanger等,Genetics129863(1991))、α-微管蛋白、cab(Sullivan等,Mol.Gen.Genet.215:431(1989))、PEPC酶(Hudspeth等,PlantMo.Bio.,12:579(1989))、R基因复合物有关的启动子(Chandler等,PlantCelll:1175(1989))、和查耳酮合酶启动子(Franken等,EMBOJ.10:2605(1991))。这些包括例如rbcS启动子,优选用于绿色组织;0CS、n0S和mas启动子,它们在根或受伤的叶组织中具有较高的活性;指导根中的表达增强的截短的(-90至+8)35S启动子、指导根中的表达的α-微管蛋白基因和指导胚乳中的表达的自玉米醇溶蛋白贮存蛋白基因衍生的启动子。在一个实施方案中,启动子是胚乳优选性启动子,诸如玉蜀黍Y-玉米醇溶蛋白谷蛋白-2启动子,或玉蜀黍27-KDY-玉米醇溶蛋白谷蛋白_2启动子(Woo等ThePlantCell13=2297-2317(2001))或玉蜀黍ADP-葡萄糖焦磷酸化酶启动子(Brangeon,等PlantPhysiol.Biochem.35:847_858(1997))。启动子可以是胚特异性启动子诸如玉蜀黍球蛋白1或玉蜀黍油质蛋白18KD启动子(Qu等J.ofBiol.Chem.265:2238-2243(1990)。在多细胞生物体的情况中,启动子还可以是对特定组织、器官或发育阶段特异性的。此类启动子的例子包括但不限于玉蜀黍(Zeamays)ADP-gpp(Greene等Proc.Natl.Acad.Sci.USA9513342-13347(1998))和玉蜀黍Y-玉米醇溶蛋白启动子(Woo等ThePlantCell13:2297-2317(2001))。已经报告了植物中的数种组织特异性调节性基因和/或启动子。这些包括但不限于编码种子贮存蛋白(诸如油菜籽蛋白、十字花科蛋白(cruciferin)、β-伴大豆球蛋白(conglycinin)、和菜豆蛋白)、玉米醇溶蛋白或油体蛋白(诸如油质蛋白)的基因、或脂肪酸生物合成(包括酰基载体蛋白、硬脂酰-ACP去饱和酶、和脂肪酸去饱和酶(fad2-1))中牵涉的基因、和胚发育期间表达的其它基因(诸如Bce4,参见例如EP255378和Kridl等,SeedScienceResearchl:209(1991))。对于种子特异性表达也有用的是豌豆豌豆球蛋白启动子(Czako等,Mol.Gen.Genet.,23533(1992);还可参见美国专利No.5,625,136))。对于在成熟的叶中表达有用的其它启动子是那些在衰老开始时开启的,诸如来自拟南芥的SAG启动子(Gan等,Science270:1986(1995))。根优选性启动子包括由deFramond(FEBS290103-106(1991))所描述的和还记载于美国专利No.5,466,785的玉蜀黍金属硫蛋白样(MTL)基因的启动子。专利申请WO93/07278描述了玉蜀黍trpA基因(其优先在木髓细胞中表达)的分离。Hudspeth等(PlantMolecBiol12:579-589(1989))已经描述了编码磷酸烯醇羧化酶(PEPC)的玉蜀黍基因。可以使用标准的分子生物学技术,使用此基因的启动子来在转基因植物中以叶特异性方式驱动任何基因的表达。W093/07278描述了花粉细胞中表达的玉蜀黍钙依赖性蛋白质激酶(CDPK)基因的分离。在开花至果实发育(至少直至开始成熟)时或此期间表达的一类果实特异性启动子记载于U.S.4,943,674。已经分离出棉纤维中优先表达的CDNA克隆(John等,Proc.Natl.Acad.Sci.USA89:5769(1992))。在果实发育期间展示差别表达且来自番茄的CDNA克隆已经进行过分离和表征(Mansson等,Gen.Genet.,200356(1985),Slater等,PlantMol.Biol.5:137(1985))。多聚半乳糖醛酸酶基因的启动子在果实成熟中是有活性的。多聚半乳糖醛酸酶基因记载于美国专利No.4,535,060、美国专利No.4,769,061、美国专利No.4,801,590、和美国专利No.5,107,065,而成熟增强型番茄多聚半乳糖醛酸酶启动子记载于Bird等,PlantMolecularBiology11:651(1988)。组织特异性启动子的其它例子包括那些在对叶损害(例如嚼食昆虫造成的)后在叶细胞中、在块茎(例如Patatin基因启动子)中、和在纤维细胞(发育调节性纤维细胞蛋白质的例子是E6(John等,Proc.Natl.Acad.Sci.USA895769(1992))中指导表达的。E6基因在纤维中最具活性,虽然在叶、胚珠和花中找到低水平的转录物。一些“组织特异性”或“组织优选性”启动子的组织特异性可能不是绝对的,并且本领域技术人员可以使用白喉毒素序列来测试。也可以通过组合不同组织特异性启动子来实现具有“渗漏”表达的组织优选性表达(Beals等,PlantCell9:1527(1997))。本领域技术人员可以分离其它组织优选的启动子(参见U.S.5,589,379)。组织特异性或组织优选性启动子并不意图解释为仅在特定的组织中表达的启动子。组织特异性或组织优选性指促进特定组织进行表达但对组织类型的这种促进并不总是绝对的启动子。本发明的另一个实施方案是一种表达盒,其包含与靶向序列可操作连接的酶易感性蛋白质。靶向序列指将转基因植物细胞内的特定基因产物的转录物引导至或将蛋白质引导至特定的胞内或胞外环境的任何序列。术语靶向序列、分拣(sorting)序列和信号序列可互换。靶向序列包含转运肽或信号肽或保留序列,它们可以是不同肽序列或者可以组合使用,或是直接连接在一起或是单独地或多重地与酶易感性蛋白质连接。一般而言,会通过将编码转运序列的DNA序列连接至特定基因的多核苷酸序列来实现靶向。可以在酶易感性肌醇六磷酸酶的氨基端(N端)或在酶易感性肌醇六磷酸酶的羧基端(C端)连接转运序列。所得的转运肽分别会将蛋白质转运至特定的胞内、或胞外目的地,然后可以在翻译后除去。转运肽通过促进蛋白质转运穿过胞内膜(例如液泡、小泡、质体和线粒体膜)来起作用,或者引导蛋白质穿过胞外膜。在植物中,信号序列可以将由多核苷酸编码的多肽靶向至植物内的特定区室。此类靶物的例子包括但不限于液泡、造粉体、内质网、叶绿体、质外体或淀粉粒。信号序列的例子包括用于靶向内质网和分泌入质外体中的玉蜀黍Y-玉米醇溶蛋白N端信号序列(Torrent等,PlantMol.Biol.34139(1997))。另一种信号序列是用于在内质网中保留多肽的氨基酸序列SEKDEUMunro等Cell48:899(1987))。也可以通过与蜡样造粉体靶向肽融合(Klosgren等,Mol.Gen.Genet.203=237(1986))将多肽靶向至造粉体或淀粉粒。本发明的另一个实施方案是一种包含如下核酸分子的经转化植物细胞、植物部分或植物,所述核酸分子编码包含与信号序列可操作连接的酶易感性蛋白质的多肽。在一个实施方案中,植物包含包含与酶易感性蛋白质可操作连接的Y-玉米醇溶蛋白N端信号序列的多肽。在另一个实施方案中,植物包含包含与酶易感性蛋白质的C端可操作连接的SEKDEL的多肽。在另一个实施方案中,植物包含包含与酶易感性蛋白质可操作连接的N端蜡样造粉体靶向肽的多肽。在另一个实施方案中,植物包含包含与酶易感性蛋白质的C端可操作连接的蜡样淀粉包囊域的多肽。本发明的另一个实施方案是一种表达盒,其包含酶易感性蛋白质,而且进一步包含用于基因表达的增强子。已经发现了许多序列增强自转录单位内的基因表达,并且这些序列可以与编码酶易感性蛋白质的多核苷酸一起使用以提高其在转基因植物中的表达。内含子已经表明了用于增强转基因表达的潜力。例如Callis等GenesandDevelop.1=1183(1987)描述了来自玉米醇脱氢酶基因的内含子,其能够在转基因植物细胞中增强转基因表达。类似地,Vasil等Mol.Microbiol.3:371(1989)描绘了具有类似增强活性的来自玉米蔗糖合酶基因的内含子。已经在许多不同转基因作物中在增强转基因表达方面广泛使用稻肌动蛋白1内含子。(McElroy等,Mol.Gen.Genet.231=150(1991))增强子指能刺激启动子活性,而且可以作为启动子固有元件或为增强特定启动子的水平或组织优选性而插入的异源元件的DNA序列。增强子能够以两种取向(相对于感兴趣多核苷酸序列基因的5’至3’和3’至5’)起作用,而且能够甚至在启动子上游或下游移动时发挥功能。增强子元件的例子是ocs增强子元件。此元件首次鉴定为一种来自土壤杆菌(Agrobacterium)章鱼碱合酶(ocs)基因的16bp回文增强子(Ellis等,EMBOJ.63203(1987)),而且存在于至少10种其它启动子中(Bouchez等,EMBOJ.8:4197(1989))。增强子元件诸如ocs元件,且特别是多拷贝元件的使用会起作用来提高自邻近启动子的转录水平。还已知自病毒衍生的许多非翻译前导序列增强表达,而且这些在双子叶细胞中是特别有效的。具体地,已经显示了来自烟草花叶病毒01^,“1-序列”)、玉米褪绿斑点病毒(MCMV)、和苜蓿花叶病毒(AMV)的前导序列在增强表达方面是有效的(例如Gallie等Nucl.AcidsRes.158693-8711(1987);Skuzeski等PlantMolec.Biol.1565-79(1990))。本领域中已知的其它前导序列包括但不限于小RNA病毒前导,例如EMCV前导(脑心肌炎5,非编码区)(Elroy-Stein,0.,Fuerst,T.R.,和Moss,B.PNASUSA866126-6130(1989));马铃薯Y病毒组前导,例如TEV前导(烟草蚀斑病毒);MDMV前导(玉米矮缩花叶病毒);人免疫球蛋白重链结合蛋白(BiP)前导,(Macejak等,Nature35390-94(1991);来自苜蓿花叶病毒的外壳蛋白mRNA(AMVRNA4)的未翻译前导,(Jobling等,Nature325:622_625(1987);烟草花叶病毒前导(TMV),(Gallie,D.R.等,MolecularBiologyofRNA,第237页-第256页(1989);和玉米褪绿斑点病毒前导(MCMV)(Lommel等,Virology81:382-385(1991)。还可参见Della-Cioppa等,PlantPhysiology84:965-968(1987)。INPACT是可用于提高基因表达的另一种方法(W001/72996)。本发明的另一个实施方案是一种表达盒,其包含与转录终止子可操作连接的酶易感性蛋白质。多种转录终止子对于在表达盒中的使用是可用的。转录终止子对终止超出转基因的转录和正确的mRNA多聚腺苷酸化负责。合适的转录终止子是那些已知在植物中发挥功能的,并且包括但不限于CaMV35S终止子、tml终止子、自根癌土壤杆菌(Agrobacteriumtumefaciens)行生的月因月旨喊合醇终止子(Bevan等Nucl.AcidsRes.,11369(1983))和豌豆rbcSE9终止子、来自根癌土壤杆菌章鱼碱合酶基因的T7转录物的终止子、和来自马铃薯或番茄的蛋白酶抑制剂I或II基因的3’端。若想要的话可以进一步包括调控元件诸如Adh内含子l(Callis等,GenesandDevelop.,11183(1987))、蔗糖合酶内含子(Vasil等,PlantPhysiol.911575(1989))或TMVω元件(Gallie,等,PlantCell1:301(1989))。方便的植物终止区可获自根癌土壤杆菌的Ti质粒,诸如章鱼碱合酶和胭脂碱合酶终止区。还可参见Guerineau等,Mol.Gen.Genet.,262141(1991);Mogen等,PlantCell,21261(1990);Munroe等,Gene,91151(1990);Ballas等,NucleicAcidsRes.,177891(1989)Joshi等,NucleicAcidRes.,15:9627(1987)。这些可以在单子叶植物和双子叶植物两者中使用。另外,可以使用基因的天然转录终止子。其它调控元件包括那些可以由内源剂或外源剂(例如锌指蛋白,包括天然存在的锌指蛋白或嵌合锌指蛋白)调节的。参见例如美国专利No.5,789,538,WO99/48909;WO99/45132;WO98/53060;WO98/53057;WO98/53058;W000/23464;WO95/19431;及WO98/54311。本发明的另一个实施方案是适合于转化细菌的包含酶易感性蛋白质的转化载体。典型地,细菌表达载体含有(1)编码细菌复制起点的原核DNA元件和提供表达载体在细菌宿主中扩增和选择的抗生素抗性基因;(2)控制转录起始的DNA元件诸如启动子;(3)控制对转录物加工的DNA元件;(4)增强子元件;和(5)与控制转录起始的DNA元件可操作连接的感兴趣基因。所使用的表达载体可以是能够在上述宿主中自主复制的(诸如在质粒中)或者能够整合入染色体中的表达载体,其最初在使编码酶易感性蛋白质的连接基因能够转录的位点处含有启动子。举例而言,合适的载体包括对于细菌,PQE70、pQE60、pQE_9(Qiagen),pBluescriptII(Stratagene),pTRC99a、pKK223_3、pDR540、pRIT2T(Pharmacia)。此类商品化载体包括例如PKK223-3(PharmaciaFineChemicals,Uppsala,Sweden)禾口GEMl(PromegaBiotec,Madison,Wis.,USA)。然而,可以使用任何其它质粒或载体,只要它们在宿主中可复制且能维持下去。作为合适的细菌宿主的代表性例子,可以提及细菌细胞诸如大肠杆菌、链霉菌(Str印tomyces)、枯草芽孢杆菌;和埃希氏菌属(Escherichia)、假单胞菌属(Pseudomonas)、沙雷氏菌属(Serratia)、链霉菌(Streptomyces)、棒状杆菌属(Corynebacterium)、短杆菌属(Brevibacterium)、芽抱杆菌属(Bacillus)、微杆菌属(Microbacterium)、和葡萄球菌属(Staphylococcus)内的各种物种,虽然还可以选择采用其它。本发明的另一个实施方案是能够转化真菌的包含酶易感性蛋白质的转化载体。可以依照Gonni等Agric.Biol.Chem.,51:2549(1987)来实现真菌的转化。作为合适真菌宿主的代表性例子,可以提及真菌细胞诸如属于曲霉属(Aspergillus)、根霉属(Rhizopus)、木霉属(Trichoderma)、脉抱菌属(Neurospora)、毛霉属(Mucor)、青霉属(Penicillium)等的真菌细胞,诸如属于克鲁维酵母属(Kluyveromyces)、糖酵母属(Saccharomyces)、裂殖酵母属(Schizosaccharomyces)、丝孢酵母(Trichosporon)、许旺酵母属(Schwanniomyces)等的酵母。本发明的另一个实施方案是能够转化真核细胞的包含酶易感性蛋白质的转化载体。许多真核细胞系(包括动物和昆虫细胞)可用作可进行转化以表达酶易感性蛋白质的宿主。昆虫细胞诸如果蝇(Drosophila)S2和夜蛾(Spodoptera)Sf9;动物细胞诸如CH0、COS或Bowes黑素瘤、C127、3T3、CH0、HeLa和BHK细胞系。可以使用任何宿主,只要它能表达感兴趣的基因。美国典型培养物保藏中心(http://驟w.atcc.org/)维持来自极其多种来源的细胞系,并且可以使用许多这些培养物来产生能够表达酶易感性蛋白质的转基因细胞系。适合于真核细胞的转化载体是商品化的,诸如pXTl、pSG5(Stratagene)、pSVK3、pBPV、pMSG、和pSVLSV40(Pharmacia)。用于转化和选择转基因真核细胞的技术是本领域中公知的。本发明的另一个实施方案是能够转化植物的包含酶易感性蛋白质的转化载体。植物转化载体、表达盒和报告基因的一般描述可参见Gruber,等,MethodsinPlantMolecularBiology&Biotechnology,Glich等编,第89页-第119页,CRCPress(1993)在某些实施方案中,预期可以希望在单子叶植物转化中采用有复制能力的病毒载体。此类载体包括例如小麦矮缩病毒(WDV)“穿梭”载体诸如pWl-11和pWl-GUS(Ugaki等,Nucl.AcidsRes.,19:371(1991))。这些载体能够在玉蜀黍细胞以及大肠杆菌中自主复制,并且因此可以提供升高的关于检测向转基因细胞投递的DNA的灵敏性。复制型载体对于投递侧翼有来自转座元件诸如Ac、Ds、或Mu的DNA序列的基因也可以是有用的。还预期转座元件对于导入缺乏在细菌中选择和维持质粒载体所必需的元件(例如抗生素抗性基因和DNA复制起点)的DNA片段会是有用的。还提出转座元件诸如Ac、Ds、或Mu的使用会积极地促进想要的DNA的整合,并且因此增加稳定转化细胞的频率。考虑到本公开内容,可以与本发明一起采用的载体构建会是本领域技术人员已知的(参见例如Sambrook等,MolecularCloning:ALaboratoryManual(第2版,ColdSpringHarborLaboratoryPress,Plainview,NewYork)(1989);Gelvin等,PlantMolecularBiologyManual(1990))。制备和使用编码酶易感性蛋白质的核酸分子(多核苷酸)的方法有记载。本领域已知的是,可以通过针对宿主的密码子优选优化基因的编码区来增强蛋白质表达。对于微生物宿主细胞诸如酵母、细菌、真菌等中的表达,对ORF进行密码子优化以进行微生物表达可能是必要的。因而,植物中优选的密码子选择不同于某些微生物中优选的密码子选择。克隆的微生物ORF内的密码子选择与植物基因(且特别是来自靶植物的基因)中的选择的比较会实现ORF内应当优选改变的密码子的鉴定。典型地,植物进化已经趋向于在单子叶植物的第三个碱基位置中强烈优选核苷酸C和G,而双子叶植物常常在此位置处使用核苷酸A或T。通过修饰基因来掺入特定靶转基因物种优选的密码子选择,可以克服与植物中的高效基因表达有关的许多问题。简言之,获得指明靶生物体使用的最佳密码子的密码子选择表,并选择最佳的密码子来替换那些在靶多核苷酸中的,然后化学合成经过优化的序列。玉蜀黍优选的密码子记载于美国专利No.5,625,136。用于将构建体导入细胞宿主中的多种技术对于本领域技术人员而言是可获得的且是已知的。本发明的一个实施方案是一种转基因宿主,其中宿主维持编码酶易感性蛋白质的多核苷酸序列。宿主可以选自下组细菌、真核细胞、动物细胞、昆虫细胞、真菌细胞、酵母细胞和植物。可以经由使用聚乙二醇、氯化钙、病毒感染、DEAE右旋糖苷、噬菌体感染、电穿孔和本领域中已知的其它方法来实现细菌和许多真核细胞的转化。可以通过包括电穿孔、使用原生质球、乙酸锂等的方法来实现重组载体向酵母中的导入。可以使用能够将DNA导入动物细胞中的任何方法例如电穿孔、磷酸钙、脂转染等。可以使用杆状病毒将表达盒插入昆虫细胞中(参见例如BaculovirusExpressionVectors,ALaboratoryManual(1992))。例如,可以与杆状病毒一起将其中已经导入重组基因的载体导入昆虫细胞中,从而在培养昆虫细胞的上清液中获得重组病毒。然后用重组病毒感染昆虫细胞,由此可以表达蛋白质。在此方法中使用的基因导入载体可以包括例如pLV1392、pVL1393、和pBlueBacIII(它们都是Invitrogen的产物)。杆状病毒可以是例如苜蓿银纹夜蛾(Autographacalifornica)核型多角体病毒,其是感染某些蛾昆虫的病毒。昆虫细胞可以是来自草地夜蛾(Spodopterafrugiperda)的卵巢细胞Sf9和Sf21和作为来自粉纹夜蛾(Trichoplusiani)的卵巢细胞的High5(Invitrogen)等。为了将具有重组基因的载体和杆状病毒两者共导入昆虫细胞中以制备重组病毒,可以使用磷酸钙或脂转染方法。供转化使用的宿主植物可以来自任何植物物种,包括但不限于玉米(玉蜀黍)、芸苔(Brassicasp.)(例如欧洲油菜(B.napus)、芜青(B.rapa)、芥菜(B.juncea));特别是那些作为种子油来源有用的芸苔物种诸如芸苔(canola);苜蓿(紫苜蓿(Medicagosativa))、禾苗(禾苗(Oryzasativa))、漂麦(漂麦(Secalecereale))、高梁(sorghum)(高粱(Sorghumbicolor)、高粱(Sorghumvulgare))、黍(millet)(例如珍珠粟(pearlmillet,Pennisetumglaucum)、稷(prosomillet,Panicummiliaceum)、梁(foxtailmillet,Setariaitalica)Λ(fingermillet,Eleusinecoracana))Λ(π]日葵(sunflower,Helianthusannuus)、红花(safflower,Carthamustinctorius)、小麦(wheat)(普通小麦(Triticumaestivum))、大豆(soybean,Glycinemax)、烟草(tobacco,Nicotianatabacum)、马铃暮(potato,Solanumtuberosum)、花生(peanuts)(落花生(Arachishypogaea))、棉(cotton)(海岛棉(Gossypiumbarbadense)、陆地棉(Gossypiumhirsutum))、甘暮(sweetpotato,Ipomoeabatatus)、木暮(cassava,Manihotesculenta)、咖啡(coffee,Cofeaspp·)、椰子(coconut,Cocosnucifera)、凤梨(pineapple,Ananascomosus)、柑橘树(citrustrees)(柑橘(Citrusspp·))、可可(cocoa,Theobromacacao)、茶(tea,Camelliasinensis)、香舊(banana,Musaspp·)、鱼萼梨(avocado,Perseaamericana)、无花果(fig,Ficuscasica)、番石檔(guava,Psidiumguajava)、芒果(mango,Mangiferaindica)、撤揽(olive)(油撤揽(Oleaeuropaea))、蕃木瓜(papaya,Caricapapaya)、腰果(cashew,Anacardiumoccidentale)、澳大利亚坚果(macadamia,Macadamiaintegrifolia)、杏(almond,Prunusamygdalus)、舌甘菜(sugarbeets,Betavulgaris)、甘庶(sugarcane,Saccharumspp.)、燕麦(oat)、大麦(barley)、蔬菜(vegetable)、观赏植物(ornamental)、和松桕类(conifer)。蔬菜包括番前(tomatoes,Lycopersiconesculentum)、莴苣(例如莴苣(Lactucasativa))、绿豆(greenbean)(菜豆(Phaseolusvulgaris))、利马豆(limabeans,Phaseoluslimensis)、豌豆(pea)(山黧豆(Lathyrusspp.))、禾口黄瓜属(Cucumis)成员诸如黄瓜(cucumber,C.sativus)、罗马舌甘瓜(cantaloupe,C.cantalupensis)、禾口香瓜(muskmelon,C.melo)。观赏植物包括杜轉(azalea,Rhododendronspp·)、绣球(hydrangea,Macrophyllahydrangea)、木樓(hibiscus)(朱樓(Hibiscusrosasanensis))、蔷藏/玫瑰(rose)(蔷薇(Rosaspp·))、郁金香(tulips,Tulipaspp.)、水仙(daffodils,Narcissusspp.)、_UH(petunias,Petuniahybrida)λ^^tt(carnation,Dianthuscaryophyllus)、一品红(poinsettia,Euphorbiapulcherrima)、禾口菊(chrysanthemum)。可以釆用的松桕类包括例如松(pine)诸如火炬松(loblollypine,Pinustaeda)、湿地丰公(slashpine,Pinuselliotii)、西黄丰公(ponderosapine,Pinusponderosa)、扭卩十松(lodgepolepine,Pinuscontorta)、禾口福身寸松(Montereypine,Pinusradiata)、花方萁松(Douglas-fir,Pseudotsugamenziesii);西部铁杉(Westernhemlock)(力口拿大铁杉(Tsugacanadensis));西特卡云杉(Sitkaspruce)(白云杉(Piceaglauca));红杉(redwood)(北美红杉(Sequoiasempervirens));冷杉(truefir)诸如银杉(silverfir)(温哥华冷杉(Abiesamabilis))和香脂冷杉(balsamfir,Abiesbalsamea);禾口雪松(cedar)诸如北美乔桕(Westernredcedar,Thujaplicata)和阿拉斯加黄扁桕(Alaskayellow-cedar,Chamaecyparisnootkatensis)。豆禾斗植物包括豆(bean)禾口豌豆(pea)ο豆包括瓜尔豆(guar)、槐豆(locustbean)、葫戸巴(fenugreek)、大豆(soybean)、青刀豆(gardenbean)、豆工豆(cowpea)、绿豆(mungbean)、禾丨J马豆、蚕豆(favabean)、小扁豆(lentil)、鹰嘴豆(chickpea)等。豆科作物包括但不限于落花生(Arachis)(例如落花生(peanut)、野豌豆(Vicia)(例如广布野豌豆(crownvetch)、毛苕子(hairyvetch)、赤豆(adzukibean)、绿豆(mungbean)、和鹰嘴豆)、羽扇豆(Lupinus)(例如羽扇豆(lupine)、车轴草(trifolium))、菜豆(Phaseolus)(例如菜豆(commonbean)和利马豆)、豌豆(Pisum)(例如芸豆(fieldbem))、草木犀(Melilotus)(例如三叶草(clover))、苜蓿(Medicago)(例如苜蓿)、莲(Lotus)(例如车轴草(trefoil))、小扁豆(lens)(例如小扁豆(lentil)),和马棘(falseindigo)。作为宿主植物使用的草料和草皮草包括但不限于、里予#(orchardgrass)(tallfescue)、黑胃胃(perennialryegrass)>匍匍剪股颖(creepingbentgrass)、柳枝稷(switchgrass,Panicumvirgatum)、芒属(Miscanthus)禾口小糖草(redtop)。宿主植物包括但不限于作物植物或或用于产生食物或饲料的植物,例如玉蜀黍、苜蓿、向日葵、芸苔、大豆、棉、向日葵、红花、落花生、高粱、小麦、燕麦、黑麦、黍、番茄、大麦、稻、番茄、马铃薯、南瓜、甜瓜(melon)、甘蔗、豆类作物(例如豌豆、豆和大豆)、和含淀粉块茎/根(例如马铃薯、甘薯、木薯、芋、美人蕉(carma))、和甜菜等。供植物用的转化技术是本领域中公知的,包括基于土壤杆菌的技术和不需要土壤杆菌的技术。非土壤杆菌技术牵涉原生质体或细胞直接摄取外源遗传物质。这可以通过PEG或电穿孔介导的摄取、颗粒轰击介导的投递、或显微注射来实现。这些技术的例子记载于Paszkowski等,EMBOJ3:2717_2722(1984),Potrykus等,Mol.Gen.Genet.199169-177(1985),Reich等,Biotechnology41001-1004(1986),及Klein等,Nature32770-73(1987)。使用土壤杆菌进行的单子叶植物转化也已经有记载。参见WO94/00977和美国专利No.5,591,616。在每种情况中,使用本领域已知的标准技术来将经转化的细胞再生成全植物。许多载体可用于使用根癌土壤杆菌进行的转化。这些通常携带至少一种T-DNA边界序列,并且包括诸如pBIN19(Bevan,Nucl.AciesRes.11=369(1984))等载体。二元载体PCIBlO含有编码供植物中选择用的卡那霉素抗性的基因和T-DNA右侧和左侧边界序列和来自广泛宿主范围的质粒PRK252的容许其在大肠杆菌和土壤杆菌两者中复制的掺入序列(incorporatesequence)(Rothstein等Gene53:153-161(1987))。通过重组土壤杆菌转化靶植物物种通常牵涉土壤杆菌与来自植物的外植体的共培养,并且遵循本领域公知的方案。在选择性培养基上再生如下的经转化组织,其携带二元质粒T-DNA边界间的抗生素或除草剂抗性标志物。用基因转化植物细胞的另一种办法牵涉在植物组织和细胞处推进惰性或有生物学活性的颗粒。此技术披露于美国专利No.4,945,050、5,036,006、和5,100,792。一般而言,此规程牵涉在有效穿过细胞外膜的条件下在细胞处推进惰性或有生物学活性的颗粒。专利申请EP0292435、EP0392225和WO93/07278描述了如下技术,即从玉蜀黍的良种近交系制备愈伤组织(callus)和原生质体,使用PEG或电穿孔来转化原生质体,并自经转化的原生质体再生玉蜀黍植株。Gordon-Kamm等PlantCell2603-618(1990)和Fromm等Biotechnology8:833-839(1990)已经发表了关于使用颗粒轰击来转化A188衍生的玉蜀黍系的技术。此外,W093/07278和Koziel等Biotechnology11194-200(1993)描述了关于通过颗粒轰击来转化玉蜀黍良种近交系的技术。使用颗粒轰击来转化质体已经有描述(Svab等PNAS90:913_917(1993);Svab等PNAS87:8526-8530(1990);McBride等PNAS91:7301-7305(1994))。可以在不需要细胞核基因组转化的情况中使用质体转化来产生表达酶易感性蛋白质的植物。质体转化的方法是本领域公知的。通过使用与编码酶易感性蛋白质的多核苷酸序列可操作连接的抗生素或除草剂选择标志来促进经转化细胞的选择。对于某些靶物种,可以优选不同抗生素或除草剂选择标志。转化中常规使用的选择标志包括nptll基因,其赋予对卡那霉素和相关抗生素的抗性(Messing等Gene19:259-268(1982);Bevan等,Nature304184-187(1983));bar基因,其赋予对除草剂膦丝菌素的抗性(White等,Nucl.AcidsRes18:1062(1990),Spencer等Theor.Appl.Genet79:625_631(1990));hph基因,其赋予对抗生素潮霉素的抗性(Blochinger等MolCellBiol4:2929-2931);和dhfr基因,其赋予对甲氨蝶呤的抗性(Bourouis等,EMBOJ.2(7)=1099-1104(1983));EPSPS基因,其赋予对草甘膦的抗性(美国专利No.4,940,835和5,188,642);和甘露糖_6_磷酸异构酶基因(在本文中也称为磷酸甘露糖异构酶基因),其提供代谢甘露糖的能力(美国专利No.5,767,378和5,994,629)。本发明的另一个实施方案是一种转基因宿主,其中编码酶易感性蛋白质的多核苷酸序列是染色体整合的。染色体整合指外来基因或DNA构建体通过共价键整合入宿主DNA中。染色体整合的DNA是遗传稳定的,而且经由连续世代由后代可遗传。本发明的另一个实施方案是一种转基因宿主细胞,其中编码酶易感性肌醇六磷酸酶的多核苷酸是瞬时表达的。基因的瞬时表达指没有整合入宿主染色体中,但是独立地发挥功能的基因(或是作为自主复制型质粒的一部分或是表达盒)的表达。用酶易感性蛋白质转化的宿主植物可以使编码酶易感性蛋白质的多核苷酸序列增殖进入同一物种的其它品种(特别包括商业品种)中,其使用传统的育种技术来实现(PlantBreedingReviews卷14,JulesJanick编,JohnWiley&SonsPublisher(1997))。本发明的另一个实施方案是在其它转基因序列外还包含酶易感性蛋白质的转基因植物。可以使用传统的育种技术来将包含酶易感性蛋白质的转基因植物与其它转基因植物一起育种以将一种或多种转基因性状叠加入单一植物或杂种中。在本发明方法的一个实施方案中,酶易感性蛋白质在植物的种子中积累。本发明的另一个实施方案是包含酶易感性蛋白质的转基因植物种子。包含酶易感性蛋白质的宿主植物可以采用多种形式。宿主植物可以是经转化细胞和非转化细胞的嵌合体;宿主植物可以是克隆转化体(例如转化成含有表达盒的所有细胞);宿主植物可以包含经转化的和未转化的组织的嫁接物(例如,嫁接至未转化接穗即柑橘物种的经转化根茎)。可以通过多种手段,诸如通过克隆增殖或经典的育种技术来繁殖宿主植物。例如,可以使第一代(或Tl)转化植物自交以给出纯合第二代(或T2)转化植物,并经由经典的育种技术来进一步繁殖T2植物。可以将显性选择标志(诸如nptII)与表达盒联合以帮助育种。证明了如上文所概述的用于蛋白质工程的理性设计技术,其使用肌醇六磷酸酶,即Nov9X生成对蛋白酶胃蛋白酶具有敏感性的酶易感性肌醇六磷酸酶来实现。Nov9X是一种自针对高度热稳定性以及玉蜀黍优化植物表达修饰的大肠杆菌appA基因衍生的肌醇六磷酸酶。术语“肌醇六磷酸酶”指将植酸盐(肌醇六磷酸盐)催化成肌醇和无机磷酸盐的广泛种类的酶。已经在原核和真核生物体的多种来源(即无花果曲霉(Aspergillusficuum)、酿酒酵母(Sacchoromycescerevisiae)、大肠杆菌等)中鉴定出肌醇六磷酸酶。本发明的一个实施方案是由一项SEQIDNO:1-33的多肽序列或与一项SEQIDN0:1_33的多肽序列具有98%同一性的多肽或一项SEQIDNO:1_33的多肽序列的保守变体编码的酶易感性肌醇六磷酸酶。对于序列比较,通常一种序列充当与测试序列比较的参照序列。在使用序列比较算法时,将测试和参照序列输入计算机中,若必要的话指定随后的坐标,并指定序列算法程序参数。基于指定的程序参数,序列比较算法然后为测试序列计算相对于参照序列的百分比序列同一性。可以如下进行比较序列的最佳比对,例如Smith和Waterman,Adv.App1.Math.2482(1981)的局部同源性算法,Needleman和Wunsch,J.Mol.Biol.48=443(1970)的同源性比对算法,Pearson和Lipman,Proc.Nat'1.Acad.Sci.USA852444(1988)的搜索相似性方法,这些算法的计算机化执行(威斯康星遗传学软件包中的GAP、BESTFIT、FASTA、和TFASTA,GeneticsComputerGroup,575ScienceDr.,Madison,WI),或者目视检查。适合于测定百分比序列同一性和序列相似性的算法的一个例子是BLAST算法,其记载于Altschul等,J.Mol.Biol.215:403410(1990)。用于实施BLAST分析的软件是公众经由国立生物技术信息中心(NationalCenterforBiotechnologyInformation)(http://www.ncbi.nlm.nih.gov/)可获得的。此算法牵涉首先通过鉴定询问序列中长度W的短字来鉴定高评分序列对(HSP),所述短字(shortword)在与数据库序列中相同长度的字比对时匹配或满足一些得正值的阈值得分Τ。T称为邻近字得分阈值(Altschul等,J.Mol.Biol215:403-410(1990))。这些起始邻近字命中起种子(seed)作用,用于启动搜索以寻找含有它们的较长HSP。然后沿每种序列以两个方向延伸字命中,只要累积的比对得分可以增加。对于核苷酸序列,使用参数M(匹配残基对的奖赏得分;总是大于0)和N(错配残基的罚分;总是小于0)来计算累积得分。对于氨基酸序列,使用评分举证来计算累积得分。在累积的比对得分自其最大获得值减少数量X,由于一项或多项负评分残基比对的积累而导致累积得分变成零或以下,或者达到任一序列的末端时停止每一方向的字命中延伸。BLAST算法参数W、T、和X决定比对的灵敏性和速度。BLASTN程序(用于核苷酸序列)使用作为缺省值的字长(W)11,期望值伍)10,截留100^=5力=-4,和两条链的比较。对于氨基酸序列,BLASTP程序使用作为缺省值的字长(W)3,期望值(E)10,和BL0SUM62评分矩阵(参见Henikoff和Henikoff,Proc.Natl.Acad.Sci.USA8910915(1989))。在计算百分比序列同一性外,BLAST算法还实施对两种序列间的相似性的统计学分析(参见例如Karlin和Altschul,Proc.Nat'1.Acad.Sci.USA90:58735787(1993))。由BLAST算法提供的一种相似性测量是最小和概率(P(N)),其提供两种核苷酸或氨基酸序列间的匹配会偶然发生的概率的示数(indication)。例如,若测试核酸序列与参照核酸序列的比较中的最小和概率小于约0.1,更优选小于约0.01,且最优选小于约0.001,则认为测试核酸序列与参照序列相似。含有酶易感性肌醇六磷酸酶的制备物可以采用许多形式,包括但不限于干的制备物、液体制备物、含有转基因植物材料的制备物等。在本发明的一个实施方案中,方法进一步包括分离酶易感性肌醇六磷酸酶。自表达肌醇六磷酸酶的任何宿主分离酶易感性肌醇六磷酸酶。宿主可以是转基因的或者可以瞬时表达酶易感性肌醇六磷酸酶。宿主细胞选自下组细菌、酵母、真菌、昆虫和植物。植物宿主细胞可以是单子叶的,诸如玉蜀黍或小麦细胞或者双子叶的,诸如大豆细胞。本发明的另一个实施方案是来自含有酶易感性肌醇六磷酸酶的宿主的提取物。对于制备重组肌醇六磷酸酶,转化合适的宿主和宿主生长后,可以通过合适的手段(例如温度变动或化学诱导)来诱导选定的启动子,并将细胞再培养一段时间来产生重组酶。然后通常通过离心来收获细胞,通过物理或化学手段来破坏,并保留所得的粗制提取物来进行进一步纯化。可以通过任何方便的方法来破坏蛋白质表达中所采用的细胞,包括冻融循环、超声处理、机械破坏、或使用细胞溶解剂,此类方法是本领域技术人员公知的。可以通过如下方法自重组细胞培养物回收酶,所述方法包括硫酸铵或乙醇沉淀、酸提取、阴离子或阳离子交换层析、磷酸纤维素层析、疏水性相互作用层析、亲和层析、羟磷灰石层析和凝集素层析。在完成成熟蛋白质的构型中可以使用蛋白质重折叠步骤,若必要的话。最后,可以采用高效液相层析(HPLC)来进行最终的纯化步骤。酶的回收指用于自宿主收集酶的任何方法。回收的酶制备物可以含有来自宿主的污染物诸如蛋白质、脂质、碳水化合物和DNA。回收的酶制备物也可以是高度纯化的酶制备物,其大于95%的纯蛋白质。含有酶易感性肌醇六磷酸酶的提取物可以是化学合成规程的产物,或者是通过重组技术自宿主生成的。宿主可以是原核宿主诸如细菌或真核宿主诸如高等植物。可以出于任何目的而采用含有酶易感性肌醇六磷酸酶的提取物,其中此类酶活性是必要的或想要的。本发明的一个实施方案是一种生产动物饲料的方法,其中采用酶易感性肌醇六磷酸酶来催化动物饲料中的植酸盐水解。在另一个实施方案中,采用所述酶来催化食物中的植酸盐水解。本发明的另一个实施方案是含有酶易感性肌醇六磷酸酶的液体组合物。液体组合物不需要含有多于肌醇六磷酸酶的任何物。然而,可以添加稳定剂诸如甘油、山梨糖醇或丙二醇。液体组合物还可以包含其它添加剂,诸如盐、糖、防腐剂、PH调节剂、蛋白质、和植酸盐(肌醇六磷酸酶底物)。典型的液体组合物是水性或基于油的浆体。可以在任选的对饲料成分造粒之前或之后将液体组合物添加至食物或饲料。本发明的另一个实施方案是含有酶易感性肌醇六磷酸酶的干的组合物。干的组合物可以是冷冻干燥的或喷雾干燥的组合物,在此情况中组合物不需要含有多于处于干燥形式的肌醇六磷酸酶的任何物。干的组合物可以是颗粒状的,其可以容易地与例如食物或饲料成分混合,或形成预混合物的成分。酶颗粒的颗粒大小与混合物的其它成分的颗粒大小相容。这提供了一种将肌醇六磷酸酶掺入例如加工后的食物或动物饲料中的安全且方便的手段。例如,可以如下制备稳定的肌醇六磷酸酶酶配制剂,即冷冻液体酶溶液与膨胀剂诸如磨碎的大豆餐的混合物,然后冻干混合物。湿度降低和肌醇六磷酸酶与膨胀剂的结合相互作用保护酶免于复合饲料制备过程中经历的外部环境因素,诸如温度极值。干的配制剂可以通过使潜在蛋白水解酶的活性最小化来进一步增强稳定性,所述潜在蛋白水解酶可以作为用于制备靶酶的液体发酵混合物中的副产物存在。所得的干燥酶-大豆粉混合物能耐受高的温度极值。配制的酶混合物可以作为供家禽和猪生产中使用的食物补充物使用。本发明的另一个实施方案是含有酶易感性肌醇六磷酸酶的植物或植物部分。植物或植物部分可以作为关于酶的投递机制使用。植物可以选自下组玉蜀黍、小麦、大豆和这些中任一种植物的谷物。完整的谷物保护靶酶免于外部环境因素。可以将谷物含有的酶添加至处于碎种子、磨碎种子形式,或者处于更精制形式的动物饲料。或者,可以自种子制备蛋白质提取物,并且可以通过冻干或喷雾干燥将该提取物进一步加工成稳定化的液体或干燥状态。本发明的另一个实施方案是包含酶易感性肌醇六磷酸酶的组合物。组合物的例子是团聚颗粒。使用团聚技术在高剪切混合器中制备团聚颗粒,在此期间填充材料和酶被共团聚以形成颗粒。通过使载体材料的核心吸附酶/被酶包被来制备吸附颗粒。组合物或团聚颗粒还可以含有填充材料。典型的填充材料是盐诸如硫酸二钠。其它填充剂包括高岭土、滑石、硅酸镁铝和纤维素纤维。任选地,粘合剂诸如糊精也包括在团聚颗粒中。组合物或团聚颗粒还可以含有载体材料。典型的载体材料包括淀粉,例如处于木薯、玉米、马铃薯、稻和小麦形式。也可以使用盐。任选地,用涂层混合物包被颗粒。此类混合物包含涂层剂,优选疏水性涂层剂,诸如氢化的棕榈油和牛脂,和若想要的话,其它添加剂诸如碳酸钙或高岭土。另外,组合物可以含有其它取代物(substituent)诸如着色剂、芳香化合物、稳定齐U、维生素、矿物质、其它饲料或食物增强酶等。这对于所谓的预混合物特别如此。本发明的一个实施方案是包含酶易感性肌醇六磷酸酶的预混合物。本发明的另一个实施方案是包含酶易感性热耐受性肌醇六磷酸酶的食物或饲料添加剂。食物或饲料添加剂是意图或适合于添加至食物或饲料的基本上纯的化合物或多成分组合物。它是一种按其预期用途变为食物或饲料产物的成分或者影响食物或饲料产物的任何特征的物质。如此,酶易感性肌醇六磷酸酶添加剂理解为指不是主要饲料或食物物质的天然成分或者不以它在主要饲料或食物物质中的天然浓度存在的肌醇六磷酸酶,例如,将酶易感性肌醇六磷酸酶与饲料物质分开地添加至饲料(单独地或与其它饲料添加剂组合地),或者酶易感性肌醇六磷酸酶是饲料物质之一的完整部分,但是已经通过重组DNA技术在其中生成。一种典型的添加剂通常包含一种或多种化合物诸如维生素、矿物质或饲料增强酶和适合的载体和/或赋形剂。准备好使用的酶易感性肌醇六磷酸酶添加剂在本文中定义为不是在动物饲料或加工过的食物中原位产生的添加剂。准备好使用的酶易感性肌醇六磷酸酶添加剂可以直接饲喂给人或动物,或者优选的是,在与其它饲料或食物成分混合后直接饲喂。例如,饲料添加剂可以与其它饲料成分组合以产生饲料。此类其它饲料成分包括一种或多种其它酶补充物、维生素饲料添加剂、矿物质饲料添加剂和氨基酸饲料添加剂。然后可以以合适量将所得的(组合的)饲料添加剂(可能包括数种不同类型的化合物)与其它饲料成分诸如谷类和蛋白质补充物混合以形成动物饲料。可以使用目前使用的加工器械诸如复式造粒器(double-pelletingmachine)、蒸气制粒机(steampelleter)、膨胀器(expander)或挤压机(extruder)来将这些成分加工成动物饲料。本发明的另一个实施方案是包含酶易感性肌醇六磷酸酶的动物饲料。本发明的另一个实施方案是包含酶易感性肌醇六磷酸酶的食物添加剂,其进一步包含其它食物成分以产生加工过的食物产物。此类其它食物成分包括一种或多种其它酶补充物、维生素食物添加剂和矿物质食物添加剂。然后可以以合适量将所得的(组合的)食物添加剂(可能包括数种不同类型的化合物)与其它食物成分诸如谷类和植物蛋白质补充物混合以形成加工过的食物产物。可以使用目前使用的加工器械之任一种来将这些成分加工成加工过的食物产物。在饮食(diet)前或者与饮食同时向动物补充动物饲料添加剂。酶易感性肌醇六磷酸酶可以仅在制备过程中有活性,而在最终的食物或饲料产物中可以没有活性。此方面在例如和面和烘焙及其它即食的基于谷类的产物的生产中是特别相关的。本发明的一个实施方案是创建酶易感性酶。本文中术语“酶”指的是催化底物由一种形式向另一种形式转化的任何蛋白质。本发明的另一个实施方案是创建涉及饲料、食物或燃料的增强的酶易感性酶。这里这些“增强酶”指的是选自下组的蛋白质肌醇六磷酸酶α-半乳糖苷酶、β-半乳糖苷酶、乳糖酶、其它肌醇六磷酸酶、β-葡聚糖酶,特别是β_1,4-内切葡聚糖酶和β-1,3(4)-内切葡聚糖酶,纤维素酶、木糖苷酶、半乳聚糖酶(galactanase),特别是阿拉伯半乳聚糖1,4-β-内切半乳糖苷酶和阿拉伯半乳聚糖1,3_β-内切半乳糖苷酶,内切葡聚糖酶,特别是1,2-β-内切葡聚糖酶、1,3-α-内切葡聚糖酶、和1,3-β-内切葡聚糖酶,果胶降解酶、果胶酶、果胶酯酶(pectinesterase)、果胶裂合酶、多聚半乳糖醛酸酶、阿拉伯聚糖酶(arabinanase)、鼠李半乳糖醛酸酶(rhamnogalacturonase)、鼠李糖半乳糖醛酸聚糖乙酰酯酶(rhamnogalacturonanacetylesterase)、鼠李糖半乳糖醛酸聚糖-α-鼠李糖苷酶、果胶酸裂合酶、和α-半乳糖醛酸酶(galacturonisidase)、甘露聚糖酶(marmanase)、β-甘露糖苷酶、甘露聚糖乙酰酯酶、木聚糖乙酰酯酶、蛋白酶、木聚糖酶、阿拉伯木聚糖酶(arabinoxylanase)和脂肪分解酶诸如脂肪酶、磷脂酶、角质酶(cutinase)、α-淀粉酶、葡糖淀粉酶、葡萄糖异构酶、葡聚糖酶、淀粉酶、α-葡糖苷酶、异淀粉酶、支链淀粉酶、新支链淀粉酶(neo-pullulanase)、异支链淀粉酶、支链淀粉酶(amylopullulanase)、纤维素酶、1,4-β-外切纤维二糖水解酶(cellobiohydrolase)、1,3_β-D-外切葡聚糖酶、β-葡糖苷酶、内切葡聚糖酶、L-阿拉伯糖酶、α-阿拉伯糖苷酶、半乳聚糖酶、半乳糖苷酶、甘露聚糖酶(marmanase)、甘露糖苷酶(marmosidase)、木聚糖酶、木糖苷酶、蛋白酶、葡聚糖酶、木聚糖酶、酯酶、阿魏酸酯酶、肌醇六磷酸酶、和脂肪酶。本发明的另一个实施方案是另外包含有效量的一种或多种增强酶的酶易感性肌醇六磷酸酶组合物。在另一个实施方案中,可能想要创建具有降低的胃稳定性的蛋白质。可以通过实施模拟胃液(SGF)消化率测定法来测定蛋白质的胃稳定性,如记载于Thomas等,RegulatoryToxicologyandPharmacology39:87_98(2004))和本申请的实施例9的。展现出胃稳定性的蛋白质在SGF中通常稳定至少10、15、20、30、60分钟或更长。稳定性蛋白质指分子量没有减少的蛋白质,如SGF分析中在蛋白质凝胶上目视指明的,其中将SGF分析实施至少10、15、20、30、60分钟或更长。本发明的另一个实施方案是一种生产包含酶易感性肌醇六磷酸酶的人或动物饲料的方法。可以用酶易感性肌醇六磷酸酶酶促处理指定为人食物的谷粒和面粉以降低材料的植酸钙镁含量。植酸钙镁的水平降低通过提高必需矿物质诸如铁、钙、和锌的营养物利用度来增强食物质量。在提高食物的营养质量外,食物加工过程中所使用的酶易感性肌醇六磷酸酶可以改善食物生产方法的总体效率。例如,在大豆蛋白质分离制备过程中,向白色的大豆粕添加酶易感性肌醇六磷酸酶能显著提高可提取蛋白质的产量和质量。在食物制备过程中,酶易感性肌醇六磷酸酶仅在制备和加工过程中有活性,而在最终的食物产物中没有活性。此方面在例如和面和烘焙中是相关的。类似地,可以用酶易感性肌醇六磷酸酶预加工动物饲料谷粒诸如烤大豆粉或芸苔粉(canolameal),之后进行复合饲料制备。除去动物饲料成分中的抗营养因子,之后进行复合饲料制备产生营养质量较高且更有价值的动物饲料成分。在此加工方法中,酶易感性肌醇六磷酸酶在饲料制备过程中有活性,而在对经处理的饲料消化后在动物的消化道中可以有活性或者可以没有活性。用于向动物饲料和加工后的食物添加酶易感性肌醇六磷酸酶的另一种可能性是向饲料添加含有酶易感性肌醇六磷酸酶的转基因植物材料或种子。表达酶易感性肌醇六磷酸酶的植物部分(例如转基因植物的种子或其它植物材料诸如根、茎、叶、木、花、树皮、和/或果实)可以包括在动物饲料中(或是同样地或是在进一步加工后)。在基于谷物的饲料或食物中,谷物优选是小麦、大麦、玉蜀黍、高粱、黑麦、燕麦、黑小麦或稻。也可以在单胃动物以及多胃动物,特别是幼年小牛中有利地使用酶易感性肌醇六磷酸酶。鱼和甲壳类的饮食也可以补充有酶易感性肌醇六磷酸酶以进一步改善饲料转化率,并降低集约生产系统排泄的磷水平。也可以给动物诸如家禽例如火鸡、鹅、鸭、以及猪、马、牛、绵羊、公山羊、犬和猫科,以及鱼和甲壳类提供饲料。也可以给猪或家禽(包括但不限于肉鸡、母鸡、下蛋母鸡、火鸡和鸭)提供饲料。可以对单胃或多胃动物使用动物饲料。动物饲料可以喂养家禽,或猪,或小牛,或伙伴动物诸如犬或猫或马。本发明的另一个实施方案是包含酶易感性肌醇六磷酸酶的动物饲料。酶易感性热耐受性肌醇六磷酸酶能够耐受饲料配制过程中在商业制粒机(pelletmill)中遇到的热条件化步骤,如此描述了一种制备包含酶易感性肌醇六磷酸酶的动物饲料(例如硬粒状饲料颗粒)的方法。为了制备饲料,可以将配制好的酶易感性肌醇六磷酸酶与饲料成分混合,混合物蒸汽在制粒机中进行条件化(condition),使得保留至少50%的预加热处理的酶活性,并将饲料挤出通过颗粒染色。如此,在与维生素、矿物质、其它饲料酶、农业副产物(例如麦麸(wheatmiddlings)或玉米麸质粉(glutenmeal))一起使用外,酶易感性肌醇六磷酸酶可以单独地作为动物饲料中的补充物使用。该酶还可以将添加至糊状饮食(mashdiet),即还没有通过造粒机(pelletizer)的饮食。本发明的另一个实施方案是一种用于制备动物饲料的方法,其中所述制备包括在大于50°C的温度用热处理酶易感性肌醇六磷酸酶,从而产生经热处理的动物饲料混合物。酶易感性肌醇六磷酸酶制备物可以是转基因植物材料。转基因植物材料可以是玉米谷粒、碎玉米、玉米粉、或自玉米制备的酶提取物。集约动物生产操作旨在限制生产的动物的粪便中含有的磷酸盐污染。饮食中存在的磷酸盐量和饮食中的磷酸盐对动物的利用度是影响动物粪便中存在的排泄磷酸盐的主要因素。目前,大豆粉、玉米谷粒(和其它饲料)中存在的植物或谷粒衍生的磷酸盐的利用度较低,因为磷酸盐主要处于植酸形式。为了使动物的生长效率最大化,向饲料添加无机磷酸盐,导致含有足够水平的可利用磷酸盐的饲料组成。然而,这些饲料配方含有太多的总磷酸盐,并且导致磷酸盐污染。本发明的另一个实施方案是一种动物饲料组合物,其包含酶易感性肌醇六磷酸酶,而且进一步包含基本上降低的无机磷水平。饲料组合物包含典型的饲料成分、微量营养物、维生素等和有效量的酶易感性肌醇六磷酸酶及无机磷酸盐,其中酶易感性肌醇六磷酸酶和磷的量在每kg饲料50-20,000个单位的酶易感性肌醇六磷酸酶的水平之间和小于0.45%的无机磷;在每kg饲料100-10,000个单位的酶易感性肌醇六磷酸酶的水平之间和小于0.225%的无机磷;在每kg饲料150-10,000个单位的肌醇六磷酸酶的水平之间和小于0.15%的无机磷,或在每kg饲料250-20,000个单位的肌醇六磷酸酶的水平之间和没有外源添加的无机磷。本发明的另一个实施方案是使用酶易感性肌醇六磷酸酶来改善与家畜生产有关的重量增加和饲料转化率(FCR)的方法。本发明的酶易感性肌醇六磷酸酶容许重量增加和FCR改善。关于重量增加和FCR改善的方法还可以包括无机磷酸盐较低的饮食。经由低的无机磷酸盐饮食来改善FCR或重量增加的方法,其通过给动物喂养包含酶易感性肌醇六磷酸酶和在0.45%水平或低于0.45%水平的无机磷酸盐水平的饮食来进行。方法可以包括喂养含有酶易感性肌醇六磷酸酶和小于0.225%的无机磷酸盐的饮食,或者方法包括喂养含有酶易感性肌醇六磷酸酶和没有添加的无机磷的饮食。描述了一种改善加工过的谷粒产物的营养价值的方法或一种加工谷粒的方法,包括在谷粒加工过程中以足以改善饲料营养价值的量向谷粒产物添加酶易感性肌醇六磷酸酶。在一个实施方案中,谷粒是玉米,谷粒加工方法是湿磨,加工的产物是玉米麸质饲料、玉米麸质、和玉米淀粉。在其它实施方案中,谷粒是玉米、小麦、大豆、芸苔、和甘蔗。在其它实施方案中,谷粒是含油种子,诸如大豆或芸苔或含油种子油菜,而加工过的谷粒产物是油籽粉。本发明的一个实施方案是包含编码酶易感性肌醇六磷酸酶的多核苷酸的经转化植物细胞的产物。产物可以是种子、谷粒或果实。产物可以是植物,且特别是杂种植物或近交植物。产物还可以是包含本发明的热耐受性肌醇六磷酸酶的谷粒加工产物,诸如本文中先前所描述的玉米谷粒加工产物和含油种子谷粒加工产物或含有种子加工产物。本发明范围内的动物包括多胃动物(例如小牛)以及单胃动物诸如猪、家禽(例如鸡、火鸡、鹅、鸭、雉、松鸡、鹌鹑和鸵鸟)、马、绵羊、公山羊、犬和猫科,以及鱼和甲壳类。本发明的另一个实施方案包括作为家禽或猪饲料制备的饲料或动物饲料。通过提及将所有出版物、专利和专利申请收入本文。虽然在上述说明书中,本发明已经关于其某些优选的实施方案进行过描述,而且许多详情已经出于例示目的提出,但是本领域技术人员会显而易见的是,本发明对别的实施方案适用,而且本文中所描述的某些详情在不偏离本发明基本原理的前提下可以发生显著变化。实施例本发明会通过以下实施例进一步地描述,所述实施例并不意图以任何方式限制本发明的范围。实施例1:Nov9X的蛋白质建模选择Nov9X作为用于蛋白质建模的肌醇六磷酸酶分子。已经解析了6种大肠杆菌肌醇六磷酸酶晶体结构,并以PDBID:1DKL、1DKM、1DKN、1DK0、1DKP、1DKQ存储入结构生物信息学石if究合作实验室(ResearchCollaboratoryforStructuralBioinformation)蛋白质数据库(PDB)(http://www.rcsb.org/pdb/home/home.do)中。为了为蛋白质建模Nov9X选择合适的模板,自PDB选取所有肌醇六磷酸酶晶体结构。选择结构1DKM(分辨率2.25埃)作为建模Nov9X的模板。通过来自Accelrys,Inc.的InsightII包内的软件程序Modeler来创建5种优化的模型,并选择具有最低目标函数的模型。选定的Nov9X模型与IDKM非常类似,关于主链C-αRMS仅具有0.23埃的差异。借助于软件SwissPdbViewer(Guex,N.禾口Peitsch,Μ·C.SWISS-MODELandtheSwiss-PdbViewer:Anenvironmentforcomparativeproteinmodeling.Electrophoresis,18,2714-2723(1997))结构检查、表面分析和图形创建来为去糖基化、消除潜在分子内二硫键和引入胃蛋白酶切割位点的突变建模。表1、表2、表3、表4、和表9中记录了用于创建变体的对Nov9X进行的氨基酸改变。改变的氨基酸位置相对于SEQIDN0:34中所描述的Nov9X蛋白中的位置。Nov9X蛋白始于氨基酸“A”。创建没有“A”的变体肌醇六磷酸酶分子,而且另外,肌醇六磷酸酶变体可以始于第1位的任何氨基酸或无氨基酸。变体肌醇六磷酸酶的第一氨基酸的这种变异性在序列列表中概述,并由氨基酸序列起始处的“X”标示。实施例2:Nov9X变体的理性设计糖基化位点以计算方式以及通过对毕赤酵母(Pichia)和玉米胚乳中表达的Nov9X的蛋白质变体的质谱分析来鉴定Nov9X中的两个N-糖基化位点。选择真核表达系统中在表达期间被糖基化的这两个蛋白质位点进行修饰。这些糖基化位点对应于Nov9X(SEQIDNO34)的氨基酸残基139-161和氨基酸残基318-320。表1概述了鉴定为产生SEQIDNO:1_3中所描述的多肽的在糖基化域中进行的氨基酸改变。表1基于糖基化对Nov9X的修饰实施例3:Nov9X变体的理性设计二硫键自Nov9X的氨基酸序列和结构信息鉴定Nov9X肌醇六磷酸酶中的特定半胱氨酸残基(Lim等Nature,7(2)108-113(2000))。靶向参与分子内二硫键的半胱氨酸残基进行改变。另外,靶向潜在参与分子间二硫键的半胱氨酸残基进行改变。将对二硫键形成的改变定位至蛋白质的三维模型上以避免对总体结构和蛋白质折叠成正确构象的能力进行改变。改变Nov9X中的半胱氨酸氨基酸以产生SEQIDNO:4_14中所描述的序列。表2中概述了特定的氨基酸变化。表2基于二硫键对Nov9X的修饰实施例4:Nov9X变体的理性设计潜在的胃蛋白酶切割位点分析Nov9X的三维结构模型以鉴定蛋白质结构中作为用潜在的胃蛋白酶切割位点工程化改造的候选的环。对修饰鉴定的特定环必须满足数项标准,包括1)环不被埋藏在蛋白质的三维结构内,2)环在蛋白质的表面上,并且如此在蛋白质正确折叠时暴露于周围介质,而且是蛋白酶能接近的,3)环不牵涉形成酶的活性位点或底物或产物结合位点,和4)环含有与有利胃蛋白酶切割位点类似的氨基酸序列,从而便于在氨基酸序列中进行次要改变(改变一个或两个残基)以便将有利的胃蛋白酶切割位点引入环中。此办法没有改变环的长度,而且以最低限度水平保持突变,以便避免对折叠蛋白质的局部和总体结构的干扰。鉴定出满足上述标准的数个蛋白质环,并且这些环对应于Nov9X(SEQIDNO34)中的下列氨基酸残基33_46、105-137、172-177、229-240、281_293、316-330、和364-373。将这些中一个或多个环内的潜在胃蛋白酶切割位点工程化改造成含有已知更容易被胃蛋白酶攻击的氨基酸序列。表3中概述了酶易感性肌醇六磷酸酶,并对应于SEQIDNO15-25中所描述的氨基酸序列。表3基于潜在的蛋白酶切割位点对Nov9X的修饰实施例5:Nov9X变体的理性设计高度有利的胃蛋白酶切割位点的插入通过完全插入环序列中或者替换环序列来修饰实施例4中所鉴定的蛋白质环。用高度有利的胃蛋白酶切割位点序列的序列替换环序列(KeilB.,SpecificityofProteolysis.Springer-VerlagBerlin-Heidelber-NewYork第335页(1992))。对Nov9X蛋白的修饰由于插入长度为数个氨基酸的完整新序列而是适度的。表4概述了对Nov9X进行的氨基酸修饰,并对应于SEQIDN0:26-33中所描述的氨基酸序列。表4基于高亲和力胃蛋白酶结合位点对Nov9X的修饰实施例6供细菌表达的变体的密码子优化将酶易感性肌醇六磷酸酶的蛋白质序列转变成多核苷酸序列。修饰多核苷酸序列以使得用于翻译成氨基酸的密码子反映大肠杆菌中使用的最佳密码子。合成如SEQIDNO:35_67中所描述的大肠杆菌优化的多核苷酸序列,并将其亚克隆入GeneArt,Regensburg,德国的pFLEXHX大肠杆菌表达载体中。最终的载体含有如下的表达盒,其包含与添加N端His标签的序列连接的经过密码子优化的酶易感性肌醇六磷酸酶的多核苷酸序列。为了容易参照,表5概述了序列列表中含有的多肽与多核苷酸序列之间的关系。表5经过密码子优化的多核苷酸序列和多肽序列实施例7供细菌表达用的载体构建将实施例6中所描述的经过细菌密码子优化的表达盒克隆入表达载体pET24a(Invitrogen)中。将含有SEQIDNO:35、36、和38中所描述的多核苷酸序列的表达盒作为NdeI/XhoI片段克隆。将含有SEQIDNO:37、39_43、和59中所描述的多核苷酸序列的表达盒作为NdeI/NotI片段克隆。遵循标准的方案实施用于生成载体和插入片段的限制性消化(Sambrook等MolecularCloning:ALaboratoryManual第2版,ColdSpringHarborLaboratoryPress,Plainview,NewYork(1989))。通过在0.8%琼脂糖凝胶上进行凝胶电泳来分开消化产物,并自凝胶切出正确的条带,并使用来自Qbiogene的GeneClean旋转试剂盒来纯U。MMiSfflJfe自Novagen白勺Clonables^jfegEpicentreBiotechnologies白勺T4DNA连接酶遵循制造商的方案将纯化的插入物和载体片段连接在一起。然后遵循制造商规定的方案将连接的载体转化入来自Invitrogen的TOP10大肠杆菌细胞中,并在Luria琼脂+卡那霉素(50μg/ml)平板上选择。通过用SEQIDNO:68中所描述的正向引物和SEQIDNO:69中所描述的反向引物进行的菌落PCR来筛选平板上生长的菌落以确认正确质粒的存在。如下建立PCR2.Spmol每种引物、来自Sigma的2xPCRJumpstart混合物、作为模板的大肠杆菌菌落和至5μ1最终反应体积的水。使用下列循环条件94°C的初始变性达3分钟,接着是94°C达30秒,55°C达30秒和72°C达60秒的25个循环,接着是72°C达10分钟的最终延伸步骤。然后将具有想要的质粒的菌落在Luria培养基+卡那霉素(50ug/ml)中于37°C,260rpm培养过夜,并使用Qiagen小量制备试剂盒来提取质粒DNA。对所得的质粒DNA中的插入基因进行测序以完全确认正确的构建体已经得到制备。以Bsgl/AscI片段将含有酶易感性肌醇六磷酸酶(其多核苷酸序列记载于SEQIDNO44-54)的表达盒克隆入载体pFLEXHXT7中。使用标准的分子生物学技术通过用来自pET24a的T7启动子替换pFLEXHX启动子来生成pFLEXHXT7。实施例8自细菌分离蛋白质的方法将含有包含如实施例7中所描述的多核苷酸序列的表达盒的PET24载体和pFLEXHXT7载体转化入BL21[DE3]大肠杆菌细胞(Invitrogen)中。用来自转化平板的菌落接种IOml等分试样的含有卡那霉素(50μg/ml)(Sigma)的LB培养基,并于30°C在摇动情况中温育过夜。将5-10ml这些培养物转移至IL摇瓶中的500ml等分试样的含有50μg/ml卡那霉素的LB培养基。于37°C在摇动的情况中温育烧瓶,直至达到约0.6的0D600。将摇瓶转移至15°C的培养箱。添加IPTG(Sigma)以给出0.ImM的终浓度,并在摇动的情况中温育烧瓶过夜。通过以24,OOOXg离心15分钟来收获细胞生物量。收获时的细胞密度在2.5至3.5个OD6tltl的范围。于_20°C冷冻细胞生物量。融化细胞生物量样品,并将其在50ml提取缓冲液(20mMTris、25mM咪唑、500mMNaCl,pH7.5)中重悬。通过以25,OOOpsi使悬浮液流过ConstantSystems细胞破碎仪来溶解细胞,并用25ml提取缓冲液冲洗样品。通过以24,OOOXg离心30分钟,接着过滤流过0.22μm真空滤器装置(MilliporeSteritop)来除去不溶性材料。在冰上保持澄清的溶胞物。用提取缓冲液平衡HisTrapFF5ml柱(GEHealthcare,Ni-SepharoseFF树脂,1.6cm床直径)。以4ml/分钟加载43ml澄清的溶胞物样品。用提取缓冲液以4ml/分钟使未结合的材料清洗流过柱。用洗脱缓冲液(20mMTris、500mM咪唑、500mMNaCl,ρΗ7.5)以4ml/分钟洗脱亲和纯化的蛋白质,并收集A28tlIim洗脱峰。使用IOkDaMWCO离心浓缩器(MillporeAmiconUltra-15)将所收集的洗脱液进行缓冲液交换成20mMTrispH7.5,并在同一装置中浓缩至约3ml。以3700Xg离心样品达10分钟以除去任何沉淀物。使用比消光系数通过A28ciIim来评估蛋白质浓度。浓度在4-15mg/ml的范围,而产量通常为来自500ml培养液的15_30mg。于-80°C贮存样品。实施例9模拟胃液(SGF)中的稳定性实施蛋白质样品的模拟胃液消化率,基本上如记载于Thomas等,RegulatoryToxicologyandPharmacology39:87-98(2004)的。如实施例8中所描述的那样纯化每种测试蛋白质。使用Pierces的BCA试剂盒来测定每种样品的蛋白质浓度。依照如下方案来制备G-Con溶液通过混合将200mg氯化钠在90mlmilli_Q水中溶解。使用6NHCl将此溶液滴定至pH1.2,并添加milli-Q水至100ml的终体积。为每种测试蛋白质制备具有胃蛋白酶的模拟胃液(IXSGF)以在反应溶液中给出每Ig测试蛋白质10个单位的胃蛋白酶。如此,贯穿整项研究使用10U胃蛋白酶活性/Ig测试蛋白质的比率。胃蛋白酶以单批购自SigmaChemical(St.Louis,MO),具有如由Sigma分析的3460U/mg蛋白质。在IOOmlmilli-Q水中用1.68gNaHCO3制备200mMNaHCO3,并用HCl滴定至pHll.0。在三种不同反应混合物中于37°C在热板上温育每种测试蛋白质达60分钟。将含有G-Con或SGF的每管于37°C温育2分钟,之后添加测试蛋白质。如下制备反应混合物反应混合物1:400μ1总体积,含有SGF(每1μg在G-Con中的测试蛋白质10个单位胃蛋白酶的比率的胃蛋白酶)和测试蛋白质溶液反应混合物2150μ1总体积,含有ρΗ1.2的G-Con(稀释的HCl,IOOmMNaCl)禾口测试蛋白质溶液(0.135mg/ml终浓度);这是在没有胃蛋白酶情况中反应缓冲液中的测试蛋白质稳定性的对照样品反应混合物3:150μ1SGF和水;这是胃蛋白酶自身消化(没有测试蛋白质情况中的胃蛋白酶)的对照样品在0和60分钟时从反应混合物1和3(对照),而在0.5、2、5、10、20、30、和60分钟时从反应混合物2(测试)取出50μ1样品。将每种这些样品转移入含有35μ1200mMNaHCO3(ρΗ11.0)和4XBio-RadXT加载缓冲液两者的终止溶液中。通过在添加测试蛋白质前在溶液中淬灭胃蛋白酶来制备零时间点蛋白质消化样品。将所有样品在70°C水浴中温育5分钟来停止反应,然后使用SDS-PAGE来分析。在XTMOPS运行缓冲液(Biorad)中在4-12%Bis-Tris凝胶(Biorad)上分析20μ1每种样品。每道加载的蛋白质总量为1.9ygo使用SeeBluePluS2预染色的标准品(Invitrogen)作为分子量标志物。电泳后,用SimplyBlueSafeStain(Invitrogen)对凝胶染色。通过在电泳后目视检查经染色的蛋白质条带来分析消化样品。表6中概述了所生成的酶易感性肌醇六磷酸酶变体在模拟胃液中的稳定性。每种蛋白质的SGF稳定性以时间长度(按分钟计)指明,蛋白质或其肽片段在SDS-PAGE后通过对凝胶的染色是目视可检出的。表6酶易感性肌醇六磷酸酶的SGF稳定性ISGF稳定性(分钟)I聚合物的存在~Mutl60+^Mut260+1Mut360+^Mut460+^Mut5<20^Mut660+^Mut7<20^有可获得的如下矛盾信息,其关于肌醇六磷酸酶是否发挥单体蛋白质功能或者它们是否发挥多聚体功能。自黑曲霉、土曲霉(Aspergillusterreus)、烟曲霉(Aspergillusfumigatus)、构巢裸胞壳(Emericellanidulas)、嗜热毁丝霉(Myceliophthorathermophila)禾口Talaromycesthermophilus分离的肌醇六憐酸醇(Wyss等Appl.AndEnvior.Micro.65359-366(1999))发挥单体蛋白质功能。另外,来自大豆种子(Gibson等Arch.Biochem.Biophys.260:503_513(1988))、大肠杆菌和土生克雷伯氏菌(Klebsiellaterrigena)(Greiner,等Arch.Biochem.Biophys.303107-113(1993);Greiner,等Arch.Biochem.Biophys.341:201_206(1997))、和枯草芽孢杆菌(Schimizu,Biosci.Biotechnol.Biochem.56:1266_1269(1992))的肌醇六磷酸酶表现为单体。在来自土曲(Aspergillusoryzae)>SchwanniomycescastelliiWIilIlTn^SlBlΦ聚体形成的证据已经得到Hubel,等PlantPhysiol1121429-1436(1996);Segueilha,等J.Ferment.Bioeng.74:7_11(1992);SchimizuBiosci.Biotechnol.Biochem,571364-1365(1993)和Yamamoto等Agric.Biol.Chem.362097-2103证明。在对SGF测定法的SDS-PAGE分析中观察到酶易感性肌醇六磷酸酶的多聚体形成。在SEQIDNO:4-9中所描述的半胱氨酸变体中在SGF测定法中没有观察到多聚体。实施例10突变型蛋白质在pH范围里的肌醇六磷酸酶活性遵循由Engelen等JournalofAOACInt.77(3):760_764(1994)所描述的测定方法来实施肌醇六磷酸酶活性测定法。在水中将酶(浓度范围为0.5-10mg/ml的Nov9X或酶易感性肌醇六磷酸酶变体)稀释10000至50000倍,之后在不同pH进行测定法。如下制备具有植酸盐底物的缓冲溶液甘氨酸-HC1缓冲液-对pH值2.0、2.5、3.0、和3.5使用含有3mM植酸的100mM甘氨酸。乙酸盐缓冲液-对pH值4.0、4.5、5.0、和5.5使用含有3mM植酸的100mM乙酸盐。Mes缓冲液-对pH值6、6.5、和7.0使用含有3mM植酸的100mMMes。用具有150u1稀释的植酸盐底物的300u1缓冲液一式两份实施在不同pH的测定反应。于37°C实施温育达10分钟和20分钟,接着同时淬灭,并比色检测。无机磷酸盐产物与钼酸根和钒酸根离子形成络合物,导致颜色形成。在415nm波长测量黄色钒钼磷酸(vanadomolybdophosphoricacid)(其浓度与反应混合物中的磷酸根离子浓度成比例)的吸光度。使用所测量的吸光度来测定磷酸根离子浓度,其通过与磷酸盐标准校正曲线比较来实现。表7中概述了在pH4.5于37°C在存在3mM植酸盐的情况中的相对肌醇六磷酸酶活性。相对活性表示为Nov9X活性的百分比。表7中概述了在pH2.5于27°C在存在3mM植酸的情况中的相对肌醇六磷酸酶活性活性。相对活性表示为在pH4.5的Nov9X活性的百分比。表7酶易感性肌醇六磷酸酶变体的相对活性实施例11突变型蛋白质的热耐受性比较将测试蛋白质在lOOmM乙酸盐缓冲液(pH4.5)(含有0.01%Tween20)中稀释,之后进行热处理。使用梯度PCR循环仪在40-95°C(每次温育5°C增量)热处理100yl每种稀释的酶溶液达5分钟。立即放置热休克酶,并在冷却条件中保持,直至完成测定稀释液。在lOOmM乙酸盐缓冲液(pH4.5)(含有3mM植酸底物和0.01%Tween20)中进行10000至50000倍稀释后使用标准化的肌醇六磷酸酶测定法来评估热休克酶级分中残留的肌醇六磷酸酶活性。于37°C温育肌醇六磷酸酶反应混合物达15-40分钟。在96深孔块中一式两份完成每份热处理级分的测定法,并通过将比色反应的吸光度与标准磷酸盐曲线比较来评估所释放的无机磷酸盐量。通过与未处理的酶级分中观察的活性比较来计算残留的肌醇六磷酸酶活性。从残留肌醇六磷酸酶活性对预处理温度的曲线图测定酶易感性肌醇六磷酸酶的相对热耐受性。表8中所显示的数值代表热处理5分钟会导致与未处理的酶相比肌醇六磷酸酶活性损失50%所处的温度。表8酶易感性热耐受性肌醇六磷酸酶的相对热耐受性实施例12突变组合基于实施例9-11中所产生的数据,选择特定的变体组合进行分析。表9中描述了这些组合。产生对细菌表达优化的多核苷酸序列密码子以编码表9中所描述的多肽变体,基本上如实施例6中所描述的。然后将经细菌密码子优化的多核苷酸序列掺入细菌表达载体中,基本上如实施例7中所描述的,并且基本上如实施例8中所描述的那样纯化酶易感性肌醇六磷酸酶蛋白质。表5中提及经过密码子优化的多核苷酸序列和相应的组合突变体多肽序列以概述序列列表中含有的多肽与多核苷酸序列之间的关系。表9酶易感性肌醇六磷酸酶变体的组合实施例13组合肌醇六磷酸酶变体在模拟胃液(SGF)中的稳定性对组合肌醇六磷酸酶变体的纯化蛋白质分析对胃蛋白酶的敏感性,基本上如实施例9中所描述的。表10中概述了SGF稳定性。表10组合肌醇六磷酸酶变体的SGF稳定性ND没有产生数据实施例14组合变体在pH4.5的相对肌醇六磷酸酶活性对自组合肌醇六磷酸酶变体纯化的蛋白质分析在pH4.5的活性,基本上如实施例10中所描述的。表11中概述了组合肌醇六磷酸酶变体在pH4.5的相对活性结果。表11组合变体在pH4.5的相对肌醇六磷酸酶活性ND没有产生数据实施例15组合肌醇六磷酸酶变体的热耐受性对自组合肌醇六磷酸酶变体纯化的蛋白质分析热耐受性,基本上如实施例11中所描述的。表12中概述了关于组合肌醇六磷酸酶变体的热耐受性数据。表11中所显示的数值代表热处理5分钟会导致与未处理的酶相比肌醇六磷酸酶活性损失50%所处的温度。表12组合肌醇六磷酸酶变体的相对热耐受性ND:没有产生数据实施例16供植物表达的变体的密码子优化将酶易感性肌醇六磷酸酶的蛋白质序列转变成多核苷酸序列。修饰多核苷酸序列以使得密码子反映玉蜀黍中最佳的密码子。合成如SEQIDNO:70-102中所描述的玉蜀黍优化的多核苷酸序列,并将其亚克隆入GeneArt,Regensburg,德国的pFLEXHX大肠杆菌表达载体中。最终的载体含有如下的表达盒,其包含与添加N端His标签的序列连接的经过密码子优化的酶易感性肌醇六磷酸酶的多核苷酸序列。为了容易参照,表5概述了序列列表中的多肽与多核苷酸序列之间的关系。实施例17制备植物转化载体和创建转基因植物的方法在两步中构建供玉蜀黍转化用的二元载体。在第一步中,融合三种片段以生成表达盒。表达盒由与包括SEKDELER保留序列的BamHI-SacI盒(含有感兴趣的基因)融合的Hindlll-BamHI稻谷蛋白启动子盒组成。然后将此盒与SacI_KpnICMV35s终止子盒融合。终止子盒包括反向PEPC内含子。然后以Hindlll-Kpnl片段将表达盒转移入二元载体PN0V2117中,所述二元载体PN0V2117含有磷酸甘露糖异构酶(PMI)基因,其容许用甘露糖选择转基因细胞。基本上如Negrotto等,PlantCellReports19:798-803(2000)中所描述的那样实施未成熟玉蜀黍胚的转化。可以替换其中所描述的各种培养基成分。将含有植物转化质粒的土壤杆菌菌株LBA4404(Invitrogen)在YEP(酵母提取物(5g/L)、蛋白胨(10g/L)、NaCl(5g/L)、15g/l琼脂,pH6.8)固体培养基上于28°C培养2至4天。将约0.8X109个土壤杆菌在补充有100mM乙酰丁香酮(As)的LS_inf培养基(LSA培养基)中悬浮(Negrotto等,PlantCellRep19:798_803(2000))。在此培养基中预诱导细菌达30-60分钟。从8-12日龄穗切出来自玉蜀黍系,即A188或其它合适的玉蜀黍基因型的未成熟胚,进入液体LS-inf+lOOmMAs(LSA)中。将胚涡旋振荡5秒,并用新鲜的感染培养基漂洗一次。除去感染培养基,然后添加土壤杆菌溶液,将胚涡旋振荡30秒,容许与细菌一起沉淀5分钟。然后将胚以盾片侧向上转移至LSA培养基,并在黑暗中培养2至3天。随后,将每培养板20和25个之间的胚转移至补充有头孢噻肟(250mg/l)和硝酸银(1.6mg/l)的LSD培养基(Negrotto等,PlantCellRep19:798_803(2000)),并在黑暗中于28°C培养10天。将产生胚发生愈伤组织的未成熟胚转移至LSD1M0.5S培养基(具有替换麦草畏(Dicamba)的0.5mg/l2,4_D、10g/l甘露糖、5g/l蔗糖,而没有硝酸银的LSD)。在此培养基上选择培养物6周,在3周时进行传代培养步骤。将存活的愈伤组织转移至要放大(bulkup)的LSD1M0.5S培养基或Regl培养基(如记载于Negrotto等,PlantCellRep19:798-803(2000)的)。在光亮(16小时光亮/8小时黑暗方案)中培养后,然后将绿色组织转移至不含生长调节剂的Reg2培养基(如记载于Negrotto等,PlantCellRep19798-803(2000)的),并温育1_2周。将小植物转移至装有Reg3培养基(如记载于Negrotto等2000的)的MagentaGA-7盒(MagentaCorp,Chicago111.),并在光亮中栽培。将在酶易感性肌醇六磷酸酶表达盒方面为PCR阳性的植物转移至土壤,并在温室中栽培。通过+/-PCR测定法或通过Taqman拷贝数测定法来测定酶易感性肌醇六磷酸酶基因的存在。通过Taqman拷贝数测定法来测定pmi选择标志的存在。通过+/-PCR测定法来测定壮观霉素抗性基因选择标志的存在。实施例18对表达酶易感性肌醇六磷酸酶的转基因玉蜀黍植物的分析会将转基因种子在装备有2.0讓筛的?吐切113100锤式粉碎机中磨碎,如此产生转基因玉米粉。在50mMTris-HCl(pH8.0)UOOmMNaCl、2mM中于环境温度在搅动的情况中提取来自PCR阳性转基因事件的面粉样品(1克)达1小时。提取体积是100ml。通过离心来使提取物澄清,并用乙酸钠缓冲液(PH5.5)稀释。在一系列pH测量肌醇六磷酸酶活性,基本上如实施例10中所描述的。在微量板中在1ml的最终反应体积实施测定法。实施例19动物饲养研究会将微生物表达的肌醇六磷酸酶(8种变体)预混合至多项肉鸡饲养研究中包括的小麦载体上。会以约3,500个FTU/g预混合物标准化肌醇六磷酸酶预混合物。预混合的肌醇六磷酸酶会包括在典型的基于玉米-SBM的定量(ration)中,所述基于玉米-SBM的定量配制用于满足幼年的、生长中的肉鸡的所有需要(除磷之外)。会将肌醇六磷酸酶添加至起子定量,导致每kg最终定量250至600个FTU的肌醇六磷酸酶活性的最终浓度。会任意地以浆状或颗粒状形式给重复的数(4至10)组5至8只圈养在环境受控房间的层架式鸡笼中的鸡喂养实验用饮食。在含有实验用酶的饮食外,会给类似的重复组的鸡饲料喂养阳性对照(磷足够的)、阴性对照(磷缺乏的)和逐步添加的磷(标准曲线)以容许分析酶响应。会使用性能特性(喂养期间里的饲料摄取、体重增加和饲料与增加的比率)和使用喂养期结束时鸡的胫骨灰分含量来测定酶评估和表征。会使用性能和胫骨灰分数据的斜率比、标准曲线(standcurvehANOVA和受保护LSD比较的组合来实现对酶效用的分析。实施例20造粒研究会将微生物表达的肌醇六磷酸酶(8种变体)预混合至多项高温饲料造粒研究中包括的小麦载体上。会以约3,500个FTU/g预混合物标准化肌醇六磷酸酶预混合物。预混合的肌醇六磷酸酶会包括在典型的基于玉米-SBM的定量(ration)中,所述基于玉米-SBM的定量配制用于满足幼年的、生长中的肉鸡的所有需要(除磷之外)。会将肌醇六磷酸酶添加至起子定量,导致每kg最终定量250至750个FTU的肌醇六磷酸酶活性的最终度。会使用代表本研究饲料加工机的研磨机(mill)和方法来对完全混合的含有实验用肌醇六磷酸酶的糊状饮食造粒。对饮食造粒的温度会有所变化以包括70和100°C之间采用的颗粒状饲料样品。会跨越多天对饮食造粒,并分析残留的肌醇六磷酸酶活性,并且会表示为自浆状(造粒前)样品残留的百分比活性。会使用AN0VA和受保护LDS分析来实现对残留酶活性的分析。实施例21制备酶易感性木聚糖酶的方法可以使用结构生物信息学研究合作实验室蛋白质数据库(PDB)(http://www.rcsb.org/pdb/home/home.do)中以PBDID:1XXN、2DCY、1BW、2Z79可获得的晶体结构来为木聚糖酶基因(诸如那些作为来自US专利号7,291,493的SEQID14或16列出的)建模,如实施例1中所描述的。可以使用来自ACCelryS,InC.的InsightII包内的软件程序Modeler来创建木聚糖酶计算模型,并会选择具有最低目标函数的模型。可以使用SwissPdbViewer(Guex,N.禾口Peitsch,M.C.SWISS—MODELandtheSwiss-PdbViewer:Anenvironmentforcomparativeproteinmodeling.Electrophoresis,18,2714-2723(1997))来为去糖基化、消除潜在分子内二硫键和引入胃蛋白酶切割位点的突变建模。然后可以使用理性设计来修饰木聚糖酶变体,如实施例2-5中所描述的。可以以计算方式以及通过对毕赤酵母和玉米胚乳中表达的蛋白质变体的质谱分析来鉴定木聚糖酶的N-糖基化位点。可以修饰相应的糖基化氨基酸残基以除去木聚糖酶突变体中的糖基化位点。可以从来自US专利号7,291,493的SEQID14或16的氨基酸序列鉴定木聚糖酶中的特定半胱氨酸残基。会靶向参与分子内二硫键的半胱氨酸残基进行改变。还可以靶向参与分子间二硫键的木聚糖酶半胱氨酸残基进行改变。可以将改变定位至木聚糖酶蛋白质的三维模型上以避免对蛋白质总体结构及其折叠成正确构象的能力进行改变。可以从木聚糖酶的三维结构模型鉴定木聚糖酶蛋白质结构中的环。特定的环会需要满足与实施例4中鉴定的相同的三项标准。然后可以通过用高度有利的胃蛋白酶切割位点序列完全插入环中或者替换环来修饰所鉴定的环(KeilB.,SpecificityofProteolysis.Springer-VerlagBerlin-Heidelber-NewYork第335页(1992))。然后可以通过以计算机方式将蛋白质序列转变成多核苷酸序列来针对细菌表达优化变体。然后可以针对大肠杆菌表达优化多核苷酸序列。然后可以合成大肠杆菌优化的多核苷酸序列,并将其亚克隆入GeneArtRegensburg,德国的pFLEXHX大肠杆菌表达载体中。最终的载体会含有如下的表达盒,其包含与N端His标签连接的经过密码子优化的酶易感性肌醇六磷酸酶的多核苷酸序列。然后可以将来自pFLEXHX的经过细菌密码子优化的含有酶易感性木聚糖酶的表达盒克隆入pET24a(Invitrogen)和pFLEXHXT7表达载体中,如实施例7中所描述的。然后可以将含有表达盒的pET24和pFLEXHXT7载体转化入BL21[DE3]大肠杆菌细胞(Invitrogen)中,并在含有卡那霉素(50yg/ml)的LB培养基中成长,如实施例8中所描述的。可以自这些大肠杆菌转化体分离木聚糖酶,如实施例8中所描述的。会基本上如记载于Thomas等,RegulatoryToxicologyandPharmacology3987-98(2004)的那样和如实施例9中所描述的那样实施木聚糖酶蛋白质样品的模拟胃液消化率。可以使用如PCT专利公开文本号W02007/146944中所披露的木聚糖酶测定方法在多个pH范围里分析木聚糖酶活性,聚合和热耐受性,如实施例10-11中所描述的。基于从自细菌表达和分离的木聚糖酶突变体产生的数据,会使用来自PCT专利公开文本号W02007/146944的木聚糖酶测定方法选择特定的变体组合进行分析,如实施例12-15中所描述的。会针对植物表达对选定的木聚糖酶变体进行密码子优化,将其合成,并亚克隆入pFLEXHX大肠杆菌表达载体中,如实施例16中所描述的。可以基本上如实施例17中所描述的那样构建含有突变型木聚糖酶基因的植物转化载体。会使用土壤杆菌转化来创建表达酶易感性木聚糖酶的转基因植物,如实施例16中所描述的。然后可以使用PCT专利公开文本号W02007/146944中所披露的木聚糖酶方法来分析表达酶易感性木聚糖酶的转基因玉蜀黍植物。权利要求一种提高蛋白质对蛋白酶的敏感性的方法,包括下列步骤a)创建热力学稳定性升高的变体;b)为所述蛋白质的三维结构建模;c)鉴定所述三维模型的域;d)通过改变所述三维模型的域来创建所述蛋白质的变体;e)选择具有至少等于所述蛋白质的活性的变体;并f)测试所述变体对蛋白酶的敏感性,其中敏感性导致在暴露于所述蛋白酶时消化所述变体。2.权利要求1的方法,其中所述活性选自下组热耐受性、酸性PH活性、碱性pH活性和比活性。3.权利要求1的方法,其中所述建模选择下组X射线晶体学、核磁共振和计算建模。4.权利要求1的方法,其中所述域选自下组糖基化域、半胱氨酸残基、和暴露于周围介质的蛋白质结构的环。5.权利要求1的方法,其中所述蛋白酶选自下组胃蛋白酶、胰蛋白酶、胰凝乳蛋白酶、胰内肽酶、组织蛋白酶G、类胰凝乳蛋白酶、类胰蛋白酶、木瓜蛋白酶、木瓜凝乳蛋白酶、胱天蛋白酶-1、弹性蛋白酶、羧肽酶和二肽酶E。6.权利要求1的方法,其中所述蛋白质是酶。7.权利要求1的方法,其中所述蛋白质是增强酶。8.权利要求1的方法,其中所述蛋白质展现出在SGF中持续至少10分钟的稳定性。9.权利要求6的方法,其中所述酶是肌醇六磷酸酶。10.权利要求9的方法,其中所述肌醇六磷酸酶源自原核生物体。11.权利要求9的方法,其中所述肌醇六磷酸酶源自大肠杆菌。12.权利要求11的方法,其中所述肌醇六磷酸酶是Nov9X。全文摘要本发明提供了一种合成的肌醇六磷酸酶多肽,其编码一种酶易感性肌醇六磷酸酶。还提供了包含酶易感性肌醇六磷酸酶的饲料或食物产品,和表达所述酶易感性肌醇六磷酸酶的转基因植物。进一步提供了用于制备和使用酶易感性肌醇六磷酸酶的方法,例如在饲料和食物加工中使用酶易感性肌醇六磷酸酶的方法。文档编号C12N15/82GK101883500SQ200880119079公开日2010年11月10日申请日期2008年11月21日优先权日2007年12月3日发明者夏伊布·S·巴苏,张生生申请人:先正达参股股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1