取代的2-(2,6-二氧哌啶-3-基)-邻苯二甲酰亚胺和-1-氧异二氢吲哚及降低肿瘤...的制作方法

文档序号:840497阅读:365来源:国知局
专利名称:取代的2-(2,6-二氧哌啶-3-基)-邻苯二甲酰亚胺和-1-氧异二氢吲哚及降低肿瘤 ...的制作方法
技术领域
本发明涉及取代的2-(2,6-二氧哌啶-3-基)-邻苯二甲酰亚胺和取代的2-(2,6-二氧哌啶-3-基)-1-氧异二氢吲哚,通过服用这类化合物来降低哺乳动物体内肿瘤坏死因子α的方法,以及这样的衍生物的药物组合物。
发明的背景肿瘤坏死因子α(TNFα)是主要由单核巨噬细胞对各种免疫刺激剂的应答而释放的细胞因子。将其施加于动物和人时,可引起炎症、发热、心血管影响、出血、凝血及类似于急性感染和休克状态所见的急性反应。因此,在很多疾病状态均可伴有TNFα产生过量或失控。这些疾病包括内毒素血症和/或中毒性休克综合征{Tracey等,Nature 330,662-664(1987)和Hinshaw等,Circ.Shock 30,279-292(1990)};恶病质{Dezube等,Lancet,335(8690),662(1990)}和成人呼吸窘迫综合征,其中从ARDS患者肺呼出气中检出TNFα的浓度超出12,000 pg/mL {Millar等,Lancet 2(8665),712-714(1989)}.重组TNFα全身输注也导致ARDS中所见的改变ARDS{Ferrai-Baliviera等,Arch.Surg.124(12),1400-1405(1989)}。
TNFα似乎涉及骨吸收疾病,包括关节炎。当发作时,白细胞会产生骨吸收,资料提示TNFα与其发作有关{Bertolini等,Nature 319,516-518(1986)和Johnson等,Endocrinology 124(3),1424-1427(1989).}在体内、外试验中还证明,TNFα通过刺激破骨细胞形成和激活,同时抑制成骨细胞的功能,从而刺激骨吸收和抑制骨生成。尽管TNFα可能涉及很多骨吸收性疾病,包括关节炎,但最令人非相信不可的与疾病的联系是肿瘤或宿主组织TNFα的产生与伴有高钙血症的恶性程度之间的关联{Calci.Tissue Int.(US)46(Suppl.),S3-10(1990)}。急性同种异型骨髓移植后,在移植物对宿主反应中,主要并发症伴有血清TNFα水平的提高{Holler等,Blood,75(4),1011-1016(1990)}。
脑疟疾是伴有TNFα高血浓度的致死性超急性神经综合征,是疟疾患者中出现的最严重的并发症。血清TNFα水平与疟疾急性发作患者疾病的严重程度和预后直接相关{Grau等N.Engl.J.Med.320(24),1586-1591(1989)}。
已知巨噬细胞诱导的血管生成TNFα由TNFα介导。Leibovich等{Nature,329,630-632(1987)}在大鼠角膜和发育中的小鸡绒毛尿囊膜上证明,很低剂量的TNFα即引起体内毛细血管的形成,提示TNFα在炎症、伤口修复和肿瘤生长上是诱导血管生成的因素。TNFα的产生还与癌性疾病、特别是诱发肿瘤相关联{Ching等,Brit.J.Cancer,(1955)72,339-343和Koch,Progress in MedicinalChemistry,22,166-242(1985)}。
TNFα还在慢性肺部炎症性疾病方面起作用。硅石颗粒的沉积导致矽肺,一种纤维变性反应引起的进行性呼吸衰竭疾病。抗TNFα抗体完全阻断硅石引起的小鼠肺纤维变性{Pignet等,Nature,344245-247(1990)}。在硅石和石棉沉着病导致纤维变性的动物模型上证明,血清和分离出的巨噬细胞中有高水平TNFα的产生{Bissonnette等,Inflammation 13(3),329-339(1989)}。还有人发现,从肺类肉瘤病患者取出的肺泡巨噬细胞与从正常供体而来的巨噬细胞相比,该疾病自发性释放大量TNFα{Baughman等,J.Lab.Clin.Med.115(1),36-42(1990)}。
TNFα还与再灌注(称作再灌注损伤)后的炎症反应有关,是缺血流后组织损伤的主要原因{Vedder等,PNAS 87,2643-2646(1990)}。TNFα还能改变内皮细胞的性质,具有各种促凝血活性,如产生组织因子促凝血活性提高和抗凝血蛋白C途径的抑制,以及下调凝血调节蛋白的表达{Sherry等,J.Cell Biol.107,1269-1277(1988)}。TNFα具有促炎症活性,该活性与TNFα的早期产生(在炎症初期)使其更象是几种重要疾病(包括但不限于心肌梗塞、卒中和循环休克)中组织损伤的介质。特别重要的可以是TNFα诱导的粘合分子如细胞间粘合分子(ICAM)或内皮白细胞粘合分子(ELAM)在内皮细胞上的表达{Munro等,Am.J.Path.135(1),121-132(1989)}。
用抗TNFα单克隆抗体封闭TNFα已被证明对类风湿性关节炎{Elliot等,Int.J.Pharmac.1995 17(2),141-145}和Crohn′s病{von Dullemen等,Gastroenterology,1995 109(1),129-135}有益。
此外,现已知道,TNFα是轮状病毒复制包括HIV-1激活的潜在激活剂{Duh等,Proc.Nat.Acad.Sci.86,5974-5978(1989);Poll等,Proc.Nat.Acad.Sci.87,782-785(1990);Monto等,Blood 79,2670(1990);Clouse等,J.Immunol.142,431-438(1989);Poll等,AIDS Res.Hum.Retrovirus,191-197(1992)}。AIDS由人免疫缺陷病毒(HIV)感染T淋巴细胞而引起。至少有三种类型或三株HIV已被鉴定出来,即HIV-1,HIV-2和HIV-3。作为HIV感染的结果,T细胞介导的免疫受损,受感染的个体出现严重的机会感染和/或异常新生物。HIV进入T淋巴细胞需要激活T淋巴细胞。其他病毒(如HIV-1和HIV-2)在T细胞激活后感染T淋巴细胞,这些病毒蛋白的表达和/或复制由这种T细胞激活所介导或维持。一旦被激活的T淋巴细胞感染了HIV,该T淋巴细胞必须继续维持激活状态,以使HIV基因表达和/或HIV复制。细胞因子,特别是TNFα,通过在维持T淋巴细胞活化上起作用而参与活化T细胞介导的HIV蛋白表达和/或病毒复制。因此,在HIV感染的个体上,诸如通过阻止或抑制细胞因子(值得注意的是TNFα)的产生来干扰细胞因子的活性,有助于限制HIV感染引起的淋巴细胞的维持。
单核细胞、巨噬细胞和相关的细胞(如枯否氏细胞和胶质细胞)也参与HIV感染的维持。这些细胞象T细胞一样,是病毒复制的靶细胞,病毒复制的水平依赖于细胞的激活状态,{Rosenberg等,The Immunopathogenesis of HIV Infection,Advances inImmunology,57(1989)}。细胞因子(如TNFα)已被证明在单核细胞和/或巨噬细胞上激活HIV复制{Poli等,Proc.Natl.Acad.Sci.,87,782-784(1990)},因此,阻止或抑制细胞因子的产生或其活性有助于限制HIV侵入T细胞。另外的研究将TNFα鉴定为体外HIV激活的共同因子,并提供了细胞的胞质中已发现的核调节蛋白起作用的明确的作用机制(Osborn等,PNAS 86 2336-2340)。该证据揭示,TNFα合成的减少通过减少转录从而减少病毒产生,可在HIV感染中具有抗病毒效应。
潜伏在T细胞和巨噬细胞株内的HIV的AIDS病毒复制可被TNFα诱导{Folks等,PNAS 86,2365-2368(1989)}。有人提出,该病毒诱导活性的分子机理系通过TNFα激活细胞胞质中所见基因调节蛋白(NFκB)的能力,促进HIV结合于病毒调节基因序列(LTR)而进行复制{Osbom等,PNAS 862336-2340(1989)}。有人提出,伴有恶病质的AIDS中的TNFα系血清TNFα的提高及患者外周血液单核细胞中高水平自发性TNFα产生所致{Wright等,J.Immunol.141(1).99-104(1988)}。如上面提到的类似的理由,TNFα参与其他病毒感染{如细胞肥大包涵体病毒(CMV)、流感病毒腺病毒和疱疹病毒族)的各种作用。
核因子κB(NFκB)是多效转录激剂(Lenardo等,Cell 1989,58,27-29)。NFκB作为转录激活剂参与各种疾病和炎症状态,被认为能调节细胞因子(包括但不限于TNFα)的水平,并且也是HIV转录的激活剂{Dbaibo等,J.Biol.Chem.1993,17762-66;Duh等,Proc,.Natl.Acad.Sci.1989,86,5974-78;Bachelerie等,Nature1991,350,709-12;Boswas等,J.Acquired Immune Deficiency Syndrome 1993,6,778-786;Suzuki等,Biochem.And Biophys.Res.Comm.1993.193.277-83;SuZuki等,Biochem.And Biophys.Res Comm.1992.189,1709-15;Suzuki等,Biochem.Mol.Bio.Int.1993,31(4),693-700;Shakhov等,Proc.Natl.Acad.Sci.USA 1990,171,35-47;和Staal等,Proc.Natl.Acad.Sci.USA 1990,87,9943-47)。因此,抑制NFκB结合可调节细胞因子基因的转录,通过这一调节和其他机制,用于抑制众多疾病。本说明书中描述的化合物可抑制核内NFκB的作用,从而用于治疗各种疾病,包括但不限于类风湿性关节炎、类风湿性脊椎炎、骨关节炎、其他关节炎、脓毒性休克、脓毒症、内毒素性体克、移植物抗宿主疾病、消耗性疾病、克罗恩氏病、溃疡性结肠炎、多发性硬化、全身性红斑狼疮、麻风中的ENL、HIV、AIDS及AIDS中的机会感染。TNFα和NTκB水平受逆反馈环的支配。如上所述,本发明的化合物对TNFα和NFKB的水平均有影响。
很多细胞功能由3′,5′-环-磷酸腺苷(cAMP)水平介导。这些细胞功能可造成炎性状态和包括哮喘、炎症和其他病状的疾病{Lowe和Cheng,Drugs of theFuture,17(9),799-807,1992)。现已证明,炎性白细胞中cAMP的升高抑制这些细胞的活性和炎性介质(包括TNFα和NFκB)的随后释放。CAMP水平的升高还导致呼吸道平滑肌的松驰。
因此,降低TNFα水平和/或提高CAMP水平构成治疗很多炎症、感染性、免疫学和恶性疾病的有价值的治疗战略。这些疾病包括但不限于脓毒性休克、脓毒症、内毒素性休克、血液动力学休克和脓毒综合征、梗塞后再灌注损伤、疟疾、分支杆菌感染、脑脊膜炎、牛皮癣、充血性心力衷竭、纤维化疾病、恶病质、移植物排斥、瘤原性或癌性病症、哮喘、自身免疫性疾病、AIDS的机会性感染、类风湿性关节炎、类风湿性脊椎炎、骨关节炎、其他关节炎病症、克罗恩氏病、溃疡性结肠炎、多发性硬化、全身红斑狼疮、麻风中的ENL、放射损伤、瘤原性病症和高氧性肺泡损伤。关于抑制TNFα效应的以往的努力涉及从利用地塞米松和强的松龙之类甾体药物到使用多克隆和单克隆抗体{Beutler等,Science 234,470-474(1985);WO 92/11383}。
详细描述本发明基于这样的发现,即本说明书较完整描述的某些种类的非肽类化合物可降低TNFα的水平。
本发明特别是关于(I)下式所示化合物
其中X和Y中一个是C=O,X和Y中另一个是C=O或CH2;(i)R1、R2、R3和R4各自独立地为卤素、1-4个碳原子的烷基或1-4个碳原子的烷氧基,或(ii)R1、R2、R3和R4之一为-NHR5,其余的R1、R2、R3和R4为氢;R5为氢或1-8个碳原子的烷基;R6为氢、1-8个碳原子的烷基、苄基或卤素;但有如下条件如果X和Y为C=O,且(i)R1、R2、R3和R4之一为氟或(ii)R1、R2、R3和R4之一为氨基,则R6不为氢;(b)含一个氮原子的所述化合物的酸加成盐能被质子化。
较佳的化合物是式I中R1、R2、R3和R4各自独立地为卤素、1-4个碳原子的烷基或1-4个碳原子的烷氧基,R6为氢、甲基、乙基或丙基的一组化合物。第二组较佳的化合物是式I中R1、R2、R3和R4之一为-NH2,其余的R1、R2、R3和R4为氢,R6为氢、甲基、乙基或丙基的化合物。
除非另外限定,术语“烷基”指含有1-8个碳原子的直链或支链一价饱和烃链。这样的烷基的代表为甲基、乙基、丙基、异丙基、丁基、异丁基、仲丁基和叔丁基。烷氧基指通过醚氧原子键合到分子其余部分的烷基。这样的烷氧基的代表为甲氧基、乙氧基、丙氧基、异丙氧基、丁氧基、异丁氧基、仲丁氧基和叔丁氧基。R1、R2、R3和R4以氯、氟、甲基或甲氧基为佳。
在有资格的专门医师指导下,式I化合物被用来抑制TNFα的不期望有的作用。这些化合物可单独地或与其它治疗剂(包括抗生素、甾类化合物等)合用,给需要治疗的哺乳动物口服给药、直肠给药或胃肠外给药。
本发明的化合物还可局部用于由过量TNFα的产生分别介导或加剧的局部病症的治疗或预防,例如病毒感染(如由疱疹病毒引起的感染)或病毒性结膜炎、牛皮癣、特应性皮炎等。
这些化合物还可用于需要阻止或抑制TNFα产生的人以外的哺乳动物的兽医治疗。在动物上处理(治疗或预防)的TNFα介导的疾病包括下面所述的那些病症,但特别是病毒感染。其例子包括猫免疫缺陷病毒、马感染性贫血病毒、羊关节炎病毒、绵羊脱髓鞘性脑白质炎病毒和maedi病毒,以及其它lentiviruses。
R1、R2、R3和R4之一为氨基且R5和R6及其余的R1、R2、R3和R4为氢的化合物是已知的,如1,3-二氧-2-(2,6-二氧哌啶-3-基)-4-氨基异二氢吲哚或1,3-二氧-2-(2,6-二氧哌啶-3-基)-5-氨基异二氢吲哚。见Jonsson,Acta Pharma.Succica,9,521-542(1972)。
这些化合物可用通常已知的方法进行制备。特别是,可在酸接受体(如二甲基氨基吡啶或三乙胺)存在下,通过氯化2,6-二氧哌啶-3-铵鎓和2-溴甲基苯甲酸的低级烷酯反应来制备这些化合物。
取代的苯甲酸酯中间体是已知的或可通过常规方法获得。例如,在光的影响下用N-溴化琥珀酰亚胺将邻甲苯甲酸的低级烷酯溴化,得到2-溴甲基苯甲酸低级烷酯。
或者,使二醛与氯化2,6-二氧哌啶-3-铵鎓反应
在另一个方法中,使二醛与谷氨酰胺反应,然后将所得的2-(1-氧异二氢吲哚-2-基)戊二酸环合,得到式I所示1-氧2-(2,6-二氧哌啶-3-基)-异二氢吲哚
最后,选择性还原合适的取代邻苯二甲酰亚胺中间体
通过相应的硝基化合物的催化加氢可制备氨基化合物。
式IA所示硝基中间体是已知的,可通过常规方法获得。例如,将硝基邻苯二甲酸酐与盐酸α-氨基戊二酰亚胺(或称作氯化2,6-二氧哌啶-3-铵鎓)在乙酸钠和冰乙酸存在下进行反应,得到式IA(其中X和Y均为C=O)的中间体。
在第2个途径中,在光的影响下,用N-溴代琥珀酰亚胺溴化硝基-邻甲苯甲酸的低级烷酯,得到2-(溴甲基)硝基苯甲酸低级烷酯。在三乙胺存在下,在例如二甲基甲酰胺中,将其与氯化2,6-二氧哌啶-3-铵鎓反应,得到X之一为C=O、另一个X为CH2的式II所示中间体。
或者,如果R1、R2、R3和R4之一是受保护的氨基,可将保护基裂解,得到R1,R2,R3和R4之一为氨基的相应化合物。此处所用的保护基指在最终的治疗化合物中一般见不到但在合成的某个阶段为了保护化学操作过程中可能改变的基团而有意引入的基团。在合成的较后阶段除去这种保护基,带有这种保护基的化合物基本上作为中间体有其重要性(尽管有些衍生物也显示生物活性)。因此,保护基的确切结构并不严格要求。在大量标准工作中,描述了用于形成和除去保护基的种种反应,这些工作包括例如“Protective Groups in OrganicChemistry”,Plemun Press,London and New York,1973;Greene,Th.W."Protective Groups in Organic Synthesis“,Wiley,New York,1981;"The Peptides",Vol.I,Schroder and Lubke,Academic Press,London and New York,1965;"Methoden der Organischen Chemie",Houben-Weyl,4th Edition,Vol.15/I,GeorgThieme Verlag,Stuttgart 1974,它们揭示的内容结合于此作为参考。氨基可利用酰基以酰胺的形式保护起来,该酰基可在温和条件下选择性地除去,特别是苄氧基羰基、甲酰基或在羰基的1-位或α-位上有支链的低级烷酰基,特别是叔烷酰基,如三甲基乙酰基,在羰基的α位上被取代的低级烷酰基,如三氟乙酰基。
本发明的化合物具有手性中心,可以旋光异构体的形式存在。当具有2个手性中心时,这些异构体的外消旋体及其各自的异构体,以及非对映异构体均在本发明的范围内。外消旋体可直接使用,或可用物理方法,如通过使用手性吸附剂的色谱法将其分离成各个异构体。或者,可以手性形式制备各个异构体,或用化学方法,通过与手性酸成盐从混合物中分离各个异构体,例如,10-樟脑磺酸、樟脑酸、α-溴代樟脑酸、甲氧基乙酸、酒石酸、二乙酰基酒石酸、苹果酸、吡啶烷酮-5-羧酸等的各个对映体,然后将拆分开的一个碱或两个碱均游离出来,可任意地重复此过程,以获得基本上没有另一个的任何一个或两个各自的异体构,即光学纯度>95%的形式。
本发明还涉及式I化合物的生理学上可接受的无毒酸加成盐。这样的盐包括从有机和无机酸生成的盐,例如(但不限于),盐酸、氢溴酸。磷酸、硫酸、甲磺酸、乙酸、酒石酸、乳酸、琥珀酸、柠檬酸、苹果酸、马来酸、山梨酸、阿康酸、水杨酸、苯二甲酸、双羟萘酸、庚酸等。
口服剂型包括片剂、胶囊剂、dragees,及类似形状的压缩的药物剂型,每单位剂量包含1-100mg药物。可用含20-100mg/ml的等渗盐水溶液作为非胃肠道给药,包括肌肉、鞘内、静脉和动脉途径给药。使用从常规载体如可可脂制成的栓剂可进行直肠给药。
药物组合物包括一种或几种本发明的化合物,以及至少一种药学上可接受的载体、稀释剂或赋形剂。在制备这些组合物时,通常将活性成分与赋形剂混合,或用赋形剂稀释,或包在可以胶囊或药囊形式存在的载体中。当赋形剂起稀释剂作用时,它可以是固体、半固体或液体材料作为赋形剂、载体或活性成分的介质。因此,组合物可以是片剂、丸剂、粉剂、酏剂、混悬剂、乳剂、溶液剂、糖浆剂、软和硬明胶胶囊、栓剂、灭菌可注射溶液和灭菌包装粉剂。合适的赋形剂的例子包括乳糖、葡萄糖、蔗糖、山梨醇、甘露醇。淀粉、阿拉伯胶、硅酸钙、微晶纤维素、聚乙烯吡咯烷酮、纤维素、水、糖浆和甲基纤维素,制剂还可包括润滑剂(如滑石粉、硬脂酸镁和矿物油),湿润剂,乳化剂和悬浮剂,防腐剂(如羟基苯甲酸甲酯和丙酯),甜味剂或矫味剂。
组合物以制成单位剂量形式为宜,即适合作为单一剂量的物理学上分开的单位,或准备以一次或多次剂量方案对人和其他哺乳动物投药的单一剂量的预定部分,每一单位包含为产生所期望的治疗效应而计算出预定量的活性物质,以及合适的药剂学赋形剂。
采用本领域熟知的方法,可将组合物制成给患者投药后能立即持续或缓慢释放活性成分的制剂。
下面的实施例将进一步作为本发明实质的典型,但不应看作对其范围的限制,该范围只能由所附的权利要求来限定。
实施例11,3-二氧-2-(2,6-二氧哌啶-3-基)-5-氨基异二氢吲哚将1,3-二氧-2-(2,6-二氧哌啶-3-基)-5-硝基异二氢吲哚(也可命名为N-(2,6-二氧哌啶-3-基)-4-硝基邻苯二甲酰亚胺,1g,3.3mmol)和10% Pd/C(0.13g)混合入1,4-二噁烷(200mL)中,然后以50psi的压力进行加氢反应,历时6.5小时。用硅藻土过滤掉催化剂,真空浓缩滤液。残渣用乙酸乙酯(20mL)重结晶,获得0.62g(69%)为橙色固体的1,3-二氧-2-(2,6-二氧哌啶-3-基)-5-氨基异二氢吲哚(也可命名为N-(2,6-二氧哌啶-3-基)-4-氨基邻苯二甲酰亚胺。最后用二噁烷/乙酸乙酯重结晶,获得0.32g黄色固体熔点318.5~320.5℃HPLC(novaPak C18,15/85乙腈/0.1%H3PO4)3.97min(98.22%)1H NMR(DMSO-d6)δ11.08(s,1H),7.53~7.50(d,J=8.3Hz,1H),6.94(s,1H),6.84~6.81(d,J=8.3Hz,1H),6.55(s,2H),5.05~4.98(m,1H),2.87~1.99(m,4H)13C NMR(DMSO-d6)δ172.79,170.16,167.65,167.14,155.23,134.21,125.22,116.92,116.17,107.05,48.58,30.97,22.22分析计算值(C13H11N3O4)C,57.14,H,4.06,N,15.38实测值C,56.52,H,4.17,N,14.60与上述同样操作,以1-氧-2-(2,6-二氧哌啶-3-基)-5-硝基异二氢吲哚、1-氧-2-(2,6-二氧哌啶-3-基)-4-硝基异二氢吲哚、1-氧-2-(2,6-二氧哌啶-3-基)-6-硝基异二氢吲哚、1-氧-2-(2,6-二氧哌啶-3-基)-7-硝基异二氢吲哚、1,3-二氧-2-(2,6-二氧哌啶-3-基)-4-硝基异二氢吲哚为原料进行加氢反应,可分别获得1-氧-2-(2,6-二氧哌啶-3-基)-5-氨基异二氢吲哚、1-氧-2-(2,6-二氧哌啶-3-基)-4-氨基异二氢吲哚、1-氧-2-(2,6-二氧哌啶-3-基)-6-氨基异二氢吲哚、1-氧-2-(2,6-二氧哌啶-3-基)-7-氨基异二氢吲哚、1,3-二氧-2-(2,6-二氧哌啶-3-基)-4-氨基异二氢吲哚。
实施例21,3-二氧-2-(2,6-二氧哌啶-3-基)-5-硝基异二氢吲哚将4-硝基邻苯二甲酸酐(1.7g,8.5mmol)、盐酸α-氨基戊二酰亚胺(1.4g,8.5mmol)和乙酸钠(0.7g,8.6mmol)混合入冰乙酸(30mL)中,加热回流17小时。然后真空浓缩反应液,在残渣中加入二氯甲烷(40mL)和水(30mL),并搅拌。分离出水层,用二氯甲烷(2×40mL)萃取,然后用硫酸镁干燥合并后的二氯甲烷提取液,并真空浓缩,获得1.4g(54%)为浅棕色固体的1,3-二氧-2-(2,6-二氧哌啶-3-基)-5-硝基异二氢吲哚,最后用甲醇重结晶,获得分析试样。
熔点228.5~229.5℃1H NMR(DMSO-d6)δ11.18(s,1H),8.69~8.65(d,d,J=1.9,8.0Hz,1H),8.56(d,J=1.9Hz,1H),8.21(d,H=8.2Hz,1H),5.28(d,d,J=5.3,12.8Hz,1H),2.93~2.07(m,4H),13C NMR(DMSO-d6)δ172.66,169.47,165.50,165.23,151.69,135.70,132.50,130.05,124.97,118.34,49.46,30.85,21.79分析计算值(C13H9N3O6)C,51.49,H,2.99,N,13.86
实测值C,51.59,H,3.07,N,13.37在三乙胺存在下,在二甲基甲酰胺中,使氯化2,6-二氧哌啶-3-铵鎓分别与2-溴甲基-5-硝基苯甲酸甲酯、2-溴甲基-4-硝基苯甲酸甲酯、2-溴甲基-6-苯甲酸甲酯、2-溴甲基-7-苯甲酸甲酯反应,可分别获得1-氧-2-(2,6-二氧哌啶-3-基)-5-硝基异二氢吲哚、1-氧-2-(2,6-二氧哌啶-3-基)-4-硝基异二氢吲哚、1-氧-2-(2,6-二氧哌啶-3-基)-6-硝基异二氢吲哚、1-氧-2-(2,6-二氧哌啶-3-基)-7-硝基异二氢吲哚。在光影响下,利用一般的溴化反应使相应的硝基邻甲苯甲酸酯与N-溴琥珀酰亚胺反应,就可依次获得上述2-(溴甲基)硝基苯甲酸甲酯。
实施例31-氧-2-(2,6-二氧哌啶-3-基)-4,5,6,7-四氟异二氢吲哚将氯化2,6-二氧哌啶-3-铵鎓16.25g、2-溴甲基-3,4,5,6-四氟苯甲酸甲酯30.1g和三乙胺12.5g混合入100mL二甲基甲酰胺中,然后在室温下搅拌15小时,真空浓缩反应液,在残渣中加入二氯甲烷和水,接着分离出水层,再次用二氯甲烷萃取,然后用硫酸镁干燥合并后的二氯甲烷提取液,真空浓缩,获得1-氧-2-(2,6-二氧哌啶-3-基)-4,5,6,7-四氟异二氢吲哚。
与上述同样操作,分别用等量的2-溴甲基-3,4,5,6-四氯苯甲酸酯、2-溴甲基-3,4,5,6-四甲基苯甲酸酯、2-溴甲基-3,4,5,6-四甲氧基苯甲酸酯代替2-溴甲基-3,4,5,6-四氟苯甲酸酯,可分别获得1-氧-2-(2,6-二氧哌啶-3-基)-4,5,6,7-四氯异二氢吲哚、1-氧-2-(2,6-二氧哌啶-3-基)-4,5,6,7-四甲基异二氢吲哚和1-氧-2-(2,6-二氧哌啶-3-基)-4,5,6,7-四甲氧基异二氢吲哚。
实施例4N-苯氧基羰基-α-甲基-谷氨酸在0~5℃的温度及搅拌状态下,在α-甲基-D,L-谷氨酸(10g,62mmol)的2N氢氧化钠(62mL)中加入氯甲酸苯酯(12.7g,74.4mmol),历时30分钟。加料结束后在室温下搅拌反应混合液,历时3小时。在搅拌过程中滴加2N氢氧化钠(33mL)将反应液的pH值控制在11。然后用乙醚(60ml)萃取反应液。在冰浴中冷却水层,用4N盐酸(34mL)酸化,将pH值调为1。接着,用乙酸乙酯(3×100mL)萃取反应液,再用盐水(60mL)洗涤合并后的乙酸乙酯提取液,用硫酸镁干燥。真空除去溶剂,获得15.2g(83%)为油状的N-苯氧基羰基-α-甲基-谷氨酸。
1H NMR(CDCl3)δ8.73(m,5H),5.77(b,1H),5.09(s,2H),2.45~2.27(m,4H),2.0(s,3H)与上述同样操作,由α-乙基-D,L-谷氨酸和α-丙基-D,L-谷氨酸可分别获得N-苯氧基羰基-α-乙基-谷氨酸和N-苯氧基羰基-α-丙基-谷氨酸。
实施例5N-苯氧基羰基-α-甲基-谷氨酸酐在氮气氛围中搅拌加热回流N-苯氧基羰基-α-甲基-谷氨酸(15g,51mmol)和乙酸酐(65mL)的混合液,历时30分钟。使反应液冷却至室温后,真空浓缩,获得油状N-苯氧基羰基-α-甲基-谷氨酸酐(15.7g),它不用进一步精制就可直接用于下一步反应。
1H NMR(CDCl3)δ7.44~7.26(m,5H),5.32~5.30(m,2H),5.11(s,1H),2.69~2.61(m,2H),2.40~2.30(m,2H),1.68(s,3H)与上述同样操作,由N-苯氧基羰基-α-乙基-谷氨酸和N-苯氧基羰基-α-丙基-谷氨酸可分别获得N-苯氧基羰基-α-乙基-谷氨酸酐和N-苯氧基羰基-α-丙基-谷氨酸酐。
实施例6N-苯氧基羰基-α-甲基-异谷氨酰胺在冰水浴中冷却搅拌下的N-苯氧基羰基-α-甲基-谷氨酸酐(14.2g,51.5mmol)的二氯甲烷(100mL)溶液,然后在经过冷却的溶液中吹入氨气,历时2小时。在室温下搅拌反应液,历时17小时,再用水(2×50mL)萃取。接着在冰水浴中冷却合并的水层,用4N盐酸(32mL)酸化,将pH值调整到1,再用乙酸乙酯(3×80mL)萃取反应液,然后用盐水(60mL)对合并的乙酸乙酯提取液进行水洗,并用硫酸镁干燥。真空除去溶剂,获得11.5g N-苯氧基羰基-α-甲基-异谷氨酰胺。
1H NMR(CDCl3/DMSO)δ7.35(m,5H),7.01(s,1H),6.87(s,1H),6.29(s,1H),5.04(s,2H),2.24~1.88(m,4H),1.53(s,3H)与上述同样操作,由N-苯氧基羰基-α-乙基-谷氨酸酐和N-苯氧基羰基-α-丙基-谷氨酸酐可分别获得N-苯氧基羰基-α-乙基-异谷氨酰胺和N-苯氧基羰基-α-丙基-异谷氨酰胺。
实施例7N-苯氧基羰基-α-氨基-α-甲基戊二酰亚胺在氮气氛围中,使搅拌下的N-苯氧基羰基-α-甲基-异谷氨酰胺(4.60g,15.6mmol)、1,1′-羰基二咪唑(2.80g,17.1mmol)、4-二甲基氨基吡啶(0.05g)的四氢呋喃(50mL)溶液加热回流17小时,然后真空浓缩反应液,获得油状物,将该油状物混合入水(50mL)中,历时1小时。过滤所得的悬浮液,用水洗涤固状物,自然干燥后,获得3.8g为白色固体的粗品。再用快速层析法(二氯甲烷∶乙酸乙酯=8∶2)对粗品进行精制,获得2.3g(50%)为白色固体的N-苯氧基羰基-α-氨基-α-甲基戊二酰亚胺。
熔点150.5~152.5℃1H NMR(CDCl3)δ8.21(s,1H),7.34(s,5H),5.59(s,1H),5.08(s,2H),2.74~2.57(m,3H),2.28~2.25(m,1H),1.54(s,3H)13C NMR(CDCl3)δ174.06,171.56,154.68,135.88,128.06,127.69,127.65,66.15,54.79,29.14,28.70,21.98HPLCWaters Nova-Pak C18柱,4微米,3.9×150mm,1mL/min,240nm,20/80 CH3CN/0.1%H3PO4(aq),7.56分钟(100%)分析计算值(C14H16N2O4)C,60.86,H,5.84,N,10.14实测值C,60.88,H,5.72,N,10.07与上述同样操作,由N-苯氧基羰基-α-乙基-异谷氨酰胺和N-苯氧基羰基-α-丙基-异谷氨酰胺可分别获得N-苯氧基羰基-α-氨基-α-乙基-戊二酰亚胺和N-苯氧基羰基-α-氨基-α-丙基-戊二酰亚胺。
实施例8盐酸α-氨基-α-甲基-戊二酰亚胺在温热条件下将N-苯氧基羰基-α-氨基-α-甲基戊二酰亚胺(2.3g,8.3mmol)溶于乙醇(200mL)中,然后冷却至室温,在该溶液中加入4N盐酸(3mL)和10%Pd/C(0.4g)。接着在50psi的氢气压力下,在帕尔仪器中进行氢化反应,历时3小时。然后在反应液中加水(50mL),使产物溶解,再用经过水洗(50mL)的硅藻土过滤反应液,真空浓缩滤液,获得固体残渣。将该固状物混合入乙醇(20mL)中,历时30分钟。过滤所得淤浆,获得1.38g(93%)为白色固体的盐酸α-氨基-α-甲基-戊二酰亚胺。
1H NMR(DMSO-d6)δ11.25(s,1H),8.92(s,3H),2.84~2.51(m,2H),2.35~2.09(m,2H),1.53(s,3H)
HPLCWaters Nova-Pak C18柱,4微米,1mL/min,240nm,20/80CH3CN/0.1%H3PO4(aq),1.03分钟(94.6%)与上述同样操作,由N-苯氧基羰基-α-氨基-α-乙基-戊二酰亚胺和N-苯氧基羰基-α-氨基-α-丙基-戊二酰亚胺可分别获得盐酸α-氨基-α-乙基-戊二酰亚胺和盐酸α-氨基-α-丙基-戊二酰亚胺。
实施例93-(3-硝基苯二甲酰亚氨基)-3-甲基哌啶-2,6-二酮在氮气氛围中,将搅拌下的盐酸α-氨基-α-甲基-戊二酰亚胺(1.2g,6.7mmol)、3-硝基邻苯二甲酸酐(1.3g,6.7mmol)、乙酸钠(0.6g,7.4mmol)的乙酸(30mL)溶液加热回流6小时。然后冷却反应液,真空浓缩,将所得固状物混合入水(30mL)和二氯甲烷(30mL)中,历时30分钟。过滤悬浮液,用二氯甲烷洗涤所得固体,真空干燥(60℃,<1mm),获得1.44g(68%)为灰白色的3-(3-硝基苯二甲酰亚氨基)-3-甲基哌啶-2,6-二酮。
熔点265~266.5℃1H NMR(DMSO-d6)δ11.05(s,1H),8.31(dd,J=1.1,7.9Hz,1H),8.16~8.03(m,2H),2.67~2.49(m,3H),2.08~2.02(m,1H),1.88(s,3H)13C NMR(DMSO-d6)δ172.70,171.71,165.89,163.30,144.19,136.43,133.04,128.49,126.77,122.25,59.22,28.87,28.49,21.04HPLCWaters Nova-Pak C18柱,4微米,1mL/min,240nm,20/80CH3CN/0.1%H3PO4(aq),7.38分钟(98%)分析计算值(C14H11N3O6)C,53.00,H,3.49,N,13.24实测值C,52.77,H,3.29,N,13.00与上述同样操作,由盐酸α-氨基-α-乙基-戊二酰亚胺和盐酸α-氨基-α-丙基-戊二酰亚胺可分别获得3-(3-硝基苯二甲酰亚氨基)-3-乙基哌啶-2,6-二酮和3-(3-硝基苯二甲酰亚氨基)-3-丙基哌啶-2,6-二酮。
实施例103-(3-氨基苯二甲酰亚氨基)-3-甲基哌啶-2,6-二酮在温热条件下将3-(3-硝基苯二甲酰亚氨基)-3-甲基哌啶-2,6-二酮(0.5g,1.57mmol)溶于丙酮(250mL)中,然后冷却至室温,在氮气氛围中,在该溶液中加入10%Pd/C(0.1g)。接着在50psi氢气压力下,在帕尔仪器中进行氢化反应,历时4小时。用硅藻土过滤反应液,滤饼用丙酮(50mL)洗涤。真空浓缩滤液,获得黄色固体。将该黄色固体混合入乙酸乙酯(10mL)中,历时30分钟。过滤所得淤浆,干燥(60℃,<1mm),获得0.37g(82%)为黄色固体的3-(3-氨基苯二甲酰亚氨基)-3-甲基哌啶-2,6-二酮。
熔点268~269℃1H NMR(DMSO-d6)δ10.98(s,1H),7.44(dd,J=7.1,7.3Hz,1H),6.99(d,J=8.4Hz,1H),6.94(d,J=6.9Hz,1H),6.52(s,2H),2.71~2.47(m,3H),2.08~1.99(m,1H),1.87(s,3H)13C NMR(DMSO-d6)δ172.48,172.18,169.51,168.06,146.55,135.58,131.80,121.51,110.56,108.30,58.29,29.25,28.63,21.00HPLCWaters Nova-Pak C18柱,4微米,1mL/min,240nm,20/80CH3CN/0.1%H3PO4(aq),5.62分钟(99.18%)分析计算值(C14H13N3O4)C,58.53,H,4.56,N,14.63实测值C,58.60,H,4.41,N,14.36与上述同样操作,由3-(3-硝基苯二甲酰亚氨基)-3-乙基哌啶-2,6-二酮和3-(3-硝基苯二甲酰亚氨基)-3-丙基哌啶-2,6-二酮可分别获得3-(3-氨基苯二甲酰亚氨基)-3-乙基哌啶-2,6-二酮和3-(3-氨基苯二甲酰亚氨基)-3-丙基哌啶-2,6-二酮。
实施例112-溴甲基-3-硝基苯甲酸甲酯使搅拌下的2-甲基-3-硝基苯甲酸甲酯(17.6g,87.1mmol)和N-溴琥珀酰亚胺(18.9g,105mmol)的四氯化碳(243mL)溶液加热回流一晚,用于加热的是100W的灯泡,它与反应容器的距离为2cm。18小时后,使反应液冷却至室温,并过滤。用水(2×120mL)和盐水(120mL)洗涤滤液后,用硫酸镁干燥,然后真空除去溶剂,用快速层析法精制(己烷∶乙酸乙酯=8∶2)所得粗品,获得22g(93%)为黄色固体的2-溴甲基-3-硝基苯甲酸甲酯。
熔点69~72℃1H NMR(CDCl3)
δ8.13~8.09(dd,J=3.6,7.86Hz,1H),7.98~7.93(dd,J=1.32,8.13Hz,1H),7.57~7.51(t,J=7.97Hz,1H),5.16(s,2H),4.0(s,3H)13C NMR(CDCl3)δ65.84,150.56,134.68,132.64,129.09,53.05,22.70HPLCWaters Nova-Pak C18柱,4微米,1mL/min,240nm,40/60CH3CN/0.1%H3PO4(aq),8.2分钟99%分析计算值(C9H8NO4Br)C,39.44,H,2.94,N,5.11,Br,29.15实测值C,39.51,H,2.79,N,5.02,Br,29.32实施例123-(1-氧-4-硝基异二氢吲哚-1-基)-3-甲基哌啶-2,6-二酮在搅拌下的盐酸α-氨基-α-甲基戊二酰亚胺(2.5g,14.0mmol)和2-溴甲基-3-硝基苯甲酸甲酯(3.87g,14.0mmol)的二甲基甲酰胺(40mL)中加入三乙胺(3.14g,30.8mmol),然后在氮气氛围中使反应液加热回流6小时,冷却后真空浓缩。接着,将所得固体混合入水(50mL)和二氯甲烷中,历时30分钟,过滤所得淤浆,固状物用二氯甲烷洗涤,并真空干燥(60℃,<1mm),获得2.68g(63%)为灰白色的3-(1-氧-4-硝基异二氢吲哚-1-基)-3-甲基哌啶-2,6-二酮。
熔点233~235℃1H NMR(DMSO-d6)δ10.95(s,1H),8.49~8.46(d,J=8.15Hz,1H),8.13~8.09(d,J=7.43Hz,1H),7.86~7.79(t,J=7.83Hz,1H),5.22~5.0(dd,J=19.35,34.6Hz,2H),2.77~2.49(m,3H),2.0~1.94(m,1H),1.74(S,3H)13C NMR(DMSO-d6)δ173.07,172.27,164.95,143.15,137.36,135.19,130.11,129.32,126.93,57.57,48.69,28.9,27.66,20.6HPLCWaters Nova-Pak C18柱,4微米,1mL/min,240nm,20/80CH3CN/0.1%H3PO4(aq),4.54分钟99.6%分析计算值(C14H13N3O5)C,55.45,H,4.32,N,13.86实测值C,52.16,H,4.59,N,12.47
用盐酸α-氨基-α-乙基戊二酰亚胺和盐酸α-氨基-α-丙基戊二酰亚胺代替盐酸α-氨基-α-甲基戊二酰亚胺可分别获得3-(1-氧-4-硝基异二氢吲哚-1-基)-3-乙基哌啶-2,6-二酮和3-(1-氧-4-硝基异二氢吲哚-1-基)-3-丙基哌啶-2,6-二酮实施例133-(1-氧-4-氨基异二氢吲哚-1-基)-3-甲基哌啶-2,6-二酮在温热条件下将3-(1-氧-4-硝基异二氢吲哚-1-基)-3-甲基哌啶-2,6-二酮(1.0g,3.3mmol)溶于甲醇(500mL)中,并冷却至室温。然后,在氮气氛围中,在上述溶液中加入10%Pd/C(0.3g)。接着在50psi的氢气压力下,使上述反应液在帕尔仪器中进行加氢反应,历时4小时。然后用硅藻土过滤反应液,并用甲醇(50mL)洗涤硅藻土,真空浓缩滤液,获得灰白色固体。再将该固体混合入二氯甲烷(20mL)中,历时30分钟。过滤所得淤浆,并干燥所得固体(60℃,<1mm),获得0.54g(60%)为白色固体的3-(1-氧-4-氨基异二氢吲哚-1-基)-3-甲基哌啶-2,6-二酮。
熔点268~270℃1H NMR(DMSO-d6)δ10.85(s,1H),7.19~7.13(t,J=7.63Hz,1H),6.83~6.76(m,2H),5.44(s,2H),4.41(s,2H),2.71~2.49(m,3H),1.9~1.8(m,1H),1.67(s,3H)13C NMR(DMSO-d6)δ173.7,172.49,168.0,143.5,132.88,128.78,125.62,116.12,109.92,56.98,46.22,29.04,27.77,20.82HPLCWaters Nova-Pak C18柱,4微米,1mL/min,240nm,20/80CH3CN/0.1%H3PO4(aq),1.5分钟(99.6%)分析计算值(C14H15N3O3)C,61.53,H,5.53,N,15.38实测值C,58.99,H,5.48,N,14.29由3-(1-氧-4-硝基异二氢吲哚-1-基)-3-乙基哌啶-2,6-二酮和3-(1-氧-4-硝基异二氢吲哚-1-基)-3-丙基哌啶-2,6-二酮可分别获得3-(1-氧-4-氨基异二氢吲哚-1-基)-3-乙基哌啶-2,6-二酮和3-(1-氧-4-氨基异二氢吲哚-1-基)-3-丙基哌啶-2,6-二酮实施例14S-4-氨基-2-(2,6-二氧哌啶-3-基)异二氢吲哚-1,3-二酮A.4-硝基-N-乙氧基羰基邻苯二甲酰亚胺在0~5℃的氮气氛围中,在搅拌下的3-硝基邻苯二甲酰亚胺(3.0g,15.6mmol)和三乙胺(1.78g,17.6mmol)的二甲基甲酰胺(20mL)溶液中滴加氯甲酸乙酯(1.89g,19.7mmol),历时10分钟,然后使反应液的温度上升至室温,并搅拌4小时,接着将该反应液慢慢加入搅拌的冰水(60mL)中,将所得淤浆过滤,用氯仿(15mL)和乙醚(15mL)重结晶后,获得3.1g(75%)为灰白色固体的产物。
熔点100~100.5℃1H NMR(CDCl3)δ8.25(d,J=7.5Hz,1H),8.20(d,J=8.0Hz,1H),8.03(t,J=7.9Hz,1H),4.49(q,J=7.1Hz,2H),1.44(t,J=7.2Hz,3H)13C NMR(CDCl3)δ161.45,158.40,147.52,145.65,136.60,132.93,129.65,128.01,122.54,64.64,13.92HPLCWaters Nova-Pak/C18,3.9×150mm,4微米,1mL/min,240nm,30/70 CH3CN/0.1%H3PO4(aq),5.17分钟(98.11%)分析计算值(C11H8N2O6)C,50.00,H,3.05,N,10.60实测值C,50.13,H,2.96,N,10.54B.叔丁基-N-(4-硝基邻苯二甲酰)-L-谷氨酰胺使搅拌下的4-硝基-N-乙氧基羰基邻苯二甲酰亚胺(1.0g,3.8mmol)、氯化L-谷氨酰胺叔丁酯(0.90g,3.8mmol)和三乙胺(0.54g,5.3mmol)的四氢呋喃(30mL)溶液加热回流24小时,然后真空除去四氢呋喃,将残渣溶于二氯甲烷(50mL)中,再用水(2×15mL)、盐水(15mL)洗涤二氯甲烷溶液,并用硫酸钠干燥,真空除去溶剂,残渣用快速层析法(7∶3,二氯甲烷∶乙酸乙酯)精制,获得0.9g(63%)玻璃状物质。
1H NMR(CDCl3)δ8.15(d,J=7.9Hz,1H),7.94(t,J=7.8Hz,1H),5.57(b,2H),4.84(dd,J=5.1,9.7Hz,1H),2.53~2.30(m,4H),1.43(s,9H)HPLCWaters Nova-Pak/C18,3.9×150mm,4微米,1mL/min,240nm,30/70 CH3CN/0.1%H3PO4(aq),6.48分钟(99.68%)手性分析,Daicel手性Pak AD,0.4×25Cm,1mL/min,240nm,5.32min(99.93%)分析计算值(C17H19N3O7)
C,54.11,H,5.08,N,11.14实测值C,54.21,H,5.08,N,10.85C.N-(4-硝基邻苯二甲酰)-L-谷氨酰胺将氯化氢气体吹入搅拌下的温度为5℃的叔丁基N-(4-硝基邻苯二甲酰)-L-谷氨酰胺(5.7g,15.1mmol)的二氯甲烷(100mL)中,历时25分钟。然后在室温下搅拌上述溶液,历时16小时。接着添加乙醚(50mL),将所得溶液搅拌30分钟后,过滤所得淤浆,获得4.5g固体粗品,它可直接用于下一步反应。
1H NMR(DMSO-d6)δ8.36(dd,J=0.8,8.0Hz,1H),8.24(dd,J=0.8,7.5Hz,1H),8.11(t,J=7.9Hz,1H),7.19(b,1H),6.72(b,1H),4.80(dd,J=3.5,8.8Hz,1H),2.30~2.10(m,4H)D.(S)-2-(2,6-二氧(3-哌啶基))-4-硝基异二氢吲哚-1,3-二酮将搅拌下的N-(4-硝基邻苯二甲酰)-L-谷氨酰胺(4.3g,13.4mmol)的无水二氯甲烷(170mL)悬浮液冷却至-40℃(IPA/干冰浴),然后在上述悬浮液中滴加亚硫酰氯(1.03mL,14.5mmol)和吡啶(1.17mL,14.5mmol),30分钟后,添加三乙胺(2.06mL,14.8mmol),并在-30~-40℃的温度下搅拌3小时。接着使溶液温度升至室温,过滤,用二氯甲烷洗涤,获得2.3g(57%)粗品,最后用丙酮(300mL)重结晶,获得2g白色固状产物。
熔点259.0~284.0℃(dec.)1H NMR(DMSO-d6)δ11.19(s,1H),8.34(d,J=7.8Hz,1H),8.23(d,J=7.1Hz,1H),8.12(,J=7.8Hz,1H),5.25~5.17(dd,J=5.2,12.7Hz),2.97~2.82(m,1H),2.64~2.44(m,2H),2.08~2.05(m,1H)13C NMR(DMSO-d6)δ172.67,169.46,165.15,162.50,144.42,136.78,132.99,128.84,127.27,122.53,49.41,30.84,21.71HPLCWaters Nova-Pak/C18,3.9×150mm,4微米,1mL/min,240nm.10/90 CH3CN/0.1%H3PO4(aq),4.27分钟(99.63%)分析计算值(C13H9N3O6)C,51.49,H,2.99,N,13.86实测值51.67,H,2.93,N,13.57
E.S-4-氨基-2-(2,6-二氧哌啶-3-基)异二氢吲哚-1,3-二酮使(S)-3-(4′-硝基邻苯二甲酰胺)-哌啶-2,6-二酮(0.76g,2.5mmol)和10%Pd/C(0.3g)的丙酮(200mL)溶液在50psi氢气压力下,在帕尔振摇器中进行24小时加氢反应,然后用硅藻土过滤反应液,再真空浓缩滤液。接着将反应液混合入热的乙酸乙酯中,历时30分钟,并过滤,获得0.47g(69%)为黄色固体的产物。
熔点309~310℃1H NMR(DMSO-d6)δ11.10(s,1H),7.47(dd,J=7.2,8.3Hz,1H),7.04~6.99(dd,J=6.9,8.3Hz,2H),6.53(s,2H),5.09~5.02(dd,J=5.3,12.4Hz,1H),2.96~2.82(m,1H),2.62~2.46(m,2H),2.09~1.99(m,1H)13C NMR(DMSO-d6)δ172.80,170.10,168.57,167.36,146.71,135.44,131.98,121.69,110.98,108.54,48.48,30.97,22.15HPLCWaters Nova-Pak/C18,3.9×150mm,4微米,1mL/min,240nm,15/85CH3CN/0.1%H3PO4(aq),4.99分钟(98.77%)手性分析,Daicel手性Pak AD,0.46×25cm,1mL/min,240nm,30/70己烷/IPA9.55min(1。32%),12.55min(97.66%)分析计算值(C13H11N3O4)C,57.14,H,4.06,N,15.38实测值C,57.14,H,4.15,N,14.99实施例15R-4-氨基-2-(2,6-二氧哌啶-3-基))异二氢吲哚-1,3-二酮A.叔丁基N-(4-硝基邻苯二甲酰)-D-谷氨酰胺使搅拌下的4-硝基-N-乙氧基羰基-邻苯二甲酰亚胺(5.9g,22.3mmol)、D-谷氨酰胺叔丁酯(4.5g,22.3mmol)和三乙胺(0.9g,8.9mmol)的四氢呋喃(100mL)回流24小时,然后用二氯甲烷(100mL)稀释反应液,再用水(2×50mL)和盐水(50mL)洗涤后,干燥。真空除去溶剂,用快速层析法(2%甲醇的二氯甲烷溶液)精制残渣,获得6.26g(75%)玻璃状产物。
1H NMR(CDCl3)δ8.12(d,J=7.5Hz,2H),7.94(dd,J=7.9,9.1Hz,1H),5.50(b,1H),5.41(b,1H),4.85(dd,J=5.1,9.8Hz,1H),2.61~2.50(m,2H),2.35~2.27(m,2H),1.44(s,9H)
13C NMR(CDCl3)δ173.77,167.06,165.25,162.51,145.07,135.56,133.78,128.72,127.27,123.45,83.23,53.18,32.27,27.79,24.42HPLCWaters Nova-Pak/C18,3.9×150mm,4微米,1mL/min,240nm,25/75CH3CN/0.1%H3PO4(aq),4.32分钟(99.74%)手性分析,Daicel手性Pak AD,0.46×25cm,1mL/min,240nm,55/45己烷/IPA5.88min(99.68%)分析计算值(C17H19N3O7)C,54.11,H,5.08,N,11.14实测值C,54.25,H,5.12,N,10.85B.N-(4-硝基邻苯二甲酰)-D-谷氨酰胺将氯化氢气体吹入搅拌下的温度为5℃的叔丁基N-(4-硝基邻苯二甲酰)-D-谷氨酰胺(5.9g,15.6mmol)的二氯甲烷(100mL)中,历时1小时,然后在室温下再搅拌1小时,接着添加乙醚(100mL),再搅拌30分钟。过滤反应液,用乙醚(60mL)洗涤所得固体,干燥(40℃,<1mm Hg),获得4.7g(94%)产物。
1H NMR(DMSO-d6)δ8.33(d,J=7.8Hz,1H),8.22(d,J=7.2Hz,1H),8.11(t,J=7.8Hz,1H),7.19(b,1H),6.72(b,1H),4.81(dd,J=4.6,9.7Hz,1H),2.39~2.12(m,4H)13C NMR(DMSO-d6)δ173.21,169.99,165.41,162.73,144.45,136.68,132.98,128.80,127.23,122.52,51.87,31.31,23.87C.(R)-2-(2,6-二氧(3-哌啶基))-4-硝基异二氢吲哚-1,3-二酮用异丙醇/干冰浴将搅拌下的N-(4′-硝基邻苯二甲酰)-D-谷氨酰胺(4.3g,13.4mmol)的无水二氯甲烷(170mL)水溶液冷却至-40℃,然后滴加亚硫酰氯(1.7g,14.5mmol)和吡啶(1.2g,14.5mmol),30分钟后,添加三乙胺(1.5g,14.8mmol),并在-30℃~-40℃的温度下搅拌3小时。过滤该反应液,并用二氯甲烷(50mL)洗涤所得固体,干燥(60℃,<1mm Hg),获得2.93g产物。另外0.6g产物可从二氯甲烷的滤液中获得。合并这两部分产物(3.53g),并用丙酮(450mL)重结晶,获得2.89g(71%)为白色固体的产物。
熔点256.5~257.5℃1H NMR(DMSO-d6)
δ11.18(s,1H),8.34(dd,J=0.8,7.9Hz,1H),8.23(dd,J=0.8,7.5Hz,1H),8.12(t,J=7.8Hz,1H),5.22(dd,J=5.3,12.8Hz,1H),2.97~2.82(m,1H),2.64~2.47(m,2H),2.13~2.04(m,1H)13C NMR(DMSO-d6)δ172.66,169.44,165.14,162.48,144.41,136.76,132.98,128.83,127.25,122.52,49.41,30.83,21.70HPLCWaters Nova-Pak/C18,3.9×150mm,4微米,1mL/min,240nm,10/90CH3CN/0.1%H3PO4(aq),3.35分钟(100%)分析计算值(C13H9N3O6)C,51.49,H,2.99,N,13.86实测值C,51.55,H,2.82,N,13.48D.(R)-4-氨基-2-(2,6-二氧哌啶-3-基)异二氢吲哚-1,3-二酮在50psi的氢气压力下,在Parr-Shaker仪器中,使R-3-(4′-硝基邻苯二甲酰)-哌啶-2,6-二酮(1.0g,3.3mmol)和10%Pd/C(0.2g)的丙酮(250mL)溶液进行4小时加氢反应,然后用硅藻土过滤反应液,真空浓缩滤液。将所得黄色固体混合入热的乙酸乙酯(20mL)中,历时30分钟,过滤干燥后,获得0.53g(59%)黄色固状产物。
熔点307.5~309.5℃1H NMR(DMSO-d6)δ11.06(s,1H),7.47(dd,J=7.0,8.4Hz,1H),7.02(dd,J=4.6,8.4Hz,2H),6.53(s,2H),5.07(dd,J=5.4,12.5Hz,1H),2.95~2.84(m,1H),2.62~2.46(m,2H),2.09~1.99(m,1H)13C NMR(DMSO-d6)δ172.78,170.08,168.56,167.35,146.70,135.43,131.98,121.68,110.95,108.53,48.47,30.96,22.14HPLCWaters Nova-Pak/C18,3.9×150mm,4微米,1mL/min,240nm,10/90CH3CN/0.1%H3PO4(aq),3.67分钟(99.68%)手性分析,Daicel手性PakAD,0.46×25cm,1mL/min,240nm,30/70己烷/IPA7.88min(97.48%)分析计算值(C13H11N3O4)C,57.14,H,4.06,N,15.38
实测值C,57.34,H,3.91,N,15.14实施例163-(4-氨基-1-氧异二氢吲哚-2-基)-哌啶-2,6-二酮A.2-溴甲基-3-硝基苯甲酸甲酯使搅拌下的2-甲基-3-硝基苯甲酸甲酯(14.0g,71.7mmol)和N-溴琥珀酰亚胺(15.3g,86.1mmol)的四氯化碳(200mL)溶液微微加热回流15小时,用于加热的是100W的灯泡,它照射在离烧瓶2cm处。然后过滤反应液,用二氯甲烷(50mL)洗涤固体,再用水(2×100mL)、盐水(100mL)洗涤滤液,并干燥。真空除去溶剂后,用快速层析法(己烷/乙酸乙酯=8/2)精制残渣,获得19g(96%)为黄色固体的产物。
熔点70.0~71.5℃1H NMR(CDCl3)δ8.12~8.09(dd,J=1.3,7.8Hz,1H),7.97~7.94(dd,J=1.3,8.2Hz,1H),7.54(t,J=8.0Hz,1H),5.15(s,2H),4.00(s,3H)13C NMR(CDCl3)δ165.85,150.58,134.68,132.38,129.08,127.80,53.06,22.69HPLCWaters Nova-Pak/C18,3.9×150mm,4微米,1mL/min,240nm,40/60CH3CN/0.1%H3PO4(aq),7.27分钟(98.92%)分析计算值(C9H8NO4Br)C,39.44,H,2.94,N,5.11,Br,29.15实测值C,39.46,H,3.00,N,5.00,Br,29.11B.叔丁基N-(1-氧-4-硝基异二氢吲哚-2-基)-L-谷氨酰胺在搅拌下的2-溴甲基-3-硝基苯甲酸甲酯(3.5g,13.0mmol)和氯化L-谷氨酰胺叔丁酯(3.1g,13.0mmol)的四氢呋喃(90mL)溶液中滴加三乙胺(2.9g,28.6mmol),加热回流24小时,然后,在冷却后的反应液中加入二氯甲烷(150mL),反应液用水(2×40mL)和盐水(40mL)洗涤,并干燥。真空除去溶剂,用快速层析法(3%甲醇的二氯甲烷溶液)精制残渣,获得2.84g(60%)粗品,该产物可直接用于下一步反应。
1H NMR(CDCl3)δ8.40(d,J=8.1Hz,1H),8.15(d,J=7.5Hz,1H),7.71(t,J=7.8Hz,1H),5.83(s,1H),5.61(s,1H),5.12(d,J=19.4Hz,1H),5.04~4.98(m,1H),4.92(d,J=19.4Hz,1H),2.49~2.22(m,4H),1.46(s,9H)HPLCWaters Nova-Pak/C18,3.9×150mm,4微米,1mL/min,240nm,25/75CH3CN/0.1%H3PO4(aq),6.75分钟(99.94%)C.N-(1-氧-4-硝基异二氢吲哚-2-基)-L-谷氨酰胺将氯化氢气体吹入搅拌下的温度为5℃的叔丁基N-(1-氧-4-硝基异二氢吲哚-2-基)-L-谷氨酰胺(3.6g,9.9mmol)的二氯甲烷(60mL)中,历时1小时,然后在室温下再搅拌1小时,接着添加乙醚(40mL),再搅拌30分钟。过滤所得淤浆,用乙醚洗涤所得固体,干燥,获得3.3g产物。
1H NMR(DMSO-d6)δ8.45(d,J=8.1Hz,1H),8.15(d,J=7.5Hz,1H),7.83(t,J=7.9Hz,1H),7.24(s,1H),6.76(s,1H),4.93(s,2H),4.84~4.78(dd,J=4.8,10.4Hz,1H),2.34~2.10(m,4H)13C NMR(DMSO-d6)δ173.03,171.88,165.96,143.35,137.49,134.77,130.10,129.61,126.95,53.65,48.13,31.50,24.69分析计算值(C13H13N3O6)C,50.82,H,4.26,N,13.68实测值C,50.53,H,4.37,N,13.22D.(S)-3-(1-氧-4-硝基异二氢吲哚-2-基)哌啶-2,6-二酮用异丙醇/干冰浴将搅拌下的N-(1-氧-4-硝基异二氢吲哚-2-基)-L-谷氨酰胺(3.2g,10.5mmol)的无水二氯甲烷(150mL)水溶液冷却至-40℃,然后滴加亚硫酰氯(0.82mL,11.3mmol)和吡啶(0.9g,11.3mmol),30分钟后,添加三乙胺(1.2g,11.5mmol),并在-30℃~-40℃的温度下搅拌3小时。将反应液倒入冰水(200mL)中,再用二氯甲烷(40mL)萃取水层。接着,用水(2×60mL)和盐水(60mL)洗涤二氯甲烷溶液,并干燥,真空除去溶剂后,将所得固体混合入乙酸乙酯(20mL)中,获得2.2g(75%)为白色固体的产物。
熔点285℃1H NMR(DMSO-d6)δ11.04(s,1H),8.49~8.45(dd,J=0.8,8.2Hz,1H),8.21~8.17(dd,J=7.3Hz,1H),7.84(t,J=7.6Hz,1H),5.23~5.15(dd,J=4.9,13.-Hz,1H),4.96(dd,J=19.3,32.4Hz,2H),3.00~2.85(m,1H),2.64~2.49(m,2H),2.08~1.98(m,1H)13C NMR(DMSO-d6)δ172.79,170.69,165.93,143.33,137.40,134.68,130.15,129.60,127.02,51.82,48.43,31.16,22.23HPLCWaters Nova-Pak/C18,3.9×150mm,4微米,1mL/min,240nm,20/80CH3CN/0.1%H3PO4(aq),3.67分钟(100%)分析计算值(C13H11N3O5)C,53.98,H,3.83,N,14.53实测值C,53.92,H,3.70,N,14.10E.(S)-3-(1-氧-4-氨基异二氢吲哚-2-基)哌啶-2,6-二酮在50psi的氢气压力下,在Parr-Shaker仪器中,使S-3-(1-氧-4-硝基异二氢吲哚-2-基)哌啶-2,6-二酮(1.0g,3.5mmol)和10%Pd/C(0.3g)的甲醇(600mL)溶液进行5小时加氢反应,然后用硅藻土过滤反应液,真空浓缩滤液。将所得固体混合入热的乙酸乙酯中,历时30分钟,过滤干燥后,获得0.46g(51%)白色固状产物。
熔点235.5~239℃1H NMR(DMSO-d6)δ11.01(s,1H),7.19(t,J=7.6Hz,1H),6.90(d,J=7.3Hz,1H),6.78(d,J=7.8Hz,1H),5.42(s,2H),5.12(dd,J=5.1,13.1Hz,1H),4.17(dd,J=17.0,28.8Hz,2H),2.92~2.85(m,1H),2.64~2.49(m,1H),2.34~2.27(m,1H),2.06~1.99 (m,1H)13C NMR(DMSO-d6)δ172.85,171.19,168.84,143.58,132.22,128.79,125.56,116.37,110.39,51.48,45.49,31.20,22.74HPLCWaters Nova-Pak/C18,3.9×150mm,4微米,1mL/min,240nm,10/90CH3CN/0.1%H3PO4(aq),0.96分钟(100%)手性分析,Daicel手性Pak AD,40/60己烷/IPA 6.60min(99.42%)分析计算值(C13H13N3O3)C,60.23,H,5.05,N,16.21实测值C,59.96,H,4.98,N,15.84实施例173-(4-氨基-1-氧异二氢吲哚-2-基)-3-甲基哌啶-2,6-二酮
A.N-苯氧基羰基-3-氨基-3-甲基哌啶-2,6-二酮在氮气氛围中,使搅拌下的N-苯氧基羰基-α-甲基-异谷氨酰胺(11.3g,38.5mmol)、1,1′-羰基二咪唑(6.84g,42.2mmol)和4-二甲基氨基吡啶(0.05g)的四氢呋喃(125mL)溶液加热回流19小时。然后真空浓缩反应液,使其呈油状,将该油状物混合入水(50mL)中,历时1小时,过滤,水洗,自然干燥,获得7.15g白色固体。接着,用快速层析法(2∶8,乙酸乙酯∶二氯甲烷)精制粗品,获得6.7g(63%)白色固体产物。
熔点151~152℃1H NMR(CDCl3)δ8.24(s,1H),7.35(s,5H),5.6(s,1H),5.09(s,2H),2.82~2.53(m,3H),2.33~2.26(m,1H),1.56(s,3H)13C NMR(CDCl3)δ174.4,172.4,154.8,136.9,128.3,127.8,127.7,65.3,54.6,29.2,29.0,22.18HPLCWaters Nova-Pak/C18柱,4微米,3.9×150mm,1mL/min,240nm,20/80CH3CN/0.1%H3PO4(aq),6.6分钟(100%)分析计算值(C14H16N2O4)(理论值)C,60.86,H,5.84,N,10.14实测值C,60.94,H,5.76,N,10.10B.3-氨基-3-甲基哌啶-2,6-二酮在温热条件下,将N-苯氧基羰基-3-氨基-3-甲基哌啶-2,6-二酮(3.0g,10.9mmol)溶于乙醇(270mL)中,冷却至室温后,在该溶液中加入4N盐酸(7mL)和10%Pd/C(0.52g),然后在50psi的氢气压力下使溶液进行加氢反应,历时3小时。接着,在反应液中加水(65mL),使反应产物溶解,用硅藻土过滤反应液,并用水(100mL)洗涤硅藻土。然后,使滤液真空浓缩,获得固体残渣,再将该固状物混合入乙醇(50mL)中,历时30分钟。过滤淤浆,获得3.65g(94%)为白色固体的产物。
1H NMR(DMSO-d6)δ11.25(s,1H),8.9(s,3H),2.87~2.57(m,2H),2.35~2.08(m,2H),1.54(s,3H)HPLC(Waters Nova-Pak/C18柱,4微米,1mL/min,240nm,15/85CH3CN/0.1%H3PO4(aq),1.07分钟,100%)C.3-甲基-3-(4-硝基-1-氧异二氢吲哚-2-基)哌啶-2,6-二酮在氮气氛围中,在搅拌下的盐酸α-氨基-α-甲基-戊二酰亚胺(2.5g,14.0mmol)和2-溴甲基-3-硝基苯甲酸甲酯(3.87g,14mmol)的二氯甲烷(40mL)溶液加入三乙胺(3.14g,30.8mmol),加热回流6小时。然后使反应液冷却,并真空浓缩,接着将固体残渣混合入水(50mL)和二氯甲烷中,历时30分钟。过滤淤浆,用二氯甲烷洗涤所得固体,并干燥(60℃,<1mm),再用甲醇(80mL)重结晶,获得0.63g(15%)为灰白色的固体产物。
熔点195~197℃1H NMR(DMSO-d6)δ10.95(s,1H),8.49~8.46(d,J=8.2Hz,1H),8.13~8.09(d,J=7.4Hz,1H),7.86~7.79(t,J=7.8Hz,1H),5.22~5.0(dd,J=19.4,34.6Hz,2H),2.77~2.49(m,3H),2.0~1.94(m,1H),1.74(S,3H)13C NMR(DMSO-d6)δ173.1,172.3,165.0,143.2,137.4,135.2,130.1,129.3,126.9,57.6,48.7,28.9,27.7,20.6HPLC(Waters Nova-Pak/C18柱,4微米,1mL/min,240nm,20/80CH3CN/H3PO4(aq),4.54分钟,99.6%)分析计算值(C14H13N3O5)C,55.45,H,4.32,N,13.86实测值C,55.30,H,4.48,N,13.54D.3-甲基-3-(4-氨基-1-氧异二氢吲哚-2-基)哌啶-2,6-二酮在温热条件下,使3-甲基-3-(4-硝基-1-氧异二氢吲哚-2-基)哌啶-2,6-二酮(1.0g,3.3mmol)溶于甲醇(500mL)中,并冷却至室温。然后在氮气氛围中,添加10%Pd/C(0.3g),使上述溶液在50psi的氢气压力下,在Parr-Shaker仪器中进行4小时加氢反应。然后用硅藻土过滤反应液,并用甲醇(50mL)洗涤该硅藻土片,接着真空浓缩滤液,使其转变为灰白色固体。然后将该固状物混合入二氯甲烷(20mL),历时30分钟。过滤淤浆,并干燥所得固体(60℃,<1mm),再用甲醇重结晶(3×100mL),获得0.12g(13.3%)为白色固体的产物。
熔点289~292℃1H NMR(DMSO-d6)δ10.85(s,1H),7.19~7.13(t,J=7.6Hz,1H),6.83~6.76(m,2H),5.44(s,2H),4.41(s,2H),2.71~2.49(m,3H),1.9~1.8(m,1H),1.67(s,3H),
13C NMR(DMSO-d6)δ173.7,172.5,168.0,143.5,132.9,128.8,125.6,116.1,109.9,57.0,46.2,29.0,27.8,20.8HPLC(Waters Nova-Pak/C18柱,4微米,1mL/min,240nm,20/80CH3CN/H3PO4(aq),1.5分钟,99.6%)分析计算值(C14H15N3O3)C,61.53,H,5.53,N,15.38实测值C,61.22,H,5.63,N,15.25实施例18按照以下步骤能够获得每片含50mg 1,3-二氧-2-(2,6-二氧哌啶-3-基)-5-氨基异二氢吲哚的片剂。
组成(1000片)1,3-二氧-2-(2,6-二氧哌啶-3-基)-5-氨基异二氢吲哚50.0g乳糖 50.7g麦淀粉 7.5g聚乙二醇6000 5.0g滑石粉 5.0g硬脂酸镁 1.8g软化水 q.s.
首先,使固体组分过孔径为0.6mm的筛子,然后混合活性组分、乳糖、滑石粉、硬脂酸镁和一半量的淀粉,另一半淀粉被悬浮在40mL水中,再将该悬浮液加入100mL沸腾的聚乙二醇水溶液中,接着,将所得的糊状物加入到粉末状物质中,并将混合物制成颗粒状,如有必要,还可添加水。然后在35℃的温度下彻夜干燥颗粒物,再过孔径为1.2mm的筛子整粒,最后压片,获得直径为6mm、且两边内凹的片剂。
实施例19按照以下步骤能够获得每片含100mg 1,3-二氧-2-(2,6-二氧哌啶-3-基)-5-氨基异二氢吲哚的片剂。
组成(1000片)1,3-二氧-2-(2,6-二氧哌啶-3-基)-5-100.0g
氨基异二氢吲哚乳糖100.0g麦淀粉 47.0g硬脂酸镁3.0g首先,使所有固体组分过孔径为0.6mm的筛子,然后混合活性组分、乳糖、硬脂酸镁和一半量的淀粉,另一半淀粉被悬浮在40mL水中,再将该悬浮液加入100mL沸腾的水中,接着,将所得的糊状物加入到粉末状物质中,并将混合物制为颗粒状,如有必要,还可添加水。然后在35℃的温度下彻夜干燥颗粒物,再通过孔径为1.2mm的筛子整粒,最后压片,获得直径为6mm、且两边内凹的片剂。
实施例20按照以下步骤能够获得每片含有75mg 1-氧-2-(2,6-二氧哌啶-3-基)-4-氨基异二氢吲哚的咀嚼片剂。
组成(1000片)1-氧-2-(2,6-二氧哌啶-3-基)-4-氨基75.0g异二氢吲哚甘露糖醇 230.0g乳糖 150.0g滑石粉21.0g甘氨酸12.5g硬脂酸10.0g糖精 1.5g5%明胶溶液 q.s.
首先,使所有固体组分过孔径为0.25mm的筛子,然后混合甘露糖醇和乳糖,并在其中加入明胶溶液,造粒,再通过孔径为2mm的筛子,并在50℃的温度下干燥,然后再通过孔径为1.7mm的筛子。接着,小心地混合1-氧-2-(2,6-二氧哌啶-3-基)-4-氨基异二氢吲哚、甘氨酸和糖精,再添加甘露糖醇、乳糖颗粒、硬脂酸和滑石粉,然后充分混合,压成直径为10mm、两边凹陷、上面有一个槽的片剂。
实施例21按照以下步骤能够获得每片含10mg 1-氧-2-(2,6-二氧哌啶-3-基)-5-氨基异二氢吲哚的片剂。
组成(1000片)1-氧-2-(2,6-二氧哌啶-3-基)-5-氨基10.0g异二氢吲哚乳糖 328.5g玉米淀粉 17.5g聚乙二醇6000 5.0g滑石粉25.0g硬脂酸镁 4.0g软化水q.s.
首先,使所有固体组分通过孔径为0.6mm的筛子,然后充分混合酰亚胺活性组分、乳糖、滑石粉、硬脂酸镁和一半量的淀粉,另一半淀粉被悬浮在65mL水中,再将该悬浮液加入260mL沸腾的聚乙二醇水溶液中,接着,将所得的糊状物加入到粉末状物质中,并将混合物制成颗粒状,如有必要,还可添加水。然后在35℃的温度下彻夜干燥颗粒物,再通过孔径为1.2mm的筛子整粒,最后压片,获得直径为6mm、两边内凹、且上面有一个槽的片剂。
实施例22按照以下步骤能够获得每个胶囊含100mg 1-氧-2-(2,6-二氧哌啶-3-基)-6-氨基异二氢吲哚的明胶干填胶囊剂。
组成(1000片)1-氧-2-(2,6-二氧哌啶-3-基)-6-氨基100.0g异二氢吲哚微晶纤维素30.0g十二烷基硫酸钠2.0g硬脂酸镁 8.0g首先,使十二烷基硫酸钠通过孔径为0.2mm的筛子而添加入1-氧-2-(2,6-二氧哌啶-3-基)-6-氨基异二氢吲哚中,充分混合10分钟后,再使微晶纤维素通过孔径为0.9mm的筛子而添加入上述混合物中,然后充分混合10分钟。接着,使硬脂酸镁通过孔径为0.8mm的筛子而添加入混合物中,再混合3分钟,最后将上述混合物(每个胶囊装入140mg)装入型号为0(拉长型)的明胶干填胶囊中。
实施例23按照以下步骤能够获得A0.2%注射剂或输液。
1-氧-2-(2,6-二氧哌啶-3-基)-7-氨基5.0g异二氢吲哚氯化钠22.5gpH7.4的磷酸缓冲液 300.0g软化水加到2500.0mL首先将1-氧-2-(2,6-二氧哌啶-3-基)-7-氨基异二氢吲哚溶于1000mL水中,用微孔滤膜过滤后,添加缓冲液,然后加水使容量达到2500mL。最后将上述溶液装入玻璃安瓿(每个瓶装入1.0或2.5mL溶液,即分别含2.0或5.0mg酰亚胺)中。
实施例24按照以下步骤能够获得每片含50mg 1-氧-2-(2,6-二氧哌啶-3-基)-4,5,6,7-四氟异二氢吲哚的片剂。
组成(1000片)1-氧-2-(2,6-二氧哌啶-3-基)-50.0g4,5,6,7-四氟异二氢吲哚乳糖50.7g麦淀粉 7.5g聚乙二醇60005.0g滑石粉 5.0g硬脂酸镁1.8g软化水 q.s.
首先,使固体组分通过孔径为0.6mm的筛子,然后混合活性组分、乳糖、滑石粉、硬脂酸镁和一半量的淀粉,另一半淀粉被悬浮在40mL水中,再将该悬浮液加入100mL沸腾的聚乙二醇水溶液中,接着,将所得的糊状物加入到粉末状物质中,并将混合物制成颗粒状,如有必要,还可添加水。然后在35℃的温度下彻夜干燥颗粒物,再通过孔径为1.2mm的筛子整粒,最后压片,获得直径为6mm、且两边内凹的片剂。
实施例25按照以下步骤能够获得每片含100mg 1-氧-2-(2,6-二氧哌啶-3-基)-4,5,6,7-四氯异二氢吲哚的片剂。
组成(1000片)1-氧-2-(2,6-二氧哌啶-3-基)-4,5,6,7-四氯异二氢吲哚 100.0g乳糖100.0g麦淀粉 47.0g硬脂酸镁3.0g首先,使所有固体组分通过孔径为0.6mm的筛子,然后混合活性组分、乳糖、硬脂酸镁和一半量的淀粉,另一半淀粉被悬浮在40mL水中,再将该悬浮液加入100mL沸腾的水中,接着,将所得的糊状物加入到粉末状物质中,并将混合物制成颗粒状,如有必要,还可添加水。然后在35℃的温度下彻夜干燥颗粒物,再通过孔径为1.2mm的筛子整粒,最后压片,获得直径为6mm、且两边内凹的片剂。
实施例26按照以下步骤能够获得每片含有75mg 1-氧-2-(2,6-二氧哌啶-3-基)-4,5,6,7-四氟异二氢吲哚的咀嚼片剂。
组成(1000片)1-氧-2-(2,6-二氧哌啶-3-基)-4,5,6,7-四氟异二氢吲哚75.0g甘露糖醇 230.0g乳糖 150.0g滑石粉 21.0g甘氨酸 12.5g硬脂酸 10.0g糖精 1.5g5%明胶溶液 q.s.
首先,使所有固体组分通过孔径为0.25mm的筛子,然后混合甘露糖醇和乳糖,并在其中加入明胶溶液,造粒,再通过孔径为2mm的筛子,并在50℃的温度下干燥,然后再通过孔径为1.7mm的筛子。接着,小心地混合1-氧-2-(2,6-二氧哌啶-3-基)-4,5,6,7-四氟异二氢吲哚、甘氨酸和糖精,再添加甘露糖醇、乳糖颗粒、硬脂酸和滑石粉,然后充分混合,压成直径为10mm、两边凹陷、上面有一个槽的片剂。
实施例27按照以下步骤能够获得每片含10mg 1-氧-2-(2,6-二氧哌啶-3-基)-4,5,6,7-四甲基异二氢吲哚的片剂。
组成(1000片)1-氧-2-(2,6-二氧哌啶-3-基)-4,5,6,7-四甲基异二氢吲哚 10.0g乳糖328.5g玉米淀粉17.5g聚乙二醇60005.0g滑石粉 25.0g硬脂酸镁4.0g软化水 q.s.
首先,使所有固体组分通过孔径为0.6mm的筛子,然后充分混合酰亚胺活性组分、乳糖、滑石粉、硬脂酸镁和一半量的淀粉,另一半淀粉被悬浮在65mL水中,再将该悬浮液加入260mL沸腾的聚乙二醇水溶液中,接着,将所得的糊状物加入到粉末状物质中,并将混合物制成颗粒状,如有必要,还可添加水。然后在35℃的温度下彻夜干燥颗粒物,再通过孔径为1.2mm的筛子整粒,最后压片,获得直径为10mm、两边内凹、且上面有一个槽的片剂。
实施例28按照以下步骤能够获得每个胶囊含100mg 1-氧-2-(2,6-二氧哌啶-3-基)-4,5,6,7-四甲氧基异二氢吲哚的明胶干填胶囊剂。
组成(1000片)1-氧-2-(2,6-二氧哌啶-3-基)-4,5,6,7-四甲氧基异二氢吲哚100.0g微晶纤维素 30.0g十二烷基硫酸钠 2.0g硬脂酸镁 8.0g首先,使十二烷基硫酸钠通过孔径为0.2mm的筛子而添加入1-氧-2-(2,6-二氧哌啶-3-基)-4,56,7-四甲氧基异二氢吲哚中,充分混合10分钟后,再使微晶纤维素通过孔径为0.9mm的筛子而添加入上述混合物中,然后充分混合10分钟。接着,使硬脂酸镁通过孔径为0.8mm的筛子而添加入混合物中,再混合3分钟,最后将上述混合物(每个胶囊装入140mg)装入型号为0(拉长型)的明胶于填胶囊中。
实施例30按照以下步骤能够获得A0.2%注射剂或输液。
1-氧-2-(2,6-二氧哌啶-3-基)-4,5,6,7-四氟异二氢吲哚 5.0g氯化钠 22.5gpH7.4的磷酸缓冲液 300.0g软化水 加到2500.0mL首先将1-氧-2-(2,6-二氧哌啶-3-基)-4,5,6,7-四氟异二氢吲哚溶于1000mL水中,用微孔滤膜过滤后,添加缓冲液,然后加水使容量达到2500mL。最后将上述溶液装入玻璃安瓿(每个瓶装入1.0或2.5mL溶液,即分别含2.0或5.0mg酰亚胺)中。
实施例31按照以下步骤能够获得每片含50mg 1-氧-2-(2,6-二氧-3-甲基哌啶-3-基)-4,5,6,7-四氟异二氢吲哚的片剂。
组成(1000片)1,3-二氧-2-(2,6-二氧-3-甲基哌啶-3-基)-4,5,6,7-四氟二氢吲50.0g哚乳糖 50.7g麦淀粉 7.5g聚乙二醇6000 5.0g滑石粉 5.0g硬脂酸镁 1.8g软化水 q.s.
首先,使固体组分通过孔径为0.6mm的筛子,然后混合活性组分、乳糖、滑石粉、硬脂酸镁和一半量的淀粉,另一半淀粉被悬浮在40mL水中,再将该悬浮液加入100mL沸腾的聚乙二醇水溶液中,接着,将所得的糊状物加入到粉末状物质中,并将混合物制成颗粒状,如有必要,还可添加水。然后在35℃的温度下彻夜干燥颗粒物,再通过孔径为1.2mm的筛子整粒,最后压片,获得直径为6mm、且两边内凹的片剂。
实施例32按照以下步骤能够获得每片含100mg 1-氧-2-(2,6-二氧哌啶-3-基)-4-氨基异二氢吲哚的片剂。
组成(1000片)1-氧-2-(2,6-二氧哌啶-3-基)-4-氨基异二氢吲哚 100.0g乳糖 100.0g麦淀粉 47.0g硬脂酸镁 3.0g首先,使所有固体组分通过孔径为0.6mm的筛子,然后混合活性组分、乳糖、硬脂酸镁和一半量的淀粉,另一半淀粉被悬浮在40mL水中,再将该悬浮液加入100mL沸腾的水中,接着,将所得的糊状物加入到粉末状物质中,并将混合物制成颗粒状,如有必要,还可添加水。然后在35℃的温度下彻夜干燥颗粒物,再通过孔径为1.2mm的筛子整粒,最后压片,获得直径为6mm、且两边内凹的片剂。
实施例33按照以下步骤能够获得每片含有75mg 2-(2,6-二氧-3-甲基哌啶-3-基)-4-氨基邻苯二甲酰亚胺的咀嚼片剂。
组成(1000片)2-(2,6-二氧-3-甲基哌啶-3-基)-4-氨基邻苯二甲酰亚胺75.0g甘露糖醇 230.0g乳糖 150.0g滑石粉21.0g甘氨酸12.5g硬脂酸10.0g糖精 1.5g5%明胶溶液 q.s.
首先,使所有固体组分通过孔径为0.25mm的筛子,然后混合甘露糖醇和乳糖,并在其中加入明胶溶液,造粒,再通过孔径为2mm的筛子,并在50℃的温度下干燥,然后再通过孔径为1.7mm的筛子。接着,小心地混合2-(2,6-二氧-3-甲基哌啶-3-基)-4-氨基邻苯二甲酰亚胺、甘氨酸和糖精,再添加甘露糖醇、乳糖颗粒、硬脂酸和滑石粉,然后充分混合,压成直径为10mm、两边凹陷、上面有一个槽的片剂。
实施例34按照以下步骤能够获得每片含10mg 2-(2,6-二氧乙基哌啶-3-基)-4-氨基邻苯二甲酰亚胺的片剂。
组成(1000片)2-(2,6-二氧乙基哌啶-3-基)-4-氨基邻苯二甲酰亚胺10.0g乳糖 328.5g玉米淀粉 17.5g聚乙二醇6000 5.0g滑石粉 25.0g硬脂酸镁 4.0g软化水 q.s.
首先,使所有固体组分通过孔径为0.6mm的筛子,然后充分混合酰亚胺活性组分、乳糖、滑石粉、硬脂酸镁和一半量的淀粉,另一半淀粉被悬浮在65mL水中,再将该悬浮液加入260mL沸腾的聚乙二醇水溶液中,接着,将所得的糊状物加入到粉末状物质中,并将混合物制成颗粒状,如有必要,还可添加水。然后在35℃的温度下彻夜干燥颗粒物,再通过孔径为1.2mm的筛子整粒,最后压片,获得直径为10mm、两边内凹、且上面有一个槽的片剂。
实施例35按照以下步骤能够获得每个胶囊含100mg 1-氧-2-(2,6-二氧-3-甲基哌啶-3-基)-4,5,6,7-四氟异二氢吲哚的明胶干填胶囊剂。
组成(1000片)1-氧-2-(2,6-二氧-3-甲基哌啶-3-基)-4,5,6,7-四氟异二氢吲哚100.0g微晶纤维素 30.0g十二烷基硫酸钠 2.0g硬脂酸镁8.0g首先,使十二烷基硫酸钠通过孔径为0.2mm的筛子而添加入1-氧-2-(2,6-二氧-3-甲基哌啶-3-基)-4,56,7-四氟异二氢吲哚中,充分混合10分钟后,再使微晶纤维素通过孔径为0.9mm的筛子而添加入上述混合物中,然后充分混合10分钟。接着,使硬脂酸镁通过孔径为0.8mm的筛子而添加入混合物中,再混合3分钟,最后将上述混合物(每个胶囊装入140mg)装入型号为0(拉长型)的明胶干填胶囊中。
实施例36按照以下步骤能够获得A0.2%注射剂或输液。
1-氧-2-(2,6-二氧-3-甲基哌啶-3-基)-4,5,6,7-四氟异二氢5.0g吲哚氯化钠 22.5gpH7.4的磷酸盐缓冲液 300.0g软化水 加到2500.0mL首先将1-氧-2-(2,6-二氧-3-甲基哌啶-3-基)-4,5,6,7-四氟异二氢吲哚溶于1000mL水中,用微孔滤膜过滤后,添加缓冲液,然后加水使容量达到2500mL。最后将上述溶液装入玻璃安瓿(每个瓶装入1.0或2.5mL溶液,即分别含2.0或5.0mg酰亚胺)中。
权利要求
1.2,6-二氧哌啶,选自如下物质组成的组(a)下式所示化合物
其中X和Y中一个是C=O,X和Y中另一个是C=O或CH2;(i)R1、R1、R3和R4各自独立地为卤素、1-4个碳原子的烷基或1-4个碳原子的烷氧基,或(ii)R1、R2、R3和R4之一为-NHR5,其余的R1、R1、R3和R4为氢;R5为氢或1-8个碳原子的烷基;R6为氢、1-8个碳原子的烷基、苄基或卤素;但有如下条件如果X和Y为=O,且(i)R1、R2、R3和R4之一为氟或(ii)R1、R2、R3和R4之一为氨基,则R6不为氢;(b)含一个氮原子的所述化合物的酸加成盐能被质子化。
2.如权利要求2所述的化合物,其中R1、R2、R3和R4各自独立地为卤素、1-4个碳原子的烷基或1-4个碳原子的烷氧基,R6为甲基、乙基或丙基。
3.如权利要求1所述的化合物,其中R1、R2、R3和R4之一为-NH2,其余的R1、R2、R3和R4为氢,R6为甲基、乙基、丙基或苄基。
4.如权利要求1所述的化合物,1-氧-2-(2,6-二氧哌啶-3-基)-5-氨基异二氢吲哚、1-氧-2-(2,6-二氧哌啶-3-基)-4-氨基异二氢吲哚、1-氧-2-(2,6-二氧哌啶-3-基)-6-氨基异二氢吲哚、1-氧-2-(2,6-二氧哌啶-3-基)-7-氨基异二氢吲哚、1-氧-2-(2,6-二氧哌啶-3-基)-4,5,6,7-四氟异二氢吲哚、1-氧-2-(2,6-二氧哌啶-3-基)-4,5,6,7-四氯异二氢吲哚、1-氧-2-(2,6-二氧哌啶-3-基)-4,5,6,7-四甲基异二氢吲哚、1-氧-2-(2,6-二氧哌啶-3-基)-4,5,6,7-四甲氧基异二氢吲哚、3-(1-氧-4-氨基异二氢吲哚-1-基)-3-甲基哌啶-2,6-二酮、3-(1-氧-4-氨基异二氢吲哚-1-基)-3-乙基哌啶-2,6-二酮、3-(1-氧-4-氨基异二氢吲哚-1-基)-3-丙基哌啶-2,6-二酮或3-(3-氨基苯二甲酰亚氨基)-3-甲基哌啶-2,6-二酮。
5.降低哺乳动物不希望有的TNFα水平的方法,其特征在于对其施用有效量的权利要求1所述的化合物。
6.药物组合物,包含其量为按单次或多次剂量方案给药后足以降低哺乳动物TNF α水平的权利要求1所述化合物,及载体。
7.降低哺乳动物不希望有的TNFα水平的方法,其特征在于对其施用有效量的下式所示的化合物
其中在所述化合物中X和Y中一个为C=O,X和Y中另一个为C=O或CH2。
8.如权利要求7所述的化合物,1-氧-2-(2,6-二氧哌啶-3-基)-5-氨基异二氢吲哚、1-氧-2-(2,6-二氧哌啶-3-基)-4-氨基异二氢吲哚、1-氧-2-(2,6-二氧哌啶-3-基)-6-氨基异二氢吲哚、1-氧-2-(2,6-二氧哌啶-3-基)-7-氨基异二氢吲哚、1,3-二氧-2-(2,6-二氧哌啶-3-基)-4-氨基异二氢吲哚或1,3-二氧-2-(2,6-二氧哌啶-3-基)-5氨基异二氢吲哚。
全文摘要
本发明涉及可降低哺乳动物体内TNFα水平的取代的2-(2,6-二氧哌啶-3-基)邻苯二甲酰亚胺和1-氧-2-(2,6-二氧哌啶-3-基)异二氢吲哚,其中典型的例子是1-氧-2-(2,6-二氧-3-甲基哌啶-3-基)-4,5,6,7-四氟异二氢吲哚和1,3-二氧-2-(2,6-二氧-3-甲基哌啶-3-基)-4-氨基异二氢吲哚。
文档编号A61P7/00GK1239959SQ97180299
公开日1999年12月29日 申请日期1997年7月24日 优先权日1996年7月24日
发明者G·W·马勒, D·I·斯特林, R·Sc·陈 申请人:赛尔金有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1