制备单分散高比表面积二氧化硅微孔微球的方法

文档序号:3448587阅读:147来源:国知局
专利名称:制备单分散高比表面积二氧化硅微孔微球的方法
技术领域
本发明属于单分散二氧化硅微球的制备方法,具体涉及采用模板剂自组装制备二氧化硅微孔微球的方法。属于化学及无机材料类技术领域。
背景技术
单分散二氧化硅球形颗粒在填料、标准化粒子,制备光子晶体等领域中具有非常重要的应用。而多孔二氧化硅微球在色谱及分离技术领域中用作吸附材料或载体材料,是这种材料的进一步应用。
从W.Stber等人在“胶体与界面科学杂志”(1968,Vol 62,No.1,pages 62-69)上发表文章以来,已知可通过对四烷氧基硅烷进行水解缩聚而得到单分散的二氧化硅球形颗粒。但是,这种方法制备出的二氧化硅的比表面积较小,孔隙率较低。
自20世纪40年代发现沸石具有良好的吸附性能以来,人们模仿自然界的条件,采用结构模板剂合成了自然界中所没有的多孔材料。模板技术缘于生物矿化过程,并越来越广泛地被应用。在生物矿化模式中,无机物种的成核、生长和形貌控制依赖于有机分子的预组装,并影响着其成核和生长过程。用模板法制备多孔材料,不仅制备条件相对简单,而且在材料的化学组成和外形控制等方面显得更加灵活。
多孔材料按照国际理论和应用化学联合会(IUPAC)的定义,按其孔径的大小分为孔径范围大于50nm的大孔材料,孔径范围为2~50nm的介孔材料和孔径小于2nm的微孔材料。二氧化硅作为微孔材料,由于其巨大的内表面积和均匀的孔尺寸,使其在吸附、催化、分离以及纳米线或蔟的基体等领域有重要的应用。微孔材料的合成研究一直很活跃,因为它的孔径较小,相对而言孔壁较厚。用它作为催化剂的载体有其自身的优点。合成一般采用离子或中性表面活性剂作为模板,所得到的微孔二氧化硅在宏观上表面为不规则形貌。
为了满足应用的需要,微孔二氧化硅还必须具有适当的外形,例如具有微孔结构的薄膜、纤维、硬球或空心球状的微孔材料,这就是通常所说的形貌控制。控制微孔二氧化硅的形貌和尺寸可以拓展微孔二氧化硅的应用,尤其是在开发微孔二氧化硅在液相色谱分析和催化材料等方面的用途。但是这些应用要求二氧化硅具备较高的比表面积、较大的孔容、而且是单分散的颗粒和规整的球形形貌。
目前,这些形貌的微孔二氧化硅微球都采用三相体系(如表面模板剂、助表面活性剂、共溶剂、酸或碱催化剂等)合成,合成微孔二氧化硅球的条件比较复杂,合成时间较长,或者还需要高温、高压条件,而且制备的二氧化硅的形貌也不规则,球形颗粒的粒径范围很宽,因而限制了二氧化硅的实际应用和大规模生产。

发明内容
本发明的目的是针对上述问题,提供一种制备单分散高比表面积二氧化硅微孔微球的方法。该方法制备的二氧化硅微孔微球,不仅具有较高的比表面积和较大的孔容,而且球形颗粒呈现单分散的状态,粒径分布较窄。
本发明目的采用下述技术方案实现一种单分散高比表面积二氧化硅微孔微球的制备方法,该方法应用烷基胺作有机模板剂和催化剂,其制备步骤是第1、把烷基胺在搅拌下溶解在醇类溶剂和蒸馏水的混合液中,待烷基胺完全溶解后,将硅酸酯类化合物逐滴加到上述的溶液中,在5~35℃温度下反应1~10小时后,得到白色的沉淀;第2、将步骤1所制得的白色沉淀过滤、水洗、醇洗,在真空箱中于20~100℃温度下干燥2~10小时,然后在炉中于200~800℃进行热处理2~10小时,即可获得高比表面积二氧化硅微孔微球;其中所述的烷基胺为RNH2,其R表示碳数为12-18的烷基,所述的溶剂为甲醇、乙醇、丙醇和丁醇中的任一种,所述的硅酸酯类化合物选用正硅酸甲酯、正硅酸乙酯、正硅酸丙酯和正硅酸丁酯的任一种,所述的溶液中烷基胺的摩尔浓度为0.01~0.04M,所述的硅酸酯的摩尔浓度为0.05~0.4M,醇类溶剂和蒸馏水的体积比为0.5~5∶1。
所述的烷基胺选用十二胺、十四胺、十六胺和十八胺中的任一种。
所述的溶液中烷基胺的摩尔浓度为0.016~0.03M。
所述的硅酸酯类化合物的摩尔浓度为0.1~0.25M。
所述的溶液中溶剂和蒸馏水的体积比为2.5~4∶1。
所述的反应温度为10~20℃。
所述的反应时间为3~5小时。
所述的水洗是用蒸馏水洗。
所述的醇洗是用乙醇洗。
所述的真空干燥温度为20~100℃,干燥时间为2~10小时。
所述的真空干燥温度优选为50~80℃。
所述的热处理温度为400~600℃。
用本发明的方法制备的单分散高比表面积二氧化硅微孔微球的粒径为500~1500nm,比表面积为600~1500m2/g,孔隙率为40~60%,孔容为0.43~0.60cm3/g,孔径为1.1~1.9nm。
本发明的二氧化硅微孔微球的合成方法,以烷基胺为有机模板剂和催化剂,在中性条件下将硅源水解得到。烷基胺中的胺基团具有亲水性,在水溶液中形成NH4+,促进正硅酸乙酯的水解,形成硅酸单体的一次粒子,一次粒子然后凝聚构成二次粒子,二次粒子堆积为聚集态,在Si-O-Si链条的终端是Si-OH,所以在一次胶粒的表面有大量的羟基,烷基胺中的碳链则以氢键作用吸附在一次粒子上。由于一次粒子凝聚时,不是按照密堆积方式而是杂乱地排列,所以在二次粒子中形成各种不规则的孔穴。当模板剂未被烧去时,它填塞了孔穴,测得的比表面积比较小。
本发明合成出的二氧化硅微孔微球的粒径范围可达到500~1500nm,呈高度的单分散状态,参见图1。二氧化硅微孔微球的粒径可以根据需要进行选择。
本发明合成的微孔二氧化硅微球的比表面积达到600~1500m2/g,孔容为0.43~0.60cm3/g,孔隙率为40~60%,孔径为1.1~1.9nm。
本发明中比表面积和平均孔径都是通过氮吸附法在77K测试的,孔容在相对压力P/P0=0.975的条件下测试,孔径分布曲线采用HK方法由氮吸附-脱附等温线的脱附分支曲线部分测定。这里,比表面积、孔容和平均孔径是用600℃焙烧过的二氧化硅测试的。
本发明方法制备的二氧化硅微粒的吸附-脱附等温线上具有I型等温线,这是典型的微孔材料的特征,参见图2。同时,吸附和脱附分支没有滞后环,这说明孔与孔之间有较好的连通性。图3为本发明所得二氧化硅微孔微球在600℃焙烧后的孔径分布曲线。
所得到的产品进行小角X射线衍射分析,参见图4。在低角度区域只有一个较宽的衍射峰,说明微孔的分布是无规则的,并没有形成规则的晶格,微粒具有无序的纳米结构,经计算,该纳米结构的孔间距为3.1nm。二氧化硅的粒径、比表面积、孔容可以通过改变反应物的浓度来调整。本发明制备的二氧化硅在催化、吸附和分离、传感器、微器件、以及光、电、磁等功能材料的制备上有广泛的应用。


图1为本发明实施例1所得二氧化硅微孔微球在600℃焙烧后的扫描电子显微镜照片。
图2为本发明实施例1所得二氧化硅微孔微球在600℃焙烧后的氮吸附-脱附等温曲线。
图3为本发明实施例1所得二氧化硅微孔微球在600℃焙烧后的孔径分布曲线。
图4为本发明实施例1所得二氧化硅微孔微球在600℃焙烧后的小角X-射线衍射图。
图5为本发明实施例3所得二氧化硅微孔微球在600℃焙烧后的扫描电子显微镜照片。正硅酸乙酯的浓度分别为(01)0.11M,(02)0.14M,(03)0.22M,(04)0.25M。
图6为本发明实施例4所得二氧化硅微孔微球在600℃焙烧后的扫描电子显微镜照片。十二胺的浓度分别为(05)0.016M,(06)0.024M,(07)0.03M。
具体实施例方式
下面的实施例是对本发明的进一步说明,而不是限制本发明的范围。
实施例中二氧化硅颗粒的扫描电子显微照片是采用日本电子株式会社的JSM-5610LV型扫描电镜进行测定。
实施例中二氧化硅的比表面积、孔容、孔径大小和分布用QuantachromeASIC-4氮气吸附装置进行测定。
实施例中二氧化硅的XRD测试是在东德的HZG41B-PC型X射线衍射仪进行测定。
实施例1在一个300ml的烧杯中,将1.0克的十二胺在磁力搅拌下溶解在160ml乙醇和100ml水混合的溶液中,待十二胺完全溶解后,将10ml的正硅酸乙酯逐滴地加入到上述混合溶液中,反应温度大约为15℃。搅拌4小时后,将得到的沉淀过滤,先后用蒸馏水、乙醇清洗4次。得到的有机/无机复合体在真空干燥箱里80℃真空干燥4小时,然后在马氟炉里600℃焙烧4小时,所得二氧化硅微孔微球在600℃焙烧后的扫描电子显微镜照片、氮吸附-脱附等温曲线、孔径分布曲线和小角X-射线衍射图分别见图1、图2、图3和图4。
实施例2在一个300ml的烧杯中,将1.0克的十八胺在磁力搅拌下溶解在160ml乙醇和100ml水混合的溶液中,待十八胺完全溶解后,将10ml的正硅酸乙酯逐滴地加入到上述混合溶液中,反应温度大约为15℃。搅拌4小时后,将得到的沉淀过滤,先后用蒸馏水、乙醇清洗4次。得到的有机/无机复合体在真空干燥箱里80℃真空干燥4小时,然后在马氟炉里400℃和600℃分别焙烧4小时,可得到单分散的二氧化硅微球。
实施例3验证正硅酸乙酯浓度对微孔二氧化硅形貌的影响,除正硅酸乙酯浓度外,其它条件如十二胺浓度、乙醇含量、反应温度、热处理温度和时间均与实施例1完全相同。正硅酸乙酯浓度分别为0.11、0.14、0.22和0.25M。通过实验发现,当正硅酸乙酯浓度为0.22和0.25M时,制备出的微球有少量的团聚现象,而正硅酸乙酯浓度为0.11和0.14M时,制备的微球呈现单分散状态且颗粒的粒径分布曲线较窄,见图5。
实施例4为了验证十二胺浓度对微孔二氧化硅形貌的影响,除十二胺浓度外,其它条件如正硅酸乙酯浓度、乙醇含量、反应温度、热处理温度和时间均与实施例1完全相同。十二胺浓度分别为0.016M、0.024M、0.03M。通过实验发现,当十二胺浓度为0.03M时,制备出的微球有团聚的现象,而正硅酸乙酯浓度为0.016和0.024M时,制备出的微球呈现高度单分散的状态,颗粒的粒径分布曲线较窄,见图6。
实施例5为了验证反应温度对二氧化硅形貌的影响,除反应温度不同外,其它实验条件如正硅酸乙酯浓度和十二胺浓度均与实施例1完全相同。当反应温度低为5℃时,生成颗粒的粒径很小,镶嵌在二氧化硅的溶胶网络之中,且生成沉淀所需的时间较长,这是由于低温使正硅酸乙酯水解缩聚的速率太慢引起的。当反应温度高为35℃,生成颗粒的粒径增大,但是团聚现象明显,粒径分布较宽,产生沉淀的时间较短,这是由于较高的温度促进了正硅酸乙酯的水解缩聚。当温度介于10~20℃之间,制备出的二氧化硅分散性较好。
实施例6为了验证溶剂对二氧化硅形貌的影响,除反应溶剂不同外,其它实验条件如正硅酸乙酯浓度和十二胺浓度、反应温度和时间、热处理温度与时间均与实施例1完全相同。溶剂分别选用甲醇、乙醇、丙醇、丁醇,结果发现选用甲醇为溶剂制得的二氧化硅的颗粒较大,而选用丁醇为溶剂所制得的颗粒较小且镶嵌在二氧化硅的溶胶网络之中。
实施例7为了验证十二胺浓度对二氧化硅微孔微球比表面积、孔容、孔隙率和平均孔径的影响,其它实验条件如正硅酸乙酯浓度和乙醇含量、反应温度和时间、热处理温度与时间均与实施例1完全相同。十二胺的浓度分别为0.016、0.024、0.030M。采用氮气物理吸附法测定比表面积和微孔的结构参数,所得结果列于下表进行比较。可以看出,随着十二胺浓度的增大,二氧化硅微球比表面积、孔容、孔隙率和平均孔径逐渐增大,这是因为十二胺作为模板剂,在二氧化硅球形颗粒的形成过程中,参与微球的生长形成有机/无机复合球,十二胺的浓度越大,复合球的有机含量就越大,热处理后形成的微孔就越多,这也说明微孔来源于复合球中被十二胺占据的空间。
十二胺浓度 BET比表面积孔隙率孔容 平均孔径(M) (m2/g)(%) (cm3/g) (nm)0.016 82854.2 0.4377 1.430.024 96559.0 0.5414 1.540.030 1223 61.4 0.5895 1.93实施例8为了检验热处理温度对二氧化硅微孔微球比表面积、孔容、孔隙率和平均孔径的影响,其它实验条件如正硅酸乙酯浓度和十二胺浓度,反应温度和时间均与实施例1完全相同。将制备的样品在80℃、200℃、400℃和600℃分别处理4小时。采用氮气物理吸附法测定比表面积和微孔的结构参数,所得结果列于下表进行比较。可以看出,随着热处理温度的提高,比表面积、孔容、孔隙率逐渐增大,而平均孔径稍微减小,这是由于随着温度的升高,二氧化硅微球内含有的有机模板剂被逐渐的碳化分解和二氧化硅结构的缩聚所引起的。
焙烧温度BET比表面积孔隙率孔容 平均孔径(℃) (m2/g)(%) (cm3/g) (nm)80 51342.2 0.2702 2.11200 61747.0 0.3281 2.13400 98657.5 0.5012 2.02600 1121 59.4 0.5418 1.9权利要求
1.一种单分散高比表面积二氧化硅微孔微球的制备方法,其特征在于该方法应用烷基胺作有机模板剂和催化剂,其制备步骤是第1、把烷基胺在搅拌下溶解在醇类溶剂和蒸馏水的混合液中,待烷基胺完全溶解后,将硅酸酯类化合物逐滴加到上述的溶液中,在5~35℃温度下反应1~10小时后,得到白色的沉淀;第2、将步骤1所制得的白色沉淀过滤、水洗、醇洗,在真空箱中于20~100℃温度下干燥2~10小时,然后在炉中于200~800℃进行热处理2~10小时,即可获得高比表面积二氧化硅微孔微球;其中所述的烷基胺为RNH2,其R表示碳数为12-18的烷基,所述的醇类溶剂为甲醇、乙醇、丙醇和丁醇中的任一种,所述的硅酸酯类化合物选用正硅酸甲酯、正硅酸乙酯、正硅酸丙酯和正硅酸丁酯的任一种,所述的溶液中烷基胺的摩尔浓度为0.01~0.04M,所述的硅酸酯类化合物的摩尔浓度为0.05~0.4M,醇类溶剂和蒸馏水的体积比为0.5~5∶1。
2.如权利要求1所述的方法,其特征在于所述的烷基胺选用十二胺、十四胺、十六胺和十八胺中的任一种。
3.如权利要求1所述的方法,其特征在于所述的溶液中烷基胺的摩尔浓度为0.016~0.03M。
4.如权利要求1所述的方法,其特征在于所述的硅酸酯类化合物的摩尔浓度为0.1~0.25M。
5.如权利要求1所述的方法,其特征在于所述的溶液中醇类溶剂和蒸馏水的体积比为2.5~4∶1。
6.如权利要求1所述的方法,其特征在于所述的反应温度为10~20℃。
7.如权利要求1所述的方法,其特征在于所述的反应时间为3~5小时。
8.如权利要求1所述的方法,其特征在于所述的水洗是用蒸馏水洗。
9.如权利要求1所述的方法,其特征在于所述的醇洗是用乙醇洗。
10.如权利要求1所述的方法,其特征在于所述的真空干燥温度为50~80℃。
11.如权利要求1所述的方法,其特征在于所述的热处理温度为400~600℃。
12.权利要求1所述的方法制备的单分散高比表面积二氧化硅微孔微球,其特征在于该二氧化硅微球的粒径为500~1500nm,比表面积为600~1500m2/g,空隙率为40~60%,孔容为0.43~0.60cm3/g,孔径为1.1~1.9nm。
全文摘要
本发明是一种制备单分散高比表面积二氧化硅微孔微球的方法。该方法采用烷基胺作模板剂和催化剂,促进硅酸酯类化合物在以醇类为溶剂和水为分散相的体系中,通过两阶段的水解缩聚和模板剂的自组装过程,制备出的二氧化硅微孔微球粒径在500~1500nm,BET法氮吸附比表面积为600~1500m
文档编号C01B33/00GK1608985SQ20041006104
公开日2005年4月27日 申请日期2004年11月3日 优先权日2004年11月3日
发明者余家国, 赵丽, 程蓓 申请人:武汉理工大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1