二次电池的正极活性物质、其制造方法以及正极的制作方法

文档序号:3434799阅读:165来源:国知局
专利名称:二次电池的正极活性物质、其制造方法以及正极的制作方法
技术领域
本发明涉及采用金属氧化物作为活性物质、采用水溶液或非水溶液作 为电解液的二次电池的正极活性物质的改进。
背景技术
作为电池的正极活性物质, 一直采用多种金属氧化物。其中多数因比 导电率低而需要导电剂。并且,在金属氧化物粉末间配置导电剂以提供电 子电导性,促进还原反应。作为此种导电剂一直采用碳材料。
作为影响电池的特性、特别是影响放电性能的要素之一,粉末状的金 属氧化物和碳材料的混合状态、两者的配置状态成为问题。如果配置状态 差,存在导电性差的部分,就不能向该部分的金属氧化物供给电子,成为 未反应的状态,不能起着活性物质的作用。因此,存在金属氧化物利用率 低的问题。
相反,如果使碳材料的混合状态更均匀,则没有得到金属氧化物显示 的本来的电化学电位,而能够观测到与碳材料的混合电位,因此结果作为 电池的电路电位降低。这样一来,电池性能被金属氧化物和碳材料的配置 大大地影响。作为改进了该金属氧化物和碳材料的关系的正极活性物质,
例如提出了在特开昭61—214362号公报中所示的在二氧化锰的粒子表面 上以层的形式形成石墨微粉末的正极活性物质。此外,在特公平7—36332 号公报中提出了将金属氧化物粉末和人造石墨粉末的粒径比设定为 10" 1(T5,将覆盖金属氧化物的碳材料的覆盖率设定为0.5 15%的正极 活性物质。

发明内容
本发明的目的也是改进金属氧化物和碳材料的配置关系,开发更高性
能的二次电池的正极活性物质。
本发明人尝试了通过在金属氧化物的表面上覆盖碳材料,并使覆盖状 态最佳化来得到高性能的正极活性物质。于是发现,通过使用特定的碳材 料,并使该碳材料的覆盖厚度极薄,从而能得到高性能的正极活性物质, 由此完成了本发明。
艮口,本发明的二次电池的正极活性物质使用比表面积为150m2/g以上 的碳材料,用该碳材料以0.01pm 0.3^im的厚度覆盖金属氧化物的表观 表面的15%以上。在本发明中,通过采用比表面积大的碳材料,并使覆盖 金属氧化物表面的碳材料层极薄,从而提高了作为活性物质的优异的导电 性和锂离子等离子的透过性,形成高性能的活性物质。
作为本发明中使用的金属氧化物,可与以往一样,使用锂锰氧化物、
锂镍氧化物、锂铁氧化物、锂钴氧化物、氧化锰等金属氧化物。本发明中 使用的碳材料是比表面积为150m2/g以上的碳材料。优选比表面积为 150m2/g以上和比表面积大的碳材料,这是为了覆盖金属氧化物表面的碳 材料的薄膜成为多孔的,形成电子导电性和离子透过性都好的薄膜。还有, 更优选的碳材料是其比表面积为250m2/g 1500m2/g。作为这样的比表面 积大的碳材料,优选乙炔黑、科琴黑(Ketjen black)。
碳材料以0.01^m 0.3Mm的厚度覆盖金属氧化物的表观表面的15% 以上。此处,所谓金属氧化物的表观表面,是指构成金属氧化物粉末的氧 化物粒子的外表面。不包含区划形成于粒子内部的孔之类的裂缝的内部表 面。碳材料覆盖金属氧化物的表观表面的15%以上,优选覆盖15 80%。 如果覆盖小于15%,则正极初始容量小。据认为这是因为未均匀地进行电 子导电的缘故。相反,如果覆盖增大,则碳材料的重量比增加,因而优选 在80%以下。
如果碳材料的覆盖厚度变厚,则由于通过覆盖层的锂离子的移动就会 变慢,因此优选为0.01jim 0.3Mm。为了满足电子导电性及离子透过性这 两者,碳材料的覆盖厚度特别优选为0.01nm 0.2pm的范围。优选覆盖 了碳材料的金属氧化物即本发明的正极活性物质的比表面积为3.5m2/g
<formula>formula see original document page 5</formula>
在活性物质中,除所述的金属氧化物及碳材料以外,还优选再混合用 于防止在充放电时由活性物质的伸縮所引起的导电性不良的石墨粉、和用 于形成电极的粘结剂。作为石墨粉,优选采用粒径为1(im 20^im的石墨, 其配合量优选按每100重量份金属氧化物配合0.5 8重量份。此外,作 为粘结剂,可采用PVDF (聚偏氟乙烯),其配合量优选按每IOO重量份 金属氧化物配合1 10重量份。
本发明的二次电池的正极活性物质是通过按预定量配合构成活性物 质主体的粉末状的金属氧化物和粉末状的碳材料,对该配合物施加压縮剪 切应力,从而将碳材料揉搓在金属氧化物的表面上来得到。作为施加该压 縮剪切应力的装置,可使用图6的剖视图所示的装置。通过将碳材料揉搓 在金属氧化物表面上,在金属氧化物表面上可以形成0.01nm 0.3pm的 极薄的碳材料覆盖膜。
本发明的二次电池的正极活性物质是在形成活性物质主体的金属氧 化物的表面上极薄地覆盖了比表面积大的碳材料。由于用比表面积大的碳 材料形成皮膜,而且由于使皮膜极薄而达到0.01nm 0.3Mm,因此形成皮 膜薄的多孔状,锂离子等离子的透过性好。而且,通过碳材料的皮膜,导 电性也优异。因此成为高性能的正极活性物质。


图1是表示采用实施例的活性物质及以往的活性物质得到的电极的 充放电循环和正极容量的关系的图。
图2是表示构成活性物质的碳材料的覆盖率和正极初始容量的关系 的图。
图3是表示构成活性物质的碳材料的覆盖厚度和正极初始容量的关 系的图。
图4是表示构成活性物质的碳材料的比表面积和正极初始容量的关 系的图。图5是表示活性物质的比表面积和正极初始容量的关系的图。 图6是实施例中使用的碳皮膜形成装置的概略剖视图。 图7是表示实施例的具有碳材料皮膜的活性物质的粒子结构的SEM 照片。
图8是表示图7的活性物质的粒子结构的碳存在量(碳图)的俄歇电 子分光分析图。
符号说明
l一旋转鼓,2—固定轴,3—挤压剪切头,4一第1臂,5—爪,6—第
2臂
具体实施例方式
实施例
以下,通过实施例具体地进行说明。在本实施例中,活性物质主体采 用LiMn204,从而制造了锂二次电池用的正极活性物质。该LiMn204是用 液相法合成的,其平均一次粒径为l拜,平均二次粒径为3pm。
作为碳材料,使用三菱化成的炭黑CF9 (平均粒径为0.04)tim、比表 面积为60m2/g) 、 3050B (平均粒径为0.04pm、比表面积为50m2/g)、 电气化学工业的乙炔黑(平均粒径为0.02nm、比表面积为162m2/g) 、 Lion 的科琴黑(平均粒径为0.03pm、比表面积为1270m2/g)。
作为在LiMn204表面上覆盖碳材料的方法,将混合了 LiMn204和碳 材料而成的混合粉采用图6所示的碳皮膜形成装置来进行。该碳皮膜形成 装置的构成包括旋转鼓l,其具有内周径为200mm、轴向长度为70mm 的内部空间10;第1臂4,其被固定在该旋转鼓l内部的固定轴2上且延 伸到旋转鼓l的内周面附近,并具有半圆形状的挤压剪切头3;第2臂6, 其在该第1臂4的旋转后方间隔规定角度地固定在固定轴2上,并具有延 伸到旋转鼓1的内周面附近的爪5。
在该碳皮膜形成装置的内部空间10中装入250g的所述混合粉,将旋
转鼓1的转数设定在大约2000转/分钟,处理30分钟,在旋转鼓1的内 周面和挤压剪切头3之间施加压縮剪切应力,其后用爪5刮落并混合,从 而在LiMri204的表面上覆盖了碳材料。由此调制成了本发明的活性物质。 (实施例l的活性物质) 采用所述LiMri204作为活性物质主体,采用科琴黑作为碳材料。然后, 在97重量%的该LiMn204中混合3重量%的科琴黑,将该混合物用所述 碳皮膜形成装置以转数为大约2000转/分钟进行处理30分钟,得到了本 发明的活性物质。
将该活性物质的SEM (扫描型电子显微镜)照片及利用俄歇电子分 光分析得到的碳图(carbonmap)在图7及图8中示出。通过这些SEM和 碳图可确认,在球状的LiMn204表面上均匀地覆盖了碳材料。 (采用了实施例1的活性物质的电极A的制作)
为了研究所得到的活性物质的特性,相对于所得到的活性物质97重 量份,配合粘结剂PVDF (聚偏氟乙烯)3重量份,另外加入溶剂N—甲 基一2—吡咯烷酮150重量份,并进行混炼,形成糊膏状。然后,用刮板 法将所得到的糊膏涂敷在A1箔集电体上,其后用8(TC干燥1小时,然后 用3t/cr^的压力进行压制成型,制作成厚度为O.lmm的电极A。
将该电极A冲裁成直径为14mm的圆盘状,再用80'C真空干燥4小 时,然后搬入干燥箱中,进行钮扣型电池的制作。对电极采用金属Li, 隔膜采用微孔性聚丙烯膜Cell Guard 2400 (商品名)、电解液采用1M— LiPFs/PC (50) DME (50),即采用在混合了 PC (碳酸丙烯酯)和DME (二甲氧基乙烷)各50容量。/。的溶剂中溶解lM的LiPF6而得到的电解液。
按照如下所示进行电极的评价。充电是首先用2mA/cm2的恒定电流 进行到4.1V,其后用4.1V的恒定电压合计进行5小时。放电是以2mA/cm2 进行到2.0V。将使用了该实施例1的活性物质的电极A的正极容量和循 环数的关系用图1的X标记及符号A表示。该电极的初始容量高达 190mAh/g,循环特性也良好,显示出30个循环后的正极容量高达 165mAh/g的性能。
(采用了实施例1的活性物质的电极B的制作) 将实施例1的活性物质97重量份、粘结剂PVDF 3重量份及作为导 电剂的平均粒径为3.5^m、比表面积为34m2/g的石墨粉末2重量份配合, 另外添加溶剂N-甲基一2 —吡咯垸酮150重量份,用与实施例1相同的 方法制作成电极B。该电极B与电极A的不同之处仅仅在于,其组成中 含有5重量份的石墨粉末,除此以外,包括制造方法在内都与电极A相 同。
将该电极B的正极容量和循环数的关系对照图1,用參标记及符号B 来表示。在实施例1的活性物质中配合作为导电剂的石墨粉末而制成的电 极B与没有配合导电剂的电极A相比,性能更优良。特别是显示出随着 循环数增加而降低的正极容量降低得小的优异特性。这可以认为是,作为 导电剂配合的石墨粉末具有防止在充放电时由活性物质的伸縮所引起的 导电性不足的效果。
(采用了以往的活性物质的电极C的制作)
为了比较以往的活性物质和本发明的活性物质的性能,将为得到本发 明的活性物质而使用的活性物质主体即所述LiMn204粉末直接用作以往 的活性物质,添加该LiMri204粉末89重量份、所述石墨粉末8重量份、 粘结剂PVDF 3重量份和溶剂N—甲基一2—吡咯垸酮150重量份,进行 混炼后形成糊膏。然后将该糊膏用与所述电极A及电极B完全相同的方 法制成了电极C。
将该电极C的正极容量和循环数的关系对照图1,用O标记及符号C 来表示。从用符号C表示的采用以往的活性物质制成的电极C的正极容 量看出,采用本发明的活性物质制成的电极A及电极B具有极大的正极 容量,并且伴随循环数增加的容量减少也小。
(覆盖活性物质主体的碳材料的覆盖率的关系)
为了研究覆盖活性物质主体的碳材料的覆盖率的关系,使用所述 LiMii204粉末作为活性物质主体,使用所述科琴黑作为碳材料,调节 LiMn204粉末和科琴黑的配合比例及利用所述碳皮膜形成装置进行处理
的时间,调制成了碳材料覆盖率(将用碳材料覆盖活性物质主体的整个外
表面的状态作为覆盖率100%。)不同的6种活性物质。然后,分别使用 这6种活性物质,用与所述电极A完全相同的方法分别调制6种电极, 且用相同的方法测定了正极初始容量。将得到的结果在图2中示出。
另外,关于覆盖率,是通过利用俄歇电子分光分析得出的表面清洗后 的碳图进行图像处理来算出了覆盖率。从图2看出,在覆盖率为30%左右 时,正极初始容量最大,随着覆盖率增大,正极初始容量缓慢下降。据认 为,这是因为如果覆盖率增大,则碳材料的重量比增加的缘故。另一方面, 直到覆盖率20%左右,正极初始容量随着覆盖率增大而急速增大。根据图 2的结果可知,如果覆盖率低于15%,则正极初始容量小。此外可知,覆 盖率在20 80%左右,可得到稳定且高的正极初始容量。 (覆盖活性物质主体的碳材料的覆盖厚度的关系)
按照与研究所述覆盖率的关系时同样的方式,通过调节LiMn204粉末 和科琴黑的配合比例及利用所述碳皮膜形成装置进行处理的时间,调制成 了覆盖率在80%以上,且碳材料的厚度不同的7种活性物质。还有,碳材 料覆盖厚度为0mm的活性物质未进行利用碳皮膜形成装置进行的处理, 只是LiMn204粉末100重量份。此外,碳材料的覆盖厚度的测量是通过利 用Ar溅射的深度方向的俄歇电子分光分析进行。
分别使用这7种活性物质,用与所述电极A完全相同的方法分别调 制成了 7种电极,并且用相同的方法测定了正极初始容量。将得到的结果 在图3中示出。从图3看出,即使形成覆盖厚度为0.0lMm左右的极薄的 碳材料薄膜,也显示出大的正极初始容量。并且,随着覆盖厚度增大,正 极初始容量下降。实用的覆盖厚度为0.01 0.3pm左右。据认为这是因为 如果覆盖厚度大于0.3pm,通过覆盖层的锂离子的移动变慢。据认为,为 了得到电子导电性、离子透过性,优选0.01pm 0.2iim的范围。 (覆盖活性物质主体的碳材料的比表面积的关系)
使用上述4种炭黑及所述石墨粉末,而且活性物质主体采用与实施例 中使用的相同的LiMri204粉末,通过调节LiMri204粉末和各碳材料的配
合比例及利用所述碳皮膜形成装置进行处理的时间,调制成了碳材料的覆
盖率大致为60%、覆盖厚度大致为0.1pm且比表面积不同的5种活性物 质。
分别使用这5种活性物质,用与所述电极A完全相同的方法分别调 制成了 5种电极,并且用相同的方法测定了正极初始容量。将得到的结果 在图4中示出。从图4看出,碳材料的比表面积适宜在150m2/g以上。优 选在250m"g以上,由此可进一步提高容量。
作为满足该条件的材料,优选乙炔黑、科琴黑。其理由被认为是,如 果采用比表面积大的材料,则覆盖层变成多孔状,能够形成电子导电性好 且离子的透过性也好的薄膜。
(活性物质的比表面积的关系)
为了研究覆盖了碳材料的金属氧化物,即正极活性物质的比表面积和 正极初始容量的关系,准备了6种粒径不同的LiMri204粉末。然后,使用 各LiMn204粉末和所述科琴黑,通过调节其配合比例及利用所述碳皮膜形 成装置进行处理的时间,调制成了碳材料的覆盖率大致为60%、覆盖厚度 大致为O.lKim的比表面不同的6种活性物质。
分别使用这6种活性物质,用与所述电极A完全相同的方法,分别 调制成了6种电极,并且用相同的方法测定了正极初始容量。将得到的结 果在图5中示出。由图5看出,活性物质的比表面积优选在3.5m2/g 100m2/g。因为在此种情况下,如果比表面积大于100m2/g,则电极的强度 会下降,因而优选该范围的活性物质。
本发明的二次电池的正极活性物质的正极初始容量大,且即使使用循 环增加,正极容量的下降也小。因此本发明的二次电池的正极活性物质是 高性能的。此外,本发明的活性物质能够通过对构成活性物质主体的粉末 状的金属氧化物和粉末状的碳材料施加压縮剪切应力,在金属氧化物的表 面上擦附碳材料来制造,并且能够容易地制造。
权利要求
1. 一种二次电池的正极活性物质,其特征在于,由构成活性物质主体的粉末状的金属氧化物和以0.01μm~0.3μm的厚度覆盖该金属氧化物的表观表面的15%以上且比表面积为150m2/g以上的碳材料构成。
2. 如权利要求1所述的二次电池的正极活性物质,其中,碳材料的 比表面积为250m2/g 1500m2/g。
3. 如权利要求1所述的二次电池的正极活性物质,其中,碳材料是 科琴黑和乙炔黑中的任何一种。
4. 如权利要求1所述的二次电池的正极活性物质,其中,碳材料以 0.01^m 0.2jim的厚度覆盖金属氧化物的表观表面的15% 80%。
5. 如权利要求1所述的二次电池的正极活性物质,其中,比表面积 为3,5m2/g 100m2/g。
6. 如权利要求1所述的二次电池的正极活性物质,其中,金属氧化 物是锂锰氧化物、锂镍氧化物、锂铁氧化物、锂钴氧化物和氧化锰中的至 少1种。
7. —种二次电池正极活性物质的制造方法,其特征在于,包括下述工序配合工序,其中将构成活性物质主体的粉末状的金属氧化物和粉末 状的碳材料进行配合;和覆盖工序,其中通过对所述金属氧化物和所述碳 材料施加压縮剪切应力,用所述碳材料覆盖所述金属氧化物的表面,所述 碳材料以0.01nm 0.3nm的厚度覆盖所述金属氧化物的表观表面的15% 以上。
8. —种二次电池的正极,其特征在于,具有正极活性物质,其由 构成活性物质主体的粉末状的金属氧化物和以0.01|im 0.3^im的厚度覆 盖该金属氧化物的表观表面的15%以上且比表面积为150mVg以上的碳材 料构成;碳粉,其用于构成介于所述正极活性物质间的导电剂;粘结剂, 其用于粘结所述正极活性物质及所述碳粉。
全文摘要
本发明的目的在于改进构成活性物质主体的金属氧化物和碳材料的配置关系,开发更高性能的二次电池用的正极活性物质。该二次电池的正极活性物质由构成活性物质主体的粉末状的金属氧化物和以0.01μm~0.3μm的厚度覆盖该金属氧化物的表观表面的15%以上且比表面积为150m<sup>2</sup>/g以上的碳材料构成。通过极薄地覆盖碳材料,使其兼备离子的透过性和导电性,实现了高性能化。另外,通过在该正极活性物质中配合导电剂,可得到更高性能的正极。
文档编号C01D15/00GK101383414SQ20071014827
公开日2009年3月11日 申请日期2007年9月4日 优先权日2007年9月4日
发明者(请求不公开姓名) 申请人:德固赛(中国)投资有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1