一种碳化锆粉体及其制备方法

文档序号:3458191阅读:816来源:国知局
专利名称:一种碳化锆粉体及其制备方法
技术领域
本发明属于碳化锆粉体技术领域。具体涉及一种碳化锆粉体及其制备方法。
背景技术
碳化锆是一种难熔的金属碳化物,具有高熔点、高硬度、高热导、高电导率和高的化学稳定性等优良特性,广泛应用于发射器表面涂层、核燃料颗粒涂层、热光电辐射器涂层以及超高温耐火材料等领域。如用作磨料、硬质合金原料、火箭发动机固体推进剂的原料; 用于生产合金钢;用于生产金属锆,以及用于精细陶瓷材料领域等。因此,开展优质、高纯、 活性高、粒度分布均勻等优良特性的碳化硅粉体的制备工作,具有重要的意义。目前针对碳化锆粉体开展的制备工艺有电弧炉碳热还原法、自蔓延高温合成法、 溶胶-凝胶法和高能机械球磨法等。这些方法虽具有一定的优点,但普遍存在合成过程不易控制、产物纯度不高等不足。电弧炉碳热还原法是目前工业制备碳化锆粉体最重要的方法,现在工业上主要是采用20世纪50年代提出的碳热还原法制备碳化锆粉体,即以锆英砂或斜锆石为前驱体,在电弧炉中直接被还原碳化成碳化锆粉末。但这种工艺过于粗放,混合方式过于简单,合成的产物粒径过大,而且粉体活性较低。自蔓延高温合成法是利用机械活化的锆和碳的混合粉末,采用SHS技术将二者直接反应合成为几百纳米的碳化锆微粉。该法的优点是工艺过程比较简单、能耗低、产率高、 产物纯度高;但受工艺因素影响,不易获取高密度的产品,并且不能严格控制反应过程和产品性能。溶胶-凝胶法是一种借助胶体分散体系的制备方法。目前已成为粉体制备技术的新领域。通常将金属醇盐、水、醇及催化剂组成的溶液,经水解缩聚形成凝胶,再经干燥、热处理、破碎即得超细粉体。但是,该法在后期热处理过程中,碳化锆晶粒受处理温度和时间的影响极为显著,进而影响到所制备的碳化锆粉体的形貌和性能。高能机械球磨法是利用球磨机的转动或震动使硬球对原料进行强烈的撞击、研磨和搅拌,把混合粉末粉碎成细小颗粒的方法。球磨过程可以使耐高温的氧化锆颗粒磨损,导致一些细颗粒与研磨球分离,与碳粉混合在一起,进而反应生成碳化锆粉末。此法也可以制备常规方法难以制备的高熔点单质或合金材料。但是由于在制备过程中剧烈放热反应产生的热冲击力,导致粉体中出现磨球碎片,并且该法制备的晶粒尺寸存在不均勻、易引入杂质等缺陷。因此,目前对碳化锆粉体的制备技术都存在一定的不足如工艺过程不易控制、粉体颗粒粒径分布不均勻、产物纯度不高和粉体活性较低等。

发明内容
本发明旨在克服现有技术的不足,目的是提供一种原料价格低廉、工艺简单、合成过程易于控制和具有很大产业化前景的碳化锆粉体的制备方法。用该方法制备的碳化锆粉体活性高,纯度高,粉体颗粒粒径分布均勻。为实现上述目的,本发明的技术方案是先以纩22wt%的二氧化锆或氧氯化锆、 65 80wt%的碱金属硫酸盐、广3wt%的炭黑和l(T20wt%的铝粉为原料,混合均勻;再将混合均勻的原料置于管式电炉内,在氩气气氛下以2、°C /min的升温速率升至95(Tl 150°C,保温广6小时;然后将所得产物放入浓度为0. 5^3mol/L的溶液中浸泡2、小时,过滤, 用去离子水清洗至清洗液的PH值为7. 0,最后在110条件下干燥1014小时,即得碳化锆粉体。在上述技术方案中二氧化锆为分析纯,纯度> 99wt%;氧氯化锆为分析纯,纯度 ^ 99wt% ;炭黑的粒径为纩3nm,比表面积大于70m2 / g ;碱金属硫酸盐为硫酸钠或为硫酸钾或为硫酸钠与硫酸钾的混合物;其中硫酸钠为分析纯,纯度> 99. 5wt% ;硫酸钾为分析纯, 纯度彡99. 5wt% ;铝粉粒径小于74 μ m,纯度彡99wt%。由于采用上述技术方案,本发明与现有技术相比具有以下积极效果
1、在熔融盐中实现反应物原子尺度的混合,可有效控制反应进程;
2、合成工艺简单、原料价格低廉,具有很大的产业化前景;
3、产物颗粒均勻分散于熔融盐中,避免了相互连接,使得颗粒分散性很好,极大地降低了溶解洗涤后团聚现象的发生;
4、合成产物各组分配比准确、成分均勻、无偏析。因此,本发明具有原料价格低廉、合成过程简单、合成过程易于控制和具有很大产业化前景的特点;所制备的碳化锆粉体活性高,纯度高,粉体颗粒粒径分布均勻,粒径为 80 300nm。
具体实施例方式下面结合具体实施方式
对本发明做进一步的描述,并非对其保护范围的限制。为避免重复,先将本具体实施方式
的原料统一描述如下,以下各实施例中不再赘述二氧化锆为分析纯,纯度> 99wt% ;氧氯化锆为分析纯,纯度> 99wt% ;炭黑的粒径为 2^3nm,比表面积大于70m2 / g ;硫酸钠为分析纯,纯度> 99. 5wt% ;硫酸钾为分析纯,纯度彡99. 5wt% ;铝粉粒径小于74 μ m,纯度彡99wt%。实施例1
一种碳化锆粉体及其制备方法。先以8 15wt%的二氧化锆、7(T80wt%的硫酸钠、广2wt% 的炭黑和l(Tl5wt%的铝粉为原料,混合均勻;再将混合均勻的原料置于管式电炉内,在氩气气氛下以2、°C /min的升温速率升至110(Γ1150 ,保温广3小时;然后将所得产物放入浓度为0. 5^1. 5mol/L的溶液中浸泡2、小时,过滤,用去离子水清洗至清洗液的pH 值为7. 0,最后在110条件下干燥1(Γ15小时,即得碳化锆粉体。本实施例所制备的碳化锆粉体,纯度高、颗粒无团聚,粒度为200-300nm。实施例2
一种碳化锆粉体及其制备方法。先以14 22wt%的氧氯化锆、65 70wt%的硫酸钾、 2^3wt%的炭黑和l(Tl5wt%的铝粉为原料,混合均勻;再将混合均勻的原料置于管式电炉内,在氩气气氛下以3飞。C /min的升温速率升至95(Γ1000 ,保温;Γ5小时;然后将所得产物放入浓度为广3mol/L的H2SO4溶液中浸泡4飞小时,过滤,用去离子水清洗至清洗液的pH值为7. 0,最后在110条件下干燥12 18小时,即得碳化锆粉体。本实施例所制备的碳化锆粉体,纯度高、颗粒无团聚,粒度为80-220nm。实施例3
一种碳化锆粉体及其制备方法。先以l(Tl5wt%的氧氯化锆、65 75wt%硫酸钠与硫酸钾的混合物、1. 5^2. 5wt%的炭黑和12 20wt%的铝粉为原料,混合均勻;再将混合均勻的原料置于管式电炉内,在氩气气氛下以5、°C /min的升温速率升至ΚΚΚΓ ΙΟΟ ,保温4飞小时;然后将所得产物放入浓度为2 3mol/L的H2SO4溶液中浸泡5、小时,过滤,用去离子水清洗至清洗液的PH值为7. 0,最后在110条件下干燥1814小时,即得碳化锆粉体。本实施例所制备的碳化锆粉体,纯度高、颗粒无团聚,粒度为100-230nm。实施例4
一种碳化锆粉体及其制备方法。先以纩13wt%的氧氯化锆、65 72wt%的硫酸钠、广2wt% 的炭黑和15 20wt%的铝粉为原料,混合均勻;再将混合均勻的原料置于管式电炉内,在氩气气氛下以4 6°C /min的升温速率升至95(Tl050°C,保温2、小时;然后将所得产物放入浓度为1. 5^2. 5mol/L的溶液中浸泡3飞小时,过滤,用去离子水清洗至清洗液的pH 值为7. 0,最后在110条件下干燥15 20小时,即得碳化锆粉体。本实施例所制备的碳化锆粉体,纯度高、颗粒无团聚,粒度为200-300nm。实施例5
一种碳化锆粉体及其制备方法。先以14 20wt%的二氧化锆、6纩的硫酸钾、 2^3wt%的炭黑和l(Tl6wt%的铝粉为原料,混合均勻;再将混合均勻的原料置于管式电炉内,在氩气气氛下以2、°C /min的升温速率升至ΚΚΚΓ ΙΟΟ ,保温5飞小时;然后将所得产物放入浓度为0. 5^1mol/L的溶液中浸泡6、小时,过滤,用去离子水清洗至清洗液的PH值为7. 0,最后在110条件下干燥2(Γ24小时,即得碳化锆粉体。本实施例所制备的碳化锆粉体,纯度高、颗粒无团聚,粒度为150-220nm。实施例6
一种碳化锆粉体及其制备方法。先以18 22wt%的二氧化锆、65 69wt%的硫酸钠、 Γ2. 5wt%的炭黑和l(THwt%的铝粉为原料,混合均勻;再将混合均勻的原料置于管式电炉内,在氩气气氛下以4 6°C /min的升温速率升至105(Tll50°C,保温4飞小时;然后将所得产物放入浓度为2 3mol/L的溶液中浸泡5 7小时,过滤,用去离子水清洗至清洗液的 PH值为7. 0,最后在110条件下干燥1(Γ15小时,即得碳化锆粉体。本实施例所制备的碳化锆粉体,纯度高、颗粒无团聚,粒度为80-150nm。实施例7
一种碳化锆粉体及其制备方法。先以纩13wt%的二氧化锆、73 80wt%的硫酸钠与硫酸钾的混合物、1. 5^2. 5wt%的炭黑和l(Tl7wt%的铝粉为原料,混合均勻;再将混合均勻的原料置于管式电炉内,在氩气气氛下以5、°C /min的升温速率升至110(T115(TC,保温2、小时;然后将所得产物放入浓度为广3mol/L&4S04溶液中浸泡2、小时,过滤,用去离子水清洗至清洗液的PH值为7. 0,最后在110条件下干燥12 15小时,即得碳化锆粉体。本实施例所制备的碳化锆粉体,纯度高、颗粒无团聚,粒度为100-200nm。实施例8
一种碳化锆粉体及其制备方法。先以9 15wt%的氧氯化锆、74 80wt%的硫酸钾、广2wt%的炭黑和l(Tl5wt%的铝粉为原料,混合均勻;再将混合均勻的原料置于管式电炉内,在氩气气氛下以2、°C /min的升温速率升至95(T100(TC,保温广3小时;然后将所得产物放入浓度为2 3mol/L的溶液中浸泡6、小时,过滤,用去离子水清洗至清洗液的pH值为 7. 0,最后在110条件下干燥2014小时,即得碳化锆粉体。本实施例所制备的碳化锆粉体,纯度高、颗粒无团聚,粒度为200-300nm。本具体实施方式
与现有技术相比具有以下积极效果
1、在熔融盐中实现反应物原子尺度的混合,可有效控制反应进程;
2、合成工艺简单、原料价格低廉,具有很大的产业化前景;
3、产物颗粒均勻分散于熔融盐中,避免了相互连接,使得颗粒分散性很好,极大地降低了溶解洗涤后团聚现象的发生;
4、合成产物各组分配比准确、成分均勻、无偏析。因此,本具体实施方式
具有原料价格低廉、合成过程简单、合成过程易于控制和具有很大产业化前景的特点;所制备的碳化锆粉体活性高,纯度高,粉体颗粒粒径分布均勻, 粒径为80 300nm。
权利要求
1.一种碳化锆粉体的制备方法,其特征在于先以纩22wt%的二氧化锆或氧氯化锆、 65 80wt%的碱金属硫酸盐、广3wt%的炭黑和l(T20wt%的铝粉为原料,混合均勻;再将混合均勻的原料置于管式电炉内,在氩气气氛下以2、°C /min的升温速率升至 95(T1150°C,保温广6小时;然后将所得产物放入浓度为0. 5 3mol/L的溶液中浸泡 2、小时,过滤,用去离子水清洗至清洗液的pH值为7. 0,最后在110条件下干燥1014小时,即得碳化锆粉体。
2.根据权利要求1所述的碳化锆粉体的制备方法,其特征在于所述二氧化锆为分析纯,纯度彡99wt%。
3.根据权利要求1所述的碳化锆粉体的制备方法,其特征在于所述氧氯化锆为分析纯,纯度彡99wt%。
4.根据权利要求1所述的碳化锆粉体的制备方法,其特征在于所述炭黑的粒径为 2 3nm,比表面积大于70m2 / g。
5.根据权利要求1所述的碳化锆粉体的制备方法,其特征在于所述的碱金属硫酸盐为硫酸钠或为硫酸钾或为硫酸钠与硫酸钾的混合物;其中硫酸钠为分析纯,纯度彡99. 5wt% ;硫酸钾为分析纯,纯度彡99. 5wt%。
6.根据权利要求1所述的碳化锆粉体的制备方法,其特征在于所述的铝粉粒径小于 74 μ m,纯度彡 99wt%。
7.根据权利要求广6项中任一项所述的碳化锆粉体的制备方法所制备的碳化锆粉体。
全文摘要
本发明具体涉及一种碳化锆粉体及其制备方法。其技术方案是先以8~22wt%的二氧化锆或氧氯化锆、65~80wt%的碱金属硫酸盐、1~3wt%的炭黑和10~20wt%的铝粉为原料,混合均匀;再将混合均匀的原料置于管式电炉内,在氩气气氛下以2~8℃/min的升温速率升至950~1150℃,保温1~6小时;然后将所得产物放入浓度为0.5~3mol/L的H2SO4溶液中浸泡2~8小时,过滤,用去离子水清洗至清洗液的pH值为7.0,最后在110条件下干燥10~24小时,即得碳化锆粉体。本发明具有原料价格低廉、合成过程简单、合成过程易于控制和具有很大产业化前景的特点;所制备的碳化锆粉体活性高,纯度高,粉体颗粒粒径分布均匀,粒径为80~300nm。
文档编号C01B31/30GK102491327SQ20111040409
公开日2012年6月13日 申请日期2011年12月8日 优先权日2011年12月8日
发明者刘浩, 张保国, 张少伟, 王周福, 王玺堂 申请人:武汉科技大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1