一种采用高压相变法制备多晶α‑氧化铝的方法与流程

文档序号:12637166阅读:256来源:国知局

本发明涉及采用γ-Al2O3为原料,通过对原料进行净化处理,在高温超高压条件下通过高压相变法制备出高性能多晶α-氧化铝(即α-Al2O3)的方法。属于无机非金属材料领域。

技术背景

氧化铝有许多同质异晶体,目前已知的有10多种,主要有3种晶型,即α-Al2O3、β-Al2O3、γ-Al2O3。γ-Al2O3和α-Al2O3是氧化铝的主要存在形式。γ-Al2O3属于过渡形态氧化铝,为粉状、微球状或柱状白色固体。其晶体结构不同于工业氧化铝。α-Al2O3是一种重要的无机非金属材料,是所有氧化铝中最稳定的物相。

纳米α-Al2O3多晶,具有良好的力学性能(高硬度、高韧性、高强度);断裂强度是α-Al2O3单晶的数倍。由于α-Al2O3晶粒在高温下容易长大而失去其纳米结构,合成这种完全致密的纳米多晶块状材料具有挑战性,

纳米多晶陶瓷材料的制备多以纳米粉末为初始材料,纳米粉末存在团聚、吸附、难以分散的问题制约了烧结所得多晶材料的力学性能。如何抑制纳米晶粒在高温烧结过程中的长大,使其保持纳米特性与烧结体高致密度,也是纳米多晶材料制备面临的技术难题。



技术实现要素:

本发明的目的正是针对上述现有技术中所存在的不足之处而提供一种采用高压相变法制备多晶α-氧化铝的方法。

本发明的目的可通过下述技术措施来实现:

本发明的采用高压相变法制备多晶α-氧化铝的方法以纯度高于80%、晶粒尺寸为5nm -500 μm的γ-Al2O3为原料,在高温高压条件下进行制备,其工艺步骤如下:

a、原料处理检测:用无水乙醇处理纯度高于80%、晶粒尺寸为5nm-500 μm的γ-Al2O3原料,倒出废液后,在120℃条件下进行烘干;之后加去离子水进行预压成型,待成型后在真空干燥烘箱中对成型样品进行真空干燥;

b、装配烧结单元:将预压成型的原料用金属包裹体进行包裹,防止样品在高温高压下被污染;再把包裹后的预压成型的原料放入处理过的金属杯中,装入高压合成装置中进行组装,然后将组装好的烧结单元放入120℃恒温干燥的烘箱中备用;

c、高温高压烧结:利用压机进行高温高压烧结,烧结压力为1-25GPa,当压力达到设定压力后,升温加热,在烧结温度为300-1500℃的条件下保温烧结;保温时间为10秒-50分钟;待保温结束后,停止加热,然后缓慢开始降压;

d、后续加工处理:取出合成腔体内的样品,去除外部金属包裹体,对内部样品打磨、抛光得到α-Al2O3多晶体,α-Al2O3多晶体的晶粒尺寸为5nm-500 μm;

e、样品性能检测:通过XRD和SEM检测样品物相及样品晶粒尺寸。

本发明中所述γ-Al2O3原料的晶型采用XRD测定,并利用激光粒度检测测定晶粒尺寸。

本发明中步骤b中所述金属包裹体的材料为钛、钼或钽,在包裹之前进行需打磨和抛光处理,然后进行去油、超声波清洗、红外烘干。

本发明中步骤b中所述烧结单元以石墨管为加热器件,氧化镁和叶蜡石为传压介质。

本发明的有益效果如下:

本发明制备的纳米多晶α-Al2O3材料,采用的原料是纯相的γ-Al2O3粉末,且样品中不含其它杂质,具有纯度高、物相单一的特点。

本发明制备的纳米多晶α-Al2O3材料,可以利用微米尺寸γ-Al2O3为原料。避免了以纳米晶粉末为初始材料,存在的团聚、吸附、难以分散的问题。

本发明制备的纳米多晶α-Al2O3材料,利用高温超高压相变法制备而得到。利用超高压使原料破碎成均匀的晶粒,超高压条件可以抑制高温驱使的晶粒长大问题。这种方法成功地解决了纳米晶粒在高温烧结过程中的长大。

附图说明

图1为烧结单元组装示意图。

图中序号:1是堵头,2是白云石套管,3是叶蜡石块,4是石墨片,5是石墨管,6是样品,7是氧化镁管,8是氧化镁片,9是钛片。

具体实施方式

本发明以下将结合实施例(附图)作进一步描述:

实施例1:

a、原料处理检测:将纯度为99%、晶粒尺寸为5 μm 的γ-Al2O3原料用无水乙醇处理,倒出废液,处理后的原料放入烘箱内120℃ 烘干;烘干后的原料加去离子水作为粘结剂,预压成型;把成型样品放入真空干燥烘箱中真空干燥;通过XRD、激光粒度测定原料的晶型为四方型γ-Al2O3

b、装配烧结单元:将预压成型的原料用金属包裹体进行包裹,防止样品在高温高压下被污染;再把包裹后的预压成型的原料放入处理过的金属杯中,装入高压合成装置中进行组装,然后将组装好的烧结单元放入120℃恒温干燥的烘箱中备用;所述的烧结单元以石墨管为加热器件,氧化镁和叶蜡石为传压介质。如图1所示,按照烧结单元装配图组装烧结单元。

c、高温高压烧结:利用压机进行高温高压烧结,烧结压力为3GPa,压力达到设定压力后,加热升温,在烧结温度为1300℃的条件下,保温时间为5分钟;待保温结束后,停止加热,然后缓慢开始降压。

d、后续加工处理:取出合成腔体内的样品,去除外部金属包裹体,对内部样品打磨、抛光得到α-Al2O3多晶体,α-Al2O3多晶体的晶粒尺寸为5nm-500 μm。

e、样品性能检测:通过XRD和SEM检测样品物相及样品晶粒尺寸。

通过硬度和韧性测试表明样品具有高硬度和高韧性。经过XRD衍射图谱分析,样品只含有α-Al2O3单一相,且晶相稳定,SEM检测样品的平均晶粒大小为纳米颗粒,且样品微观结构比较均匀。采用此工艺制备的高性能α-Al2O3材料物相单一,结构均匀,具有高的硬度和致密度,高的热稳定性。

实施例2

a、原料处理检测:将纯度为99.5%、晶粒尺寸为20 μm 的γ-Al2O3原料用无水乙醇处理,倒出废液,处理后的原料放入烘箱内120℃ 烘干;烘干后的原料加去离子水作为粘结剂,预压成型;把成型样品放入真空干燥烘箱中真空干燥;通过XRD、激光粒度测定原料的晶型为四方型γ-Al2O3

本实施例的步骤b与实施例1相同,不再重复。

c、高温高压烧结:利用压机进行高温高压烧结,烧结压力为5GPa,压力达到设定压力后,加热升温,在烧结温度为1500℃的条件下,保温时间为50分钟;待保温结束后,停止加热,然后缓慢开始降压。

本实施例的步骤d、e与实施例1相同,不再重复。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1