一种纤维素多孔材料的制备方法及应用与流程

文档序号:15359616发布日期:2018-09-05 00:29阅读:960来源:国知局

本发明涉及一种纤维素多孔材料的制备方法及应用,属于纤维素多孔材料技术领域。



背景技术:

传统食用油固化方法是引入饱和脂肪酸和反式脂肪酸,然而,研究表明:反式脂肪酸和饱和脂肪酸的摄入会使人体内的低密度的脂蛋白含量增加,从而增加心血管疾病突发的概率。因此,世卫组织呼吁五年内“告别”人造反式脂肪酸和饱和脂肪酸(patelar,dewettinckk.food&function,2016,7(1):20-29.)。很多食品制造者正在寻找一种新的未经化学改性的固体油取代饱和脂肪和反式脂肪。目前主要面临两方面的挑战:一方面是在液体食用油固化的过程中不破坏其营养价值;另一方面是寻找一种简单可行的通用方法制备油凝胶。

wo2014/004018涉及了一种可食用的油凝胶,其中包含油和乙基纤维素,将乙基纤维素加热并加入到食用油中,经冷却制得油凝胶。该法制备油凝胶过程需要高温加热,不利于保持液体食用油的营养价值。

发明人课题组发展了两步法制备油凝胶的技术,即先制备纤维素pickering乳液,再将其冷冻干燥制备油凝胶。这种方法受限于pickering乳液的稳定性,不利于工业化生产(jiangy,liul,wangb,etal.foodhydrocolloids,2017.)。

纤维素类多孔材料因兼具多孔材料高孔隙率、低相对密度、高比表面积,以及纤维素来源丰富、可生物降解等特点受到科研工作者的广泛关注,被广泛用于食品、生物医药,化妆品等领域。本发明主要通过冷冻干燥纤维素悬浮液得到纤维素多孔材料,并将其用于物理吸附液体食用油,基于纤维素多孔材料的网络化结构使液体食用油固化形成油凝胶。所制备的油凝胶含油量高(>97%),具有较高的凝胶模量(>10000pa),可广泛用于食品,生物医药,化妆品等领域。



技术实现要素:

本发明所要解决的技术问题是:提供一种采用纤维素多孔材料制备油凝胶的方法。

为了解决上述问题,本发明提供了一种纤维素多孔材料的制备方法,其特征在于,将纤维素与其衍生物混合制成悬浮液,然后将悬浮液经冷冻干燥制得纤维素多孔材料。

优选地,所述纤维素为纳米纤维素,采用纤维素纳米晶、纤维素纳米线、再生纳米纤维素和纤维素微米线中的任意一种;所述纤维素衍生物为羧甲基纤维素、甲基纤维素和羟乙基纤维素中的至少一种。

更优选地,所述纤维素纳米晶的直径为3~20nm,长度为50~250nm;纤维素纳米线的直径为1~200nm,长度为50~700nm;再生纳米纤维素的直径为20~40nm,长度为0.1~10μm;纤维素微米线的直径为20~200nm,长度为1~30μm。

优选地,所述纤维素与其衍生物的质量比为10∶1~1∶10。

更优选地,所述纤维素与其衍生物的质量比为2∶1~1∶2。

优选地,所述悬浮液中纤维素、其衍生物的固含量均为0.5~2%。

优选地,所述冷冻干燥的温度为-197~5℃,压力为10~200pa,时间为5~48h;干燥后的纤维素多孔材料的含水率小于1%。

本发明还提供了一种上述纤维素多孔材料的制备方法制备的纤维素多孔材料在制备油凝胶中的应用,其特征在于,用纤维素多孔材料物理吸附食用油,然后剪切,制得油凝胶。

优选地,所述食用油为向日葵油、花生油或葵花籽油。

优选地,所述剪切为稳态剪切或者为动态剪切,剪切压力均小于10pa,稳态剪切的速率小于10/s,动态剪切的速率小于10hz。

本发明以纤维素悬浮液和纤维素衍生物为原料,采用冷冻干燥制得纤维素多孔材料,再通过物理吸附液体油,形成网络化结构支撑的固体或半固体脂肪产品(油凝胶)。该产品同时含有健康的不饱和脂肪和膳食纤维,油凝胶含量高(>97%),可用于食品、化妆品、医药等领域。

本发明制备方法简单,油凝胶含油量高(>97%),强度高(>10000pa),可食用或用于生物医药、化妆品等领域。本发明制备的固体或半固体脂肪未经化学改性,保留不饱和脂肪酸的特性,安全、健康。

附图说明

图1为实施例1制备的不同含量多孔材料sem的对比图;

图2为实施例1制备的不同纤维含量的油凝胶的流变数据图;

图3为实施例3制备的不同原料的油凝胶的对比图;其中,(a)为葵花籽油为原料制备的油凝胶,(b)为花生油为原料制备的油凝胶,(c)为向日葵油为原料制备的油凝胶。

具体实施方式

为使本发明更明显易懂,兹以优选实施例,并配合附图作详细说明如下。

实施例1

一种纤维素多孔材料的制备方法及应用:

称取固含量分别为0.5wt%,0.8wt%,1wt%,1.2wt%的木浆纤维素纳米线悬浮液10g,将0.05g羧甲基纤维素加入纤维素纳米线悬浮液中,制得的混合悬浮液置于液氮中进行快速冷冻,得到冰冻的凝胶,再放入冷冻干燥机进行冷冻干燥,干燥时间48h。干燥结束后将制得的纤维素多孔材料置于葵花籽油中静置1h,将吸附液体油的多孔材料置于流变仪中进行稳态剪切2min,剪切频率为1hz,制得油凝胶。

图1为上述制备的不同含量多孔材料sem的对比图。

图2为上述制备的不同纤维含量的油凝胶的流变数据图。

取1mm厚的油凝胶放在50mm的平板上,控制形变为1%,剪切速度为0.1~10hz。经过测试,随着纤维含量的增加,油凝胶的凝胶模量也随之增加。

实施例2

一种纤维素多孔材料的制备方法及应用:

称取1wt%的木浆纤维素微米线、纤维素纳米晶、再生纳米纤维素悬浮液10g,将0.05g羧甲基纤维素加入纤维素悬浮液中,制得的混合悬浮液置于液氮中进行快速冷冻,得到冰冻的凝胶,放入冷冻干燥机进行冷冻干燥,干燥时间48h。干燥结束后将制得的纤维素多孔材料置于葵花籽油中静置1h,将吸附液体油的纤维素多孔材料置于流变仪中进行稳态剪切2min,剪切频率为1hz,制得油凝胶。对纤维素多孔材料的吸附油的质量进行称重,不同的纤维素材料均吸附了超过自身质量30倍的油。

上述制备的不同纤维素多孔材料的密度和吸附油的质量如表1所示。

表1

实施例3

一种纤维素多孔材料的制备方法及应用:

称取1wt%的木浆纤维素微米线悬浮液10g,将0.05g甲基纤维素加入纤维素悬浮液中,制得的混合悬浮液置于液氮中进行快速冷冻,得到冰冻的凝胶,放入冷冻干燥机进行冷冻干燥,干燥时间48h。干燥结束后将制得的纤维素多孔材料分别置于葵花籽油、花生油、向日葵油中静置1h,将吸附液体油的纤维素多孔材料置于流变仪中进行稳态剪切2min,剪切频率为1hz,制得油凝胶。

图3为上述制备的不同原料的油凝胶的对比图。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1