一种有机发光材料、制法和应用的制作方法

文档序号:17087580发布日期:2019-03-13 23:02阅读:174来源:国知局

本发明涉及发光材料技术领域,具体涉及一种有机发光材料、制法和应用。



背景技术:

有机电致发光器件具有宽视角、响应时间短、驱动电压低等特性,并可通过三种有机电致发光材料(用于红色,绿色和蓝色)可用来实现全色oled显示器。重要的事项是研制具有高效率和长寿命的电致发光材料,以改进有机电致发光(el)器件的总体特性。近来,研制高效率和长寿命的有机el器件成为一个迫切的课题。对主体材料所需的性质是高纯度,玻璃化转变温度和热分解温度应足够高,以保证热稳定性。此外,主体材料应具有高的电化学稳定性,以提供长寿命。容易形成非晶相薄膜,并与其他相邻材料具有高粘合性,但不会发生中间层迁移。

二萘基蒽(dna)(化合物b)为广泛应用的蓝光主体化合物。但是,将该化合物应用于全色显示器时,其寿命仅有几千小时,原因是色纯度随操作时间降低。在蓝色电致发光的情况,如果电致发光波长略迁移到更长波长,其发光效率方面是有利的。但是,因为材料的蓝色色纯度不够高,因此很难将材料施用于高质量的显示器。而且,因为存在色纯度、效率和热稳定性问题而迫切需要研究和开发这类材料。



技术实现要素:

本发明要解决现有技术中的技术问题,提供一种有机发光材料、制法和应用。本发明提供了一种结构新颖的有机发光材料,与常规主体材料相比该化合物具有能显示优异电致发光性质、长的器件寿命和适当色坐标。使用所述有机发光材料作为电致发光材料的器件,实现了具有优异的发光效率和显著改进的寿命的有机电致发光器件。

为了解决上述技术问题,本发明的技术方案具体如下:

一种有机发光材料,其结构式如下:

式中,

x为氧原子、硫原子、氮原子、c1-20取代或非取代的亚烷基、取代或非取代的胺基;

r1为c1-c60烷基、c3-c60环烷基、c6-c60芳基、或c3-c60杂芳基;

r2至r17各自独立地表示:氢、卤素、氰基、c1-c60烷基、c6-c60芳基、c3-c60杂芳基、c3-c60环烷基、三c1-c60烷基甲硅烷基、二c1-c60烷基c6-c60芳基甲硅烷基、三c6-c60芳基甲硅烷基、金刚烷基、c7-c60二环烷基、c2-c60烯基、c2-c60炔基、c1-c60烷氧基、c1-c60烷基氨基、c6-c60芳基氨基、c6-c60芳基c1-c60烷基、c6-c60芳氧基、c6-c60芳硫基、c1-c60烷氧基羰基、羧基、硝基或羟基;或者r2至r17中每一个可以与相邻的取代基相连,形成单环或多环的芳环;

ar1表示:化学键、c6-c60亚芳基或c3-c60杂亚芳基;

ar2表示:c1-c60烷基、c6-c60芳基、c3-c60杂芳基、c3-c60环烷基、三c1-c60烷基甲硅烷基、二c1-c60烷基c6-c60芳基甲硅烷基、三c6-c60芳基甲硅烷基、金刚烷基、c7-c60二环烷基、c2-c60烯基、c2-c60炔基、c1-c60烷氧基、氰基、c1-c60烷基氨基、c6-c60芳基氨基、c6-c60芳氧基、c6-c60芳硫基、c1-c60烷氧基羰基、羧基、硝基或羟基。

在上述技术方案中,ar1的亚芳基或杂亚芳基可以进一步被一个或多个选自以下的取代基取代:c1-c60烷基、卤素、氰基、c1-c60烷氧基、c3-c60环烷基、c6-c60芳基、c3-c60杂芳基、金刚烷基、c7-c60二环烷基、氰基、c1-c60烷基氨基、c6-c60芳基氨基、c6-c60芳基、c1-c60烷基、c6-c60芳氧基、c6-c60芳硫基、c1-c60烷氧基羰基、羧基、硝基、羟基、三c1-c30烷基甲硅烷基、二c1-c30烷基c6-c30芳基甲硅烷基或三c6-c30芳基甲硅烷基。

在上述技术方案中,所述有机发光材料选自以下化学式(2-1)至(5-4)中之一表示的化合物:

其中,ar1、ar2、r1、r2至r17按照上述定义;r表示c1-c60烷基、c3-c60环烷基、c6-c60芳基、或c3-c60杂芳基。

在上述技术方案中,r1选自于以下基团中的任意一个:

ra为卤素、氨基、氰基、硝基、羟基或巯基。

在上述技术方案中,所述有机发光材料选自以下化合物1至68中之一表示的化合物:

本发明还提供一种有机发光材料的制法,包括以下步骤:

步骤1、中间体1的制备

将化合物1溶于无水四氢呋喃中,将反应液冷却至0℃,在氮气保护的环境中滴加含有r1取代基的格式试剂,进行反应,当有白色固体出现,使用饱和nhcl4进行淬灭;使用乙醚萃取,然后分液、合并有机相、浓缩至剩下少量溶剂;利用石油醚和二氯甲烷作为流动相,通过柱层析色谱进行分离提纯,得到中间体1;

步骤2、中间体2的制备

将中间体1和含有ar1取代基的溴化物溶于二氯甲烷中,室温下滴加三氟化硼乙醚络合物,一段时间后,边搅拌边将反应液缓慢加入到冷水中淬灭,分液,二氯甲烷萃取三次,合并有机相,浓缩,利用乙醇/二氯甲烷重结晶,得到中间体2;

步骤3、化学式1所示的化合物的制备

将中间体2和化合物2溶解于甲苯/乙醇/水的混合溶剂中,用氮气置换空气3次,加入碳酸钾和四(三苯基膦)钯,进行反应,经薄层色谱确认反应终点,将反应冷却至室温,抽滤,浓缩,柱层析色谱提纯,得到化学式1所示的化合物;

其合成路线如下:

在上述技术方案中,步骤1中反应的温度为45-55℃,时间10-14小时;步骤3中反应温度为85-95℃、时间10-14小时,所述甲苯/乙醇/水的体积比为3:1:1。

本发明还提供上述有机发光材料的应用,所述有机发光材料用于制备有机电致发光器件,所述有机电致发光器件,包括第一电极,第二电极,和至少一层插入所述第一电极和第二电极之间的有机层;其中,所述有机层包含电致发光层,所述电致发光层包含化学式1所示的有机发光材料。

在上述技术方案中,所述有机层包含一种或多种选自蒽类的化合物。

在上述技术方案中,所述有机层还包括电子注入层、电子传输层、空穴阻挡层、电子阻挡层、空穴传输层、空穴注入层中的至少一层。

本发明的有益效果是:

本发明为解决上述常规技术存在的问题提供了一种结构新颖的有机发光材料。实现了具有优异的发光效率和显著改进的寿命的有机电致发光器件。

本发明提供的有机发光材料,与常规主体材料相比该化合物具有能显示优异电致发光性质、长的器件寿命和适当色坐标。

本发明提供的有机发光材料的应用,将本发明的有机发光材料作为电致发光材料制备的器件,具有高效率和长寿命。

本发明提供的有机发光材料的制法,合成方法简单易行,通过控制反应的温度及时间,可获得高产率的目标产物。

具体实施方式

本发明提供一种有机发光材料,其结构式如下:

式中,x为氧原子、硫原子、氮原子、c1-20取代或非取代的亚烷基、取代或非取代的胺基;r1为c1-c60烷基、c3-c60环烷基、c6-c60芳基、或c3-c60杂芳基;r2至r17各自独立地表示:氢、卤素、氰基、c1-c60烷基、c6-c60芳基、c3-c60杂芳基、c3-c60环烷基、三c1-c60烷基甲硅烷基、二c1-c60烷基c6-c60芳基甲硅烷基、三c6-c60芳基甲硅烷基、金刚烷基、c7-c60二环烷基、c2-c60烯基、c2-c60炔基、c1-c60烷氧基、c1-c60烷基氨基、c6-c60芳基氨基、c6-c60芳基c1-c60烷基、c6-c60芳氧基、c6-c60芳硫基、c1-c60烷氧基羰基、羧基、硝基或羟基;或者r2至r17中每一个可以与相邻的取代基相连,形成单环或多环的芳环;ar1表示:化学键、c6-c60亚芳基或c3-c60杂亚芳基;ar2表示:c1-c60烷基、c6-c60芳基、c3-c60杂芳基、c3-c60环烷基、三c1-c60烷基甲硅烷基、二c1-c60烷基c6-c60芳基甲硅烷基、三c6-c60芳基甲硅烷基、金刚烷基、c7-c60二环烷基、c2-c60烯基、c2-c60炔基、c1-c60烷氧基、氰基、c1-c60烷基氨基、c6-c60芳基氨基、c6-c60芳氧基、c6-c60芳硫基、c1-c60烷氧基羰基、羧基、硝基或羟基。优选ar1的亚芳基或杂亚芳基可以进一步被一个或多个选自以下的取代基取代:c1-c60烷基、卤素、氰基、c1-c60烷氧基、c3-c60环烷基、c6-c60芳基、c3-c60杂芳基、金刚烷基、c7-c60二环烷基、氰基、c1-c60烷基氨基、c6-c60芳基氨基、c6-c60芳基、c1-c60烷基、c6-c60芳氧基、c6-c60芳硫基、c1-c60烷氧基羰基、羧基、硝基、羟基、三c1-c30烷基甲硅烷基、二c1-c30烷基c6-c30芳基甲硅烷基或三c6-c30芳基甲硅烷基。

优选所述有机发光材料选自以下化学式(2-1)至(5-4)中之一表示的化合物:

其中,ar1、ar2、r1、r2至r17按照上述定义;r表示c1-c60烷基、c3-c60环烷基、c6-c60芳基、或c3-c60杂芳基。

优选r1选自于以下基团中的任意一个:

ra为卤素、氨基、氰基、硝基、羟基或巯基。

最优选所述有机发光材料选自以下化合物1至68中之一表示的化合物:

本发明还提供一种有机发光材料的制法,包括以下步骤:

步骤1、中间体1的制备

将化合物1溶于无水四氢呋喃中,将反应液冷却至0℃,在氮气保护的环境中滴加含有r1取代基的格式试剂,进行反应,当有白色固体出现,使用饱和nhcl4进行淬灭;使用乙醚萃取,然后分液、合并有机相、浓缩至剩下少量溶剂;利用石油醚和二氯甲烷作为流动相,通过柱层析色谱进行分离提纯,得到中间体1;

步骤2、中间体2的制备

将中间体1和含有ar1取代基的溴化物溶于二氯甲烷中,室温下滴加三氟化硼乙醚络合物,一段时间后,边搅拌边将反应液缓慢加入到冷水中淬灭,分液,二氯甲烷萃取三次,合并有机相,浓缩,利用乙醇/二氯甲烷重结晶,得到中间体2;

步骤3、化学式1所示的化合物的制备

将中间体2和化合物2溶解于甲苯/乙醇/水的混合溶剂中,用氮气置换空气3次,加入碳酸钾和四(三苯基膦)钯,进行反应,经薄层色谱确认反应终点,将反应冷却至室温,抽滤,浓缩,柱层析色谱提纯,得到化学式1所示的化合物;

其合成路线如下:

步骤1中:优选反应的温度为45-55℃,时间10-14小时;进一步优选反应的温度为50℃,时间12小时。步骤3中:优选反应温度为85-95℃、时间10-14小时,所述甲苯/乙醇/水的体积比为3:1:1;进一步优选反应的温度为90℃,时间12小时。

本发明还提供上述有机发光材料的应用,所述有机发光材料用于制备有机电致发光器件,所述有机电致发光器件,包括第一电极,第二电极,和至少一层插入所述第一电极和第二电极之间的有机层;其中,所述有机层包含电致发光层,所述电致发光层包含化学式1所示的有机发光材料。优选所述有机层包含一种或多种选自蒽类的化合物。优选所述有机层还包括电子注入层、电子传输层、空穴阻挡层、电子阻挡层、空穴传输层、空穴注入层中的至少一层。

实施例1

中间体c-1的合成:

占吨酮(70mmol)溶于100ml无水四氢呋喃中,将反应液冷却至0℃,在氮气保护的环境中滴加格式试剂苯基溴化镁(77mmol),将反应缓慢加热到50℃,反应12小时,有白色固体出现。使用饱和nhcl4进行淬灭。使用乙醚萃取,然后分液、合并有机相、浓缩至剩下少量溶剂。利用石油醚和二氯甲烷(2:1)作为流动相,通过柱层析色谱进行分离提纯。得到化合物c-1(59.5mmol)。

中间体e-1的合成:

溴苯(100mmol)和化合物c-1(50mmol)溶于150ml二氯甲烷中,室温下滴加15ml三氟化硼乙醚络合物,1小时后,边搅拌边将反应液缓慢加入到50ml冷水中淬灭。分液,二氯甲烷(50ml)萃取三次,合并有机相,浓缩。利用乙醇/二氯甲烷重结晶,得到中间体e-1(43mmol)。

化合物1的合成:

将中间体e-1(40mmol)和中间体f-1(48mmol)溶解于300ml甲苯/乙醇/水(v甲苯:v乙醇:v水=3:1:1)的混合溶剂中,用氮气置换空气3次,加入碳酸钾(120mmol)和四(三苯基膦)钯(0.4mmol)。将反应加热到90℃,反应12小时。经薄层色谱确认反应终点,将反应冷却至室温,抽滤,浓缩,柱层析色谱提纯。得到化合物1(32mmol),质谱检测值为738.24。

实施例2-16

按照实施例1中化合物1的合成路线,调整相应的起始原料a以及中间体b和f,可得到不同的化合物。具体数据如下表所示:

使用本发明的化合物制造oled。

[实施例1]

将费希尔公司涂层厚度为的ito玻璃基板放在蒸馏水中清洗2次,超声波洗涤30分钟,用蒸馏水反复清洗2次,超声波洗涤10分钟,蒸馏水清洗结束后,异丙醇、丙酮、甲醇等溶剂按顺序超声波洗涤以后干燥,转移到等离子体清洗机里,将上述基板洗涤5分钟,送到蒸镀机里。将已经准备好的ito透明电极上蒸镀厚度为50nm的4,4',4”-三[2-萘基苯基氨基]三苯基胺(2-tnata)作为空穴注入层。在形成的空穴注入层上面真空蒸镀厚度为30nm的n'-二(1-萘基)-n,n'-二苯基-(1,1'-联苯)-4,4'-二胺(npb)作为空穴传输层。然后在上述空穴传输层上蒸镀厚度为30nm的本发明的化合物1作为主体材料和掺杂材料4,4'-双[4-(二对甲苯基氨基)苯乙烯基]联苯(dpavbi)。主体材料和掺杂材料的重量比为97:3。接着在上述发光层上真空蒸镀厚度为10nm的双(2-甲基-8-羟基喹啉-n1,08)-(1,1’-联苯-4-羟基)铝(balq)作为空穴阻挡层。在上述空穴阻挡层上真空蒸镀厚度为40nm的三(8-羟基喹啉)铝(iii)alq3作为电子传输层。在上述电子传输层上真空蒸镀厚度为0.5nm氟化锂(lif),作为电子注入层。最后蒸镀厚度为150nm的铝作为阴极,以此完成了有机电致发光器件的制备。

[实施例2]

除了用化合物2代替化合物1以外,用与实施例1相同的方法制备有机电致发光器件。

[实施例3]

除了用化合物5代替化合物1以外,用与实施例1相同的方法制备有机电致发光器件。

[实施例4]

除了用化合物13代替化合物1以外,用与实施例1相同的方法制备有机电致发光器件。

[实施例5]

除了用化合物19代替化合物1以外,用与实施例1相同的方法制备有机电致发光器件。

[实施例6]

除了用化合物22代替化合物1以外,用与实施例1相同的方法制备有机电致发光器件。

[实施例7]

除了用化合物25代替化合物1以外,用与实施例1相同的方法制备有机电致发光器件。

[实施例8]

除了用化合物35代替化合物1以外,用与实施例1相同的方法制备有机电致发光器件。

[实施例9]

除了用化合物37代替化合物1以外,用与实施例1相同的方法制备有机电致发光器件。

[实施例10]

除了用化合物42代替化合物1以外,用与实施例1相同的方法制备有机电致发光器件。

[实施例11]

除了用化合物47代替化合物1以外,用与实施例1相同的方法制备有机电致发光器件。

[实施例12]

除了用化合物57代替化合物1以外,用与实施例1相同的方法制备有机电致发光器件。

[实施例13]除了用化合物61代替化合物1以外,用与实施例1相同的方法制备有机电致发光器件。

[实施例14]

除了用化合物65代替化合物1以外,用与实施例1相同的方法制备有机电致发光器件。

[实施例15]

除了用化合物67代替化合物1以外,用与实施例1相同的方法制备有机电致发光器件。

[实施例16]

除了用化合物68代替化合物1以外,用与实施例1相同的方法制备有机电致发光器件。

[比较例1]

除了用化合物9,10-双-(1-萘基)蒽(adn)代替化合物1以外,用与实施例1相同的方法制备有机电致发光器件。

上述制造的oled的电致发光性质

评价根据实施例1到实施例16和比较例1制造的每个有机电致发光器件的效率(电流密度:10ma/cm2)和寿命(10ma/cm2电流密度下的t90)。

因此,本发明的化合物可以用作高效率的蓝色电致发光材料。此外,施用了本发明的化合物作为主体材料的器件在色纯度方面显示显著的改进。在寿命和发光效率两个方面的改进证实本发明的材料具有优异的性质。

显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1