一种高定向石墨烯增强双马树脂基复合材料的制备方法与流程

文档序号:19158524发布日期:2019-11-16 01:06阅读:198来源:国知局
一种高定向石墨烯增强双马树脂基复合材料的制备方法与流程

本发明属于材料科学技术领域,涉及一种高定向石墨烯增强树脂基复合材料的制备方法。



背景技术:

步入21世纪,航空航天已展现出更加广阔的发展前景,高水平或超高水平的航空航天活动更加频繁,其作用将远远超出科学技术领域本身,对政治、经济、军事以至人类社会生活都会产生更广泛和更深远的影响。应该指出,航空航天事业所取得的巨大成就,与航空航天材料技术的发展和突破是分不开的。材料是现代高新技术和产业的基础与先导,很大程度上是高新技术取得突破的前提条件。材料总的发展趋势是轻质化、高强度、高模量、耐高温、低成本,出于现代高性能飞行器发展的需要,结构-功能一体化和智能化更是重要的材料发展方向。

低维化、纳米化与复合化是推动航空航天新材料朝着方向结构-功能一体化和智能化发展和实现性能革命性跃迁的重要技术途径。石墨烯复合材料在航空航天领域的应用正面临着重要的发展机遇。目前,纳米复合材料仍处于实验室和小批量生产阶段,随着航空航天领域需求的增加以及纳米碳复合材料技术本身的发展,其工程化与产业化也将为其在市场中提升竞争力奠定基础。但仍具有挑战性的科学与技术问题等待解决,纳米碳材料的纳观尺度为其带来优异的性能,但也成为其工程应用最大的难点,一般石墨烯在树脂基体当中成杂乱分布,复合材料表现出各向同性的特点,这样对某些特殊要求的构件及器件来说,对于复合材料的设计将会造成不必要浪费和复杂性。因此针对这种特殊需求,需要制备一种定向石墨烯复合材料,性能表现出各向异性,以满足特殊需求构件的设计要求,提升使用效率,降低成本,减少原料的不必要浪费。



技术实现要素:

本发明针对以上对于各向异性石墨烯增强纳米复合材料研究的迫切性,提供了一种高定向石墨烯增强双马树脂基复合材料的制备方法。本发明解决了现有方法无法将石墨烯在树脂基体当中高度定向这一难题,提升了树脂基体力学性能,将各向同性材料变成各向异性材料,扩展了复合材料的应用范围,加强了竞争的优势,为纳米填充提供了一种新型的定向制备方法。

本发明的目的是通过以下技术方案实现的:

一种高定向石墨烯增强双马树脂基复合材料的制备方法,包括如下步骤:

步骤一、石墨烯海绵的制备:

方法一、采用改进冷冻干燥的方法进行石墨烯海绵的制备,具体步骤如下:将分散好的浓度为5~20mg/ml的石墨烯水溶液在低温(0℃以下)下进行冷冻,同时利用冷冻干燥法获得多孔的石墨烯海绵(密度为5~20mg/ml);

方法二、采用还原的方法制备石墨烯海绵,具体步骤如下:将5~30mg/ml氧化石墨烯水溶液在低温(0℃以下)下进行冷冻,同时利用冷冻干燥法获得多孔的氧化石墨烯海绵(密度为5~30mg/ml);采用过量的水合肼在温度70~90℃下进行24h化学还原或者在200~1000℃热还原的方法制备出石墨烯海绵;

步骤二、石墨烯增强树脂基复合材料前躯体浆料的制备:

利用负压法,通过真空灌注的方法,将纯双马树脂吸入到步骤一中制备的石墨烯海绵多孔结构当中,具体步骤如下:利用负压法,将石墨烯海绵放置到粘度为10-3~10-1pa·s的纯双马树脂当中,通过真空泵将烘箱抽真空(104~105pa),即真空灌注的方法,将纯双马树脂吸入到石墨烯海绵的多孔结构当中,三维石墨烯骨架被灌满即可;

以预先灌注树脂的石墨烯海绵作为前躯体,通过搅拌(800~2000r/min)超声辅助的方法将灌注树脂的石墨烯三维骨架打碎的同时与纯双马树脂基体混合均匀,二者混合比例根据实际需求配制即可,获得高分散石墨烯增强树脂基复合材料前躯体浆料;

步骤三、定向石墨烯增强树脂基复合材料前躯体的制备:

控制石墨烯增强树脂基复合材料前躯体浆料温度场使温度低于0℃,调控石墨烯增强树脂基复合材料前躯体浆料的粘度在1~10pa·s,在适宜粘度下通过控制力场(一般为50~500mpa),利用冷压的方式制备定向石墨烯增强树脂基复合材料前躯体;

步骤四、定向石墨烯增强树脂基复合材料的制备:

将步骤三中制备的定向石墨烯增强树脂基复合材料前躯体注入到模具当中,进行真空除泡,通过控制温度场基力场以满足固化要求,固化完成后,最终制备出定向石墨烯增强树脂基复合材料,其中:固化为梯度固化,梯度固化条件如下:160~180℃固化2h,压强50mpa;190~210℃固化1小时压强50mpa;220~240℃固化4小时,压强50mpa,250~260℃固化4小时,压强50mpa。

相比于现有技术,本发明具有如下优点:

1、本发明采用冷冻干燥法预先制备石墨烯宏观体,通过真空辅助灌注成型的方法制备石墨烯增强树脂基复合材料浆料。攻克定向石墨烯增强树脂基复合材料关键制备技术,解决了石墨烯在树脂基体中定向问题,实现了石墨烯在树脂中高度定向,获得了高定向的石墨烯增强树脂基复合材料。

2、本发明实现了石墨烯三维骨架增强体的制备与微观结构调控,获得密度在5~20mg/ml密度可控的石墨烯海绵。获得定向石墨烯增强树脂基复合材料,扫描证明石墨烯在树脂基体当中高度定向,同时相对树脂基体复合材料力学性能沿着定向方向提升10~40%。

3、本发明通过全新的制备概念,以石墨烯三维骨架为分散体,采用真空灌注的方法及高速搅拌超声辅助方法制备石墨烯增强树脂基复合材料浆料,通过控制温度场及力场制备定向石墨烯增强树脂基复合材料前躯体,加压梯度固化后获得定向石墨烯增强增强树脂基复合材料,不但将石墨烯在树脂基体当中得到定向,同时提升了复合材料的力学性能。

附图说明

图1为实施例2步骤一中所得石墨烯三维骨架的实物图;

图2为实施例2步骤三中所得定向石墨烯增强树脂基复合材料前躯体实物图;

图3为实施例2步骤四中所得定向石墨烯增强树脂基复合材料的微观扫描照片;

图4为实施例2步骤四中所得定向石墨烯增强树脂基复合材料的力学性能照片。

具体实施方式

下面结合附图对本发明的技术方案作进一步的说明,但并不局限于此,凡是对本发明技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的保护范围中。

具体实施方式一:本实施方式提供了一种可用于制备高定向石墨烯增强双马树脂基复合材料的制备方法,所述方法将三维石墨烯骨架通过真空灌注的方法制备复合材料浆料前躯体,再采用高速搅拌超声辅助的方法制备石墨烯树脂基复合材料浆料,通过控制温度场及力场来制备定向石墨烯增强树脂基复合材料前躯体,最后通过加压梯度固化的方法制备高分散石墨烯增强树脂基复合材料。具体包括如下步骤:

步骤一、石墨烯海绵的制备:

方法一、采用改进冷冻干燥的方法进行石墨烯海绵的制备,具体步骤如下:将分散好的浓度为5~20mg/ml的石墨烯水溶液在低温(0℃以下)下进行冷冻,同时利用冷冻干燥法获得多孔的石墨烯海绵(密度为5~20mg/ml);

方法二、采用还原的方法制备石墨烯海绵,具体步骤如下:将5~30mg/ml氧化石墨烯水溶液在低温(0℃以下)下进行冷冻,同时利用冷冻干燥法获得多孔的氧化石墨烯海绵(密度为5~30mg/ml);采用过量的水合肼在温度70~90℃下进行24h化学还原或者在200~1000℃热还原的方法制备出石墨烯海绵;

步骤二、石墨烯增强树脂基复合材料前躯体浆料的制备:

利用负压法,通过真空灌注的方法,将树脂吸入到步骤一中制备的石墨烯海绵多孔结构当中,具体步骤如下:利用负压法,将石墨烯海绵放置到粘度为10-3~10-1pa·s的树脂当中,通过真空泵将烘箱抽真空(104~105pa),即真空灌注的方法,将树脂吸入到石墨烯海绵的多孔结构当中;

以预先灌注树脂的石墨烯海绵作为前躯体,通过搅拌(800~2000r/min)超声辅助的方法将灌注树脂的石墨烯三维骨架打碎的同时与纯双马树脂基体混合均匀,获得高分散石墨烯增强树脂基复合材料前躯体浆料;

步骤三、定向石墨烯增强树脂基复合材料前躯体的制备:

控制石墨烯增强树脂基复合材料前躯体浆料温度场使温度低于0℃,调控石墨烯增强树脂基复合材料前躯体浆料的粘度在1~10pa·s,在适宜粘度下通过控制力场(一般为50~500mpa),利用冷压的方式制备定向石墨烯增强树脂基复合材料前躯体;

步骤四、定向石墨烯增强树脂基复合材料的制备:

将步骤三中制备的定向石墨烯增强树脂基复合材料前躯体注入到模具当中,进行真空除泡,通过控制温度场基力场以满足固化要求,固化完成后,最终制备出定向石墨烯增强树脂基复合材料,其中:固化为梯度固化,梯度固化条件如下:160~180℃固化2h,压强50mpa;190~210℃固化1小时,压强50mpa;220~240℃固化4小时,压强50mpa,250~260℃固化4小时,压强50mpa。

具体实施方式二:本实施方式与具体实施方式一不同的是:步骤一中,所述石墨烯水溶液的浓度为5~10mg/ml;氧化石墨烯水溶液的浓度为5~20mg/ml。

具体实施方式三:本实施方式与具体实施方式一或二不同的是:步骤一中,所述化学还原水合肼使用的温度为90℃,使用时间为24h;热还原温度为600~800℃。

具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:步骤二中,所述树脂的粘度为10-3~10-2pa·s。

具体实施方式五:本实施方式与具体实施方式一至四之一不同的是:步骤三中,所述搅拌转速为1000~1500r/min。

具体实施方式六:本实施方式与具体实施方式一至五之一不同的是:步骤三中,所述石墨烯增强树脂基复合材料浆料的粘度在1~5pa·s;力场为50~300mpa。

具体实施方式七:本实施方式与具体实施方式一至六之一不同的是:步骤四中,所述梯度固化条件为:170~180℃固化2h,压强50mpa;200~210℃固化1小时,压强50mpa;230~240℃固化4小时,压强50mpa;250℃固化4小时,压强50mpa。

采用以下实施例验证本发明的有益效果:

实施例1

本实施例中,制备高定向石墨烯增强双马树脂基复合材料的方法按以下步骤实现:

步骤一、石墨烯海绵的制备:

方法一、采用改进冷冻干燥的方法进行石墨烯海绵的制备,具体步骤如下:将分散好的浓度为10mg/ml的石墨烯水溶液在低温(0℃以下)下进行冷冻,同时利用冷冻干燥法获得多孔的石墨烯海绵(密度为10mg/ml);

方法二、采用还原的方法制备石墨烯海绵,具体步骤如下:将10mg/ml氧化石墨烯水溶液在低温(0℃以下)下进行冷冻,同时利用冷冻干燥法获得多孔的氧化石墨烯海绵(密度为10mg/ml);采用过量的水合肼在温度90℃下进行24h化学还原或者在700℃热还原的方法制备出石墨烯海绵;

步骤二、石墨烯增强树脂基复合材料前躯体浆料的制备:

利用负压法,通过真空灌注的方法,将树脂吸入到步骤一中制备的石墨烯海绵多孔结构当中,具体步骤如下:利用负压法,将石墨烯海绵放置到粘度为10-1pa·s的树脂当中,通过真空泵将烘箱抽真空(104~105pa),即真空灌注的方法,将树脂吸入到石墨烯海绵的多孔结构当中;

以预先灌注树脂的石墨烯海绵作为前躯体,通过搅拌(800~2000r/min)超声辅助的方法将灌注树脂的石墨烯三维骨架打碎的同时与纯双马树脂基体混合均匀,获得高分散石墨烯增强树脂基复合材料前躯体浆料;

步骤三、定向石墨烯增强树脂基复合材料前躯体的制备:

控制石墨烯增强树脂基复合材料前躯体浆料温度场使温度低于0℃,调控石墨烯增强树脂基复合材料前躯体浆料的粘度在10pa·s,在适宜粘度下通过控制力场(一般为500mpa),利用冷压的方式制备定向石墨烯增强树脂基复合材料前躯体;

步骤四、定向石墨烯增强树脂基复合材料的制备:

将步骤三中制备的定向石墨烯增强树脂基复合材料前躯体注入到模具当中,进行真空除泡,通过控制温度场基力场以满足固化要求,固化完成后,最终制备出定向石墨烯增强树脂基复合材料,其中:固化为梯度固化,梯度固化条件如下:180℃固化2h,压强50mpa;210℃固化1小时,压强50mpa;240℃固化4小时,压强50mpa,260℃固化4小时,压强50mpa。

本实施例采用冷冻干燥法预先制备石墨烯宏观体,通过真空辅助灌注成型的方法制备石墨烯增强树脂基复合材料浆料。攻克定向石墨烯增强树脂基复合材料关键制备技术,解决了石墨烯在树脂基体中定向问题,实现了石墨烯在树脂中高度定向,获得了高定向的石墨烯增强树脂基复合材料。本实施例实现了石墨烯三维骨架增强体的制备与微观结构调控,获得密度在10mg/ml密度可控的石墨烯海绵。本实施例获得了定向石墨烯增强树脂基复合材料,扫描证明石墨烯在树脂基体当中高度定向,同时相对树脂基体复合材料力学性能沿着定向方向提升10%。

实施例2:

本实施例中,制备高定向石墨烯增强双马树脂基复合材料的方法按以下步骤实现:

步骤一、石墨烯海绵的制备:

方法一、采用改进冷冻干燥的方法进行石墨烯海绵的制备,具体步骤如下:将分散好的浓度为20mg/ml的石墨烯水溶液在低温(0℃以下)下进行冷冻,同时利用冷冻干燥法获得多孔的石墨烯海绵(密度为20mg/ml);

方法二、采用还原的方法制备石墨烯海绵,具体步骤如下:将20mg/ml氧化石墨烯水溶液在低温(0℃以下)下进行冷冻,同时利用冷冻干燥法获得多孔的氧化石墨烯海绵(密度为20mg/ml);采用过量的水合肼在温度90℃下进行24h化学还原或者在1000℃热还原的方法制备出石墨烯海绵;

步骤二、石墨烯增强树脂基复合材料前躯体浆料的制备:

利用负压法,通过真空灌注的方法,将树脂吸入到步骤一中制备的石墨烯海绵多孔结构当中,具体步骤如下:利用负压法,将石墨烯海绵放置到粘度为10-2pa·s的树脂当中,通过真空泵将烘箱抽真空(105pa),即真空灌注的方法,将树脂吸入到石墨烯海绵的多孔结构当中;

以预先灌注树脂的石墨烯海绵作为前躯体,通过搅拌(1500r/min)超声辅助的方法将灌注树脂的石墨烯三维骨架打碎的同时与纯双马树脂基体混合均匀,获得高分散石墨烯增强树脂基复合材料前躯体浆料;

步骤三、定向石墨烯增强树脂基复合材料前躯体的制备:

控制石墨烯增强树脂基复合材料前躯体浆料温度场使温度低于0℃,调控石墨烯增强树脂基复合材料前躯体浆料的粘度在10pa·s,在适宜粘度下通过控制力场(一般为500mpa),利用冷压的方式制备定向石墨烯增强树脂基复合材料前躯体;

步骤四、定向石墨烯增强树脂基复合材料的制备:

将步骤三中制备的定向石墨烯增强树脂基复合材料前躯体注入到模具当中,进行真空除泡,通过控制温度场基力场以满足固化要求,固化完成后,最终制备出定向石墨烯增强树脂基复合材料,其中:固化为梯度固化,梯度固化条件如下:160℃固化2h,压强50mpa;190℃固化1小时,压强50mpa;220℃固化4小时,压强50mpa,250℃固化4小时,压强50mpa。

图1是本实施例步骤一中所得石墨烯海绵的实物图,由图1可知,所得石墨烯海绵三维骨架表面平整;图2是本实施例步骤三中所得石墨烯增强树脂基复合材料前躯体实物图,由图2可知,所得石墨烯增强树脂基复合材料前躯体经多次折叠表面平整;图3是本实施例步骤四中所得定向石墨烯增强树脂基复合材料的微观扫描照片,由图3可知,石墨烯在树脂基体当中定向;图4是本实施例步骤四中所得定向石墨烯增强树脂基复合材料的力学性能照片,由图4可知,力学性能提升30%。

本实施例采用冷冻干燥法预先制备石墨烯宏观体,通过真空辅助灌注成型的方法制备石墨烯增强树脂基复合材料浆料。攻克定向石墨烯增强树脂基复合材料关键制备技术,解决了石墨烯在树脂基体中定向问题,实现了石墨烯在树脂中高度定向,获得了高定向的石墨烯增强树脂基复合材料。本实施例实现了石墨烯三维骨架增强体的制备与微观结构调控,获得密度在20mg/ml密度可控的石墨烯海绵。本实施例获得了定向石墨烯增强树脂基复合材料,扫描证明石墨烯在树脂基体当中高度定向,同时相对树脂基体复合材料力学性能沿着定向方向提升30%。

实施例3:

本实施例中,制备高定向石墨烯增强双马树脂基复合材料的方法按以下步骤实现:

步骤一、石墨烯海绵的制备:

方法一、采用改进冷冻干燥的方法进行石墨烯海绵的制备,具体步骤如下:将分散好的浓度为10mg/ml的石墨烯水溶液在低温(0℃以下)下进行冷冻,同时利用冷冻干燥法获得多孔的石墨烯海绵(密度为10mg/ml);

方法二、采用还原的方法制备石墨烯海绵,具体步骤如下:将10mg/ml氧化石墨烯水溶液在低温(0℃以下)下进行冷冻,同时利用冷冻干燥法获得多孔的氧化石墨烯海绵(密度为10mg/ml);采用过量的水合肼在温度90℃下进行24h化学还原或者在800℃热还原的方法制备出石墨烯海绵;

步骤二、石墨烯增强树脂基复合材料前躯体浆料的制备:

利用负压法,通过真空灌注的方法,将树脂吸入到步骤一中制备的石墨烯海绵多孔结构当中,具体步骤如下:利用负压法,将石墨烯海绵放置到粘度为10-1pa·s的树脂当中,通过真空泵将烘箱抽真空(105pa),即真空灌注的方法,将树脂吸入到石墨烯海绵的多孔结构当中;

以预先灌注树脂的石墨烯海绵作为前躯体,通过搅拌(2000r/min)超声辅助的方法将灌注树脂的石墨烯三维骨架打碎的同时与纯双马树脂基体混合均匀,获得高分散石墨烯增强树脂基复合材料前躯体浆料;

步骤三、定向石墨烯增强树脂基复合材料前躯体的制备:

控制石墨烯增强树脂基复合材料前躯体浆料温度场使温度低于0℃,调控石墨烯增强树脂基复合材料前躯体浆料的粘度在10pa·s,在适宜粘度下通过控制力场(一般为400mpa),利用冷压的方式制备定向石墨烯增强树脂基复合材料前躯体;

步骤四、定向石墨烯增强树脂基复合材料的制备:

将步骤三中制备的定向石墨烯增强树脂基复合材料前躯体注入到模具当中,进行真空除泡,通过控制温度场基力场以满足固化要求,固化完成后,最终制备出定向石墨烯增强树脂基复合材料,其中:固化为梯度固化,梯度固化条件如下:180℃固化2h,压强50mpa;210℃固化1小时,压强50mpa;240℃固化4小时,压强50mpa,260℃固化4小时,压强50mpa。

本实施例采用冷冻干燥法预先制备石墨烯宏观体,通过真空辅助灌注成型的方法制备石墨烯增强树脂基复合材料浆料。攻克定向石墨烯增强树脂基复合材料关键制备技术,解决了石墨烯在树脂基体中定向问题,实现了石墨烯在树脂中高度定向,获得了高定向的石墨烯增强树脂基复合材料。本实施例实现了石墨烯三维骨架增强体的制备与微观结构调控,获得密度在10mg/ml密度可控的石墨烯海绵。本实施例获得了定向石墨烯增强树脂基复合材料,扫描证明石墨烯在树脂基体当中高度定向,同时相对树脂基体复合材料力学性能沿着定向方向提升10%。

实施例4:

本实施例中,制备高定向石墨烯增强双马树脂基复合材料的方法按以下步骤实现:

步骤一、石墨烯海绵的制备:

方法一、采用改进冷冻干燥的方法进行石墨烯海绵的制备,具体步骤如下:将分散好的浓度为8mg/ml的石墨烯水溶液在低温(0℃以下)下进行冷冻,同时利用冷冻干燥法获得多孔的石墨烯海绵(密度为8mg/ml);

方法二、采用还原的方法制备石墨烯海绵,具体步骤如下:将8mg/ml氧化石墨烯水溶液在低温(0℃以下)下进行冷冻,同时利用冷冻干燥法获得多孔的氧化石墨烯海绵(密度为8mg/ml);采用过量的水合肼在温度90℃下进行24h化学还原或者在700℃热还原的方法制备出石墨烯海绵;

步骤二、石墨烯增强树脂基复合材料前躯体浆料的制备:

利用负压法,通过真空灌注的方法,将树脂吸入到步骤一中制备的石墨烯海绵多孔结构当中,具体步骤如下:利用负压法,将石墨烯海绵放置到粘度为10-1pa·s的树脂当中,通过真空泵将烘箱抽真空(105pa),即真空灌注的方法,将树脂吸入到石墨烯海绵的多孔结构当中;

以预先灌注树脂的石墨烯海绵作为前躯体,通过搅拌(1800r/min)超声辅助的方法将灌注树脂的石墨烯三维骨架打碎的同时与纯双马树脂基体混合均匀,获得高分散石墨烯增强树脂基复合材料前躯体浆料;

步骤三、定向石墨烯增强树脂基复合材料前躯体的制备:

控制石墨烯增强树脂基复合材料前躯体浆料温度场使温度低于0℃,调控石墨烯增强树脂基复合材料前躯体浆料的粘度在10pa·s,在适宜粘度下通过控制力场(一般为500mpa),利用冷压的方式制备定向石墨烯增强树脂基复合材料前躯体;

步骤四、定向石墨烯增强树脂基复合材料的制备:

将步骤三中制备的定向石墨烯增强树脂基复合材料前躯体注入到模具当中,进行真空除泡,通过控制温度场基力场以满足固化要求,固化完成后,最终制备出定向石墨烯增强树脂基复合材料,其中:固化为梯度固化,梯度固化条件如下:180℃固化2h,压强50mpa;200℃固化1小时,压强50mpa;240℃固化4小时,压强50mpa,250℃固化4小时,压强50mpa。

本实施例采用冷冻干燥法预先制备石墨烯宏观体,通过真空辅助灌注成型的方法制备石墨烯增强树脂基复合材料浆料。攻克定向石墨烯增强树脂基复合材料关键制备技术,解决了石墨烯在树脂基体中定向问题,实现了石墨烯在树脂中高度定向,获得了高定向的石墨烯增强树脂基复合材料。本实施例实现了石墨烯三维骨架增强体的制备与微观结构调控,获得密度在8mg/ml密度可控的石墨烯海绵。本实施例获得了定向石墨烯增强树脂基复合材料,扫描证明石墨烯在树脂基体当中高度定向,同时相对树脂基体复合材料力学性能沿着定向方向提升15%。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1