用于在纤维素生物质固体的水热消解过程中加工木质素的方法和系统的制作方法_4

文档序号:8417170阅读:来源:国知局
体流。
[0077]在一些实施方案中,一个或多个向上定向的流体流中的至少一些可在其来源处含有楽.料催化剂。即,一个或多个流体流可包含楽.料催化剂流。一个或多个向上定向的流体流可在其中传送浆料催化剂,由此在纤维素生物质固体中至少部分分布浆料催化剂。例如,在一些实施方案中,向上定向的流体流可包含其中含有浆料催化剂的循环流体。在其他实施方案中,一个或多个向上定向的流体流可在其来源处不含浆料催化剂,但它们仍可使位于纤维素生物质固体中或接近纤维素生物质固体的浆料催化剂流态化。例如,气流可在其来源处不含浆料催化剂,但其仍可促进纤维素生物质固体中或接近纤维素生物质固体的浆料催化剂的流态化。不含浆料催化剂的液流可以以与对于气流所述类似的方式促进纤维素生物质固体中或接近纤维素生物质固体的浆料催化剂的流态化。
[0078]在一些实施方案中,一个或多个向上定向的流体流可包含气流。例如,在一些实施方案中,用于向上定向的流体流动的气流可包含分子氢流。在一些或其他实施方案中,例如,可代替分子氢流使用蒸汽、压缩空气或惰性气体(如氮气),或者除了分子氢流之外使用蒸汽、压缩空气或惰性气体(如氮气)。在各个实施方案中,至多40%的蒸汽可存在于流体流中。例如,当单独的液流不足以分布浆料催化剂时,可使用向上定向的气流在纤维素生物质固体内分布浆料催化剂。当单独使用时,气流通常不将浆料催化剂传送超出水相和/或围绕纤维素生物质固体的任选的轻质有机物相。
[0079]在一些实施方案中,一个或多个向上定向的流体流可包含液流。例如,当不必需要将浆料催化剂保持于纤维素生物质固体内和/或当单独的气流不足以分布浆料催化剂时,可使用向上定向的液流在纤维素生物质固体内分布浆料催化剂。不同于上述气流,在一些实施方案中,液流可将浆料催化剂传送超出纤维素生物质固体,添加至围绕纤维素生物质固体的液头,最后溢出。在其他实施方案中,浆料催化剂流态化可能不完全,在溢出之前液流可仍然不将浆料催化剂完全传送通过纤维素生物质固体。
[0080]在一些实施方案中,围绕纤维素生物质固体的液头的至少一部分可循环通过纤维素生物质固体。液头可包含消解溶剂、通过液流添加的任意液相,和由纤维素生物质固体形成的任意液体组分。更具体而言,液头可包含酚类物质液相、水相、任选的轻质有机物相、通过液流添加的任意液相,和由纤维素生物质固体形成的任意液体组分。
[0081]在一些实施方案中,酚类物质液相、水相,和/或轻质有机物相可彼此组合,并循环通过纤维素生物质固体。在一些或其他实施方案中,水相的至少一部分可循环通过纤维素生物质固体。如本文所用,术语“循环”及其变体用于指当另一液相或水相的至少一部分从纤维素生物质固体中移出并随后一次或多次再引入纤维素生物质固体中时所存在的状况。通过循环而将水相与纤维素生物质固体保持在一起,水相可继续用作促进可溶性碳水化合物的产生的消解溶剂,所述可溶性碳水化合物可随后还原至醇组分。此外,水相的循环可促进浆料催化剂在纤维素生物质固体中的分布。在一些实施方案中,浆料催化剂的至少一部分可与水相一起循环通过纤维素生物质固体。在一些或其他实施方案中,水相的向上定向流体流可促进纤维素生物质固体中的浆料催化剂的流态化,使得浆料催化剂更慢地在酚类物质液相中积聚。在其他实施方案中,水相的向上定向流体流可经过酚类物质液相,使得其中积聚的浆料催化剂至少部分流态化以在纤维素生物质固体中分布。
[0082]在一些实施方案中,将纤维素生物质固体至少部分转化为包含木质素的酚类物质液相、包含衍生自纤维素生物质固体的醇组分的水相,和任选的轻质有机物相可在水热消解单元中进行。构造用于使液相循环通过其的合适的水热消解单元描述于2012年6月28日提交的共同所有的美国专利申请61/665,717 (PCT/US2013/048212)中。具体而言,水热消解单元可包括流体循环回路,流体相和任选的浆料催化剂循环通过所述流体循环回路以在纤维素生物质固体中分布。适于在酚类物质液相的存在下加工纤维素生物质固体的水热消解单元和系统的进一步的讨论在下文另外详细描述。
[0083]在一些实施方案中,水热消解单元可装有固定量的浆料催化剂,同时纤维素生物质固体连续或半连续地进料至水热消解单元,由此允许水热消解以连续方式进行。即,可将新鲜纤维素生物质固体连续地或根据需要添加至水热消解单元中,以补充已被消解而形成可溶性碳水化合物的纤维素生物质固体。如上所述,将纤维素生物质固体持续添加至水热消解单元可导致酚类物质液相的形成。在一些实施方案中,可在水热消解单元为加压状态的同时将纤维素生物质固体连续或半连续地添加至水热消解单元中。在一些实施方案中,加压状态可包括至少30巴的压力。在不能将新鲜纤维素生物质添加至加压水热消解单元中的情况下,可在生物质添加过程中进行水热消解单元的减压和冷却,从而显著降低生物质转化过程的能量效率和成本效率。如本文所用,术语“连续添加”及其语法等同方式指其中纤维素生物质固体以不中断的方式添加至水热消解单元中而不将水热消解单元完全减压的过程。如本文所用,术语“半连续添加”及其语法等同方式指纤维素生物质固体不连续地但根据需要地添加至水热消解单元中而不将水热消解单元完全减压。可将纤维素生物质固体连续或不连续地添加至加压水热消解单元中的技术在下文更详细地讨论。
[0084]在一些实施方案中,可在添加至水热消解单元之前,特别是在水热消解单元为加压状态时,可将被连续或半连续地添加至水热消解单元中的纤维素生物质固体加压。在将纤维素生物质固体添加至水热消解单元之前,将纤维素生物质固体由大气压加压至加压状态可在一个或多个加压区中进行。可用于加压纤维素生物质固体并将其引入加压水热消解单元的合适的加压区更详细地描述于共同所有的美国专利申请公布2013/0152457和2013/0152458中。本文描述的合适的加压区可包括例如压力容器、加压螺旋进料器等。在一些实施方案中,可串联连接多个加压区,从而以逐步的方式增加纤维素生物质固体的压力。
[0085]在一些实施方案中,水相的至少一部分可循环通过纤维素生物质固体。例如,水相可循环通过构造为在水热消解单元外部的流体循环回路的流体导管。在将水相循环通过纤维素生物质固体时,浆料催化剂的至少一部分也可循环,并且也分布于纤维素生物质固体中。
[0086]在一些实施方案中,可从纤维素生物质固体中取出含有醇组分的水相的至少一部分以用于随后加工。在一些实施方案中,在随后加工的至少一部分的过程中,水相可与酚类物质液相和/或轻质有机物相组合,在其他实施方案中,水相可随后与这些相分开加工。在一些实施方案中,水相的随后加工可包括进行第二催化还原反应(如果需要的话),例如以增加转化至醇组分的可溶性碳水化合物的量,或降低形成的醇组分的氧化程度。在一些或其他实施方案中,醇组分可在不通过中间的第二催化还原反应进一步转换醇组分的情况下进一步重整。在一些实施方案中,可通过进一步的氢解反应和/或氢化反应、缩合反应、异构化反应、低聚反应、加氢处理反应、烷基化反应等的任意组合和顺序进一步重整醇组分。在一些实施方案中,下游重整的初始操作可包括通常在缩合催化剂的存在下进行的缩合反应,其中醇组分或由其形成的产物与另一分子缩合而形成更高分子量的化合物。如本文所用,术语“缩合反应”指如下化学转换,其中两个或更多个分子彼此偶联而形成更高分子量的化合物中的碳-碳键,且通常伴随着诸如水或醇的小分子的损失。一个示例性的缩合反应为本领域普通技术人员熟知的醇醛缩合反应。有关缩合反应和适用于促进缩合反应的催化剂的另外的公开在下文提供。
[0087]在一些实施方案中,本文描述的方法还可包括从水相的至少一部分中至少部分分离醇组分,由此产生经干燥的醇组分。在一些实施方案中,从水相中分离的醇组分可经受上述下游重整反应,特别是缩合反应。从水相中分离醇组分可特别有利于延长缩合催化剂的寿命。然而,应了解在可选择的实施方案中,如果需要的话,可通过使水相直接经受缩合催化剂或者通过仅从水相去除一部分水,从而在“湿润”时进一步重整水相的醇组分。
[0088]在一些或其他实施方案中,可从水相中分离醇组分的至少一部分,并且可将经分离的醇组分返回至纤维素生物质固体。如果需要的话,将经分离的醇组分返回至纤维素生物质固体可用于降低消解溶剂的水含量。当将经分离的醇组分返回至纤维素生物质固体时,醇组分流可以以与上述类似的方式促进纤维素生物质固体的分布。将醇组分的一部分返回至纤维素生物质固体的另外的优点可包括促进可溶性碳水化合物和由可溶性碳水化合物产生的醇组分的溶解度,并从介导可溶性碳水化合物的稳定的浆料催化剂中去除沉淀。
[0089]通常,可使用任何合适的技术来从水相中分离醇组分。在一些实施方案中,醇组分和水相可通过蒸馏而彼此分离。在一些或其他实施方案中,醇组分和水相可通过液-液萃取、重力诱导的沉降或它们的任意组合而彼此分离。在一些实施方案中,从水相中分离醇组分可产生经干燥的醇组分。如上所述,经干燥的醇组分的产生可显示用于下游重整的特定优点。
[0090]如本文所用,术语“经干燥的醇组分”指至少一部分水已从其中去除的液相。应了解,当干燥时,经干燥的醇组分无需为完全无水的,仅仅是其水含量降低(例如小于50wt%的水)。在一些实施方案中,经干燥的醇组分可包含40wt%或更少的水。在一些和其他实施方案中,经干燥的醇组分可包含35wt%或更少的水,或30wt%或更少的水,或25?丨%或更少的水,或20wt%或更少的水,或15wt%或更少的水,或10wt%或更少的水,或5¥丨%或更少的水。在本文描述的方法的一些实施方案中,当干燥反应产物时,可产生基本上无水的醇组分。如本文所用,如果物质含有5wt%或更少的水,则认为其为基本上无水的。
[0091]在一些实施方案中,在进行降粘之前,从水相中分离的醇组分可与酚类物质液相再组合。当醇组分包含二醇时,该方式可显示特定的优点。具体而言,由于与水共沸形成,一元醇可能难以以干燥形式产生。相比之下,据信二醇不易于与水形成二元共沸物。因此,二醇可通过蒸馏而以干燥形式产生。然而,由于降低的焦化发生率,一元醇比二醇更有利于用于下游重整反应,特别是下游缩合反应。热降粘条件类似于用于将二醇转化为一元醇的那些。因此,通过在降低酚类物质液相粘度之前组合经干燥的二醇与酚类物质液相,经干燥的一元醇可同时产生以用于下游重整反应。这种方式描述于2012年10月31日提交的题为‘‘Methods and Systems for Processing Lignin During Hydrothermal Digest1n ofCellulosic B1mass Solids While Producing a Monohydric Alcohol Feed”的共同所有的美国专利申请61/720,774中。在一些实施方案中,本文描述的方法还可包括在降低粘度之后从酚类物质液相中分离一元醇。
[0092]在一些实施方案中,降低酚类物质液相的粘度可在使酚类物质液相与水相分离之后进行。在其他实施方案中,降低酚类物质液相的粘度可在使酚类物质液相与水相分离之前进行,或者在分离酚类物质液相和水相的同时进行。例如,在一些实施方案中,纤维素生物质固体的水热消解可在降低酚类物质液相的粘度的温度下进行。在一些或其他实施方案中,在降低粘度之前,酚类物质液相可与水相分离,并从水热消解中移出,尽管不必为此顺序。例如,在一些实施方案中,水相和酚类物质液相可一起从水热消解单元中移出,酚类物质液相的分离可随后在水热消解单元的外部进行。在这种实施方案中,粘度降低可在进行与水相分离之前或之后发生。此外,在一些实施方案中,一旦粘度降低已发生,则从酚类物质液相中移出浆料催化剂可在水热消解单元外部进行。
[0093]在一些实施方案中,可将酚类物质液相的一部分从纤维素生物质固体中移出。在一些实施方案中,从纤维素生物质固体中移出的酚类物质液相的至少一部分可返回至纤维素生物质固体。例如,在一些实施方案中,酚类物质液相的至少一部分可在纤维素生物质固体外部循环,之后返回至纤维素生物质固体。可在酚类物质液相在纤维素生物质固体外部循环的同时进行酚类物质液相的粘度降低。在一些或其他实施方案中,可将酚类物质液相的至少一部分传送至纤维素生物质固体的至少一部分以上的点并释放,由此释放浆料催化剂以向下渗透通过纤维素生物质固体。酚类物质液相中的浆料催化剂的向下渗透的技术描述于 2012 年 10 月 31 日提交的题为 “Methods and Systems for Distributing a SlurryCatalyst in Cellulosic B1mass Solids” 的共同所有的美国专利申请 61/720,757 中。在本文描述的其他实施方案中,一旦酚类物质液相从纤维素生物质固体中移出,酚类物质液相不返回至纤维素生物质固体。
[0094]在一些实施方案中,在至少部分解聚木质素并从酚类物质液相中分离浆料催化剂之后,仍可进一步加工酚类物质液相。在一些实施方案中,得自木质素解聚的反应产物(例如酚类化合物和/或甲醇)可从酚类物质液相中分离并进一步加工。得自木质素解聚的反应产物可与衍生自纤维素生物质固体的醇组分分开加工,或者得自木质素解聚的反应产物可与醇组分组合并进一步重整。通过组合得自木质素解聚的反应产物与醇组分,可产生与可通过进一步重整单独的醇组分而获得的燃料共混物不同的燃料共混物。特别地,甲醇可为特别有利的反应产物以与醇组分组合,因为其可以以与由纤维素生物质固体产生的醇组分类似的方式加工。掺入由木质素解聚而产生的甲醇可有利地增加可在下游重整为有价值的产物的原纤维素生物质固体的量。在一些实施方案中,本文描述的方法还可包括在至少部分解聚木质素的同时在酚类物质液相中形成甲醇。在一些实施方案中,所述方法还可包括组合甲醇与醇组分。
[0095]在一些情况中,可能希望对水相中的醇组分和/或由酚类物质液相生成的甲醇或由其形成的反应产物进行一个或多个进一步的催化还原反应。例如,在一些实施方案中,可能希望在形成水相的水热消解单元外部对水相进行第二催化还原反应。在各个实施方案中,对水相进行第二催化还原反应可包括增加醇组分的量、增加转换的可溶性碳水化合物的量,和/或进一步减小醇组分的氧化程度。可例如基于是否已形成足够量的醇组分和/或是否需要可溶性碳水化合物的进一步稳定而作出是否进行第二催化还原反应的选择。在一些实施方案中,可通过进行第二催化还原反应而将由原位催化还原反应过程形成的二醇转换为一元醇。在一些实施方案中,在第二催化还原反应中形成的一元醇可包含用于进一步重整反应的进料。
[0096]在一些实施方案中,用于介导第二催化还原反应的催化剂可为与用于介导第一催化还原反应相同的催化剂。在其他实施方案中,用于介导第二催化还原反应的催化剂可为与用于介导第一催化还原反应的催化剂不同。例如,在一些实施方案中,浆料催化剂可用于介导第一催化还原反应,固定床催化剂可用于介导第二催化还原反应。在其他实施方案中,特别是如果可在进行第二催化还原反应之前从水相中去除催化剂毒物的话,耐中毒催化剂可用于介导第一催化还原反应,非耐中毒催化剂可用于介导第二催化还原反应。在其他实施方案中,第一耐中毒催化剂可用于介导第一催化还原反应,第二耐中毒催化剂可用于介导第二催化还原反应。例如,在一些实施方案中,耐中毒浆料催化剂可用于介导第一催化还原反应,固定床耐中毒催化剂可用于介导第二催化还原反应。
[0097]在一些实施方案中,通过上文描述的方法制得的醇组分可经受另外的重整反应。另外,轻质有机物相也可与醇组分分开或与醇组分组合而经受另外的重整反应。重整反应可为催化的或非催化的。这种另外的重整反应可包括进一步的催化还原反应(例如氢化反应、氢解反应、加氢处理反应等)、缩合反应、异构化反应、脱硫反应、脱水反应、低聚反应、烧基化反应等的任意组合。
[0098]在一些实施方案中,进一步重整醇组分的第一操作可包括缩合反应。通常,醇不直接发生缩合反应,尽管它们不明确排除如此。相反,为了发生缩合反应,通常将醇转化为羰基化合物或可随后反应而形成羰基化合物的化合物。用以形成羰基化合物的转换可与缩合反应协作发生,或在缩合反应之前在分立的转化中发生。用于将醇转化为羰基化合物或可转换为羰基化合物的化合物的合适的转换包括例如脱氢反应、脱水反应、氧化反应,或它们的任意组合。当羰基化合物催化形成时,可使用与用于进行缩合反应的催化剂相同或不同的催化剂。
[0099]尽管多种不同类型的催化剂可用于介导缩合反应,但沸石催化剂就此而言可为特别有利的。可特别好地适用于介导醇的缩合反应的一种沸石催化剂为ZSM-5(ZeoliteSocony Mobil 5),其为组成为 NanAlnSi96_n0192.16H20 (0〈n〈27)的 pentasil 型铝硅酸盐沸石,其可将醇进料转换为缩合产物。不受限于任何理论或机理,据信该催化剂可通过介导用以产生羰基化合物的脱氢反应而以协作的方式促进醇的缩合,所述羰基化合物随后发生所需的缩合反应。其他合适的沸石催化剂可包括例如ZSM-12、ZSM-22、ZSM-23、SAP0-11和SAP0-41。另外类型的合适的缩
当前第4页1 2 3 4 5 6 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1