使用金属氧化物半导体场效应晶体管的保护电路装置及其制造方法

文档序号:6859393阅读:175来源:国知局
专利名称:使用金属氧化物半导体场效应晶体管的保护电路装置及其制造方法
技术领域
本发明涉及使用MOSFET(金属氧化物半导体场效应晶体管)的保护电路装置及其制造方法,尤其涉及使用进行能安装在二次电池内的电池管理的MOSFET的保护电路装置及其制造方法。
伴随携带终端的普及,对小型化大容量的锂离子电池的需求增多起来。由于使携带终端重量减轻的需要,进行这种锂离子电池的充放电的电池管理的保护电路装置衬底不能因小型化没有非常能抵抗负载短路的作用。这种保护电路装置装置为内装在锂离子电池的容器内而力求小型化,从而推动了多使用芯片部件的COB(chip on board)技术的发展,适应了小型化的要求。但是,另一方面,由于把开关元件串连连接在锂离子电池上,需要把这种开关元件的通态电阻也做得非常小,这成为使移动电话的通话时间和待机时间长所不可缺少的要素。


图19具体地表示了进行电池管理的保护电路装置。把2个功率MOSFETQ1、Q2串连连接于锂离子电池LiB,以控制器IC检测锂离子电池LiB的电压的同时进行2个功率MOSFET Q1、Q2的通断控制,保护锂离子电池LiB免于过量充电、过量放电或负载短路。2个功率MOSFET Q1、Q2一起连接于漏电极D,在两端分别配置其源电极S,各个栅电极G被连接于控制IC。
充电时电源连接于两端,充电电流沿着箭头的方向提供给锂离子电池LiB来充电。锂离子电池LiB过量充电时,由控制器IC检测电压,使功率MOSFETQ2的栅电极电压从H(高电平)变为L(低电平),功率MOSFET Q2断开,截断电路,保护锂离子电池LiB。
放电时,两端被连接于负载,直到到达了预定的电压之前都进行移动终端的操作。但是,锂离子电池LiB过量放电时,由控制器IC检测电压,使功率MOSFETQ1的栅电极电压从H变为L(低电平),断开功率MOSFETQ1,截断电路,保护锂离子电池LiB。
而且,负载短路时或过量电流流过时,由于功率MOSFET Q1、Q2上流过大电流、功率MOSFET Q1、Q2的两端电压急剧上升,由控制IC检出这个电压后,与放电时同样,断开功率MOSFETQ1,截断电路,保护锂离子电池LiB。但是,由于在直到保护电路装置操作之前的短时间内流过大电流,对功率MOSFETQ1、Q2要求全部头端的漏电极电流变大。
由于把2个N沟道型功率MOSFETQ1、Q2串连连接于锂离子电池LiB,这两个功率MOSFETQ1、Q2的低通态电阻(RDS(on))也是有所要求的项。为此,需要在制造芯片的基础上通过精细加工提高元件密度。
具体说,在半导体衬底表面上形成沟道的平面结构中元件密度是740万个/英寸2,通态电阻是27mΩ,在第一代的在沟槽(trench)的侧面上形成沟道的沟槽结构中,元件密度大幅度地提高到2500万个/英寸2,通态电阻降低到12mΩ。但是,精细化也是有限度的,通态电阻进一步产生质的降低是有限的。
图20是说明安装了改良单元密度的功率MOSFET的保护电路装置装置的平面图。实际上,装载着的图19所示的电路部件并没有在图面上全部示出。绝缘衬底1上形成在两面上都由铝箔构成的导电电路2,在希望的位置上设置着经通孔(图中未示出)把上面和下面的导电电路2连接起来的多层布线。功率MOSFET3、4被树脂模压成表面安装用的SOP8外形,一侧上引出与漏电极连接的2个端子5、5,相对的一侧上引出和栅电极连接的栅电极端子7和与源电极连接的源极端子8。9是控制器IC,10是与图19中的CI的C3对应的芯片电容器,11是对应于图19的R1和R2的芯片电阻。12,13是外部端子,对应于图19的LP2,LP3。这个外部端子通过焊锡固定于导电电路2的一部分上形成的垫块14。为了把保护电路装置装置容纳在锂离子电池的外壳内,形成对应于外壳形状的形状作为基本要求是小型化的一个最大课题。
图21表示MOSFET3、4的剖面结构。作为以NK-202(铜97.6%锡2%)为原料拉拔得到的框架,在这个框架的头部21上以焊锡或银粘结剂(paste)构成的预成型部件22固定功率MOSFET的空白芯片23。功率MOSFET的空白芯片23的下面通过衬有金的电极(图中未示出)形成漏电极,在上面通过的铝蒸发形成栅电极和源电极。由于框架的漏电极端子与头部21连接,直接连接于漏电极的栅电极和源电极通过使用金焊接细线24的球焊而电连接于栅电极端子7和源电极端子8。因此,为降低通态电阻,框架材料、预成型部件、金焊接细线24的材料、芯片上面的源电极的电极材料具有的电阻也对功率MOSFET的通态电阻产生影响。
图22和图23是说明形成焊接细线24后使通态电阻下降的已有技术的平面图。图22把连接源电极和源电极端子8的焊接细线24增加到4根,改善了电流容量。图22把连接源电极和源电极端子8的焊接细线24增加成长短各2根的4根,改善了电流容量,并且通过对应于源电极的焊接位置,源电极具有的电阻被降低了。
图18中以表的形式求出已有的功率MOSFET的安装结构的通态电阻的不同。样品A和样品B是已有的SOP8外形的模压结构,样品A对应于图22中的结构,样品B对应于图23。把这些焊接细线从短的4根组合为短的42根和长的2根时,通态电阻实现了从13.43mΩ到12.20mΩ的1.33mΩ的减少,但是预成型部件的锡焊和银粘结剂的改变没有表现出大的通态电阻降低。
但是,现状是极力追求移动终端的小型化、轻量化并且内装电池的使用寿命长寿化。其中,问题是没有出现突破使用MOSFET的保护电路装置装置的安装结构、实现低通态电阻并且实现使用MOSFET的保护电路装置装置的小型化的有效解决办法。
本发明正是对这一问题作出的,在串连连接2个MOSFET、使用由控制器IC对所述两个MOSFET进行开关控制的MOSFET的保护电路装置装置中,其特征在于在绝缘衬底上设置希望的模式的导电电路、在所希望的该导电电路上把在一个芯片上集成所述两个MOSFET的MOSFET芯片的每一个的栅电极与各个源电极固定、在所述MOSFET芯片的里面设置的共用漏电极上布置导电材料,以倒装片式方式把MOSFET芯片固定在导电电路上,并且由于没有也共用漏电极的布线,实现了低的通态电阻和小型化。
在本发明的连接2个MOSFET、使用由控制器IC对所述两个MOSFET进行开关控制的MOSFET的保护电路装置装置中,其特征在于设置埋入绝缘树脂中的所希望的模式的导电电路、在所希望的该导电电路上把在一个芯片上集成所述两个MOSFET的MOSFET芯片的每一个的栅电极与各个源电极固定、在所述MOSFET芯片的里面设置的共用漏电极上布置导电材料,并且不需要具有支持功能的绝缘衬底,进一步实现小型化和薄型化。
还有,在本发明中,实现了一种高效制造使用MOSFET的保护电路装置装置的方法,其包括准备导电箔,至少在除构成导电电路的区域以外的所述导电箔上形成比所述导电箔的厚度浅的分离沟来形成导电电路的步骤;在所希望的所述导电电路上把在一个芯片上集成两个MOSFET的MOSFET芯片的每一个的栅电极与各个源电极固定的步骤;在该MOSFET芯片的共用漏电极上布置导电材料的步骤;覆盖所述MOSFET芯片,通过模压绝缘树脂而填充所述分离沟的步骤;除去没有设置所述分离沟的较厚部分的所述导电箔的步骤。
图1是说明使用本发明的MOSFET的保护电路装置装置的平面图;图2是用于使用本发明的MOSFET的保护电路装置装置的MOSFET芯片的平面图(A)和沿X-X线的剖面图(B);图3是说明使用本发明的MOSFET的保护电路装置装置的第一实施例的剖面图;图4是说明使用本发明的MOSFET的保护电路装置装置的第二实施例的剖面图;图5是说明使用本发明的MOSFET的保护电路装置装置的制造方法的第一实施例的剖面图;图6是说明使用本发明的MOSFET的保护电路装置装置的制造方法的第一实施例的剖面图;图7是说明使用本发明的MOSFET的保护电路装置装置的制造方法的第一实施例的剖面图;图8是说明使用本发明的MOSFET的保护电路装置装置的制造方法的第一实施例的剖面图;图9是说明使用本发明的MOSFET的保护电路装置装置的制造方法的第一实施例的剖面图;图10是说明使用本发明的MOSFET的保护电路装置装置的制造方法的第一实施例的剖面图;图11是图10的图形(pattem)的放大平面图;图12是说明使用本发明的MOSFET的保护电路装置装置的第三实施例的剖面图;图13是说明使用本发明的MOSFET的保护电路装置装置的制造方法的第二实施例的剖面图;图14是说明使用本发明的MOSFET的保护电路装置装置的制造方法的第二实施例的剖面图;图15是说明使用本发明的MOSFET的保护电路装置装置的制造方法的第二实施例的剖面图;图16是说明使用本发明的MOSFET的保护电路装置装置的制造方法的第二实施例的剖面图;图17是说明使用本发明的MOSFET的保护电路装置装置的制造方法的第二实施例的剖面图;图18是说明本发明和已有的MOSFET芯片的特性的特性图;图19是适用于本发明的使用MOSFET的保护电路装置装置的电路图;图20是说明使用已有的MOSFET的保护电路装置装置的平面图;图21是说明已有的MOSFET的安装结构的剖面图;图22是说明已有的MOSFET的安装结构的平面图;图23是说明已有的MOSFET的安装结构的平面图。
参考图1到图19具体说明本发明的实施例。
图1表示使用本发明的保护电路装置装置的平面图。这个保护电路装置装置中装有电路部件以实现图19所示的电路,但是图面上并未全部示出。绝缘衬底31上形成两面都由铜箔构成的导电电路32,在所希望的位置上设置着经通孔(图中未示出)把上面和下面的导电电路32连接起来的多层布线。相同的符号的电路部件表示与图10中相同的电路部件。
本发明的特征是以相同的空白芯片的倒装片法安装把作为开关元件的功率MOSFETQ1、Q2集成在一个芯片上的MOSFET芯片33。
图2表示MOSFET芯片33的具体结构。图2(A)是其平面图,图2(B)是其X-X线的剖面图。
MOSFET芯片33具有构成漏电极区的N+型/N型半导体衬底334、P型的沟道区335、贯通沟道区域335设置的沟槽336、由经栅极氧化膜337埋入在沟槽336中的聚合硅构成的栅电极338、邻接沟槽336设置的N+型的源区339、形成邻接源区339设置的衬底二极管的P+型的壳体(body)区340。半导体衬底334的绝缘膜341上设置有在壳体区340上以与源区339接触的铝底层溅射的方式形成的底层源电极342、与栅电极338连接的底层栅电极343。这个底层源电极342和底层栅电极343上设置Pd/Ti或Au/TiW的阻挡层金属层344、在其上设置以金电镀层形成的约25微米高的金凸块(bump)的源电极331和栅电极332。半导体衬底334的里面整个设置有以Au/Cr蒸发沉积成的漏电极333。
通过图2(A)可看到功率MOSFETQ1、Q2的源电极331和栅电极332相对于芯片的中心线Y-Y对称地配置,在半导体衬底334的大部分上设置源电极331,栅电极332在半导体衬底334的角部以大的间隔线对称地设置。这样是由于容易以倒装片法固定对应的导电电路。
作为源电极331和栅电极332,可以是把焊锡等的焊料附着于导电球形成的焊锡电极,由于导电电路32已经被电分离开,作为源电极221和栅电极222,可以是没有突起电极的添加了焊锡的一般平坦电极。
说明使用MOSFET的保护电路装置装置的第一实施例首先,参考图3说明使用本发明的MOSFET的保护电路装置装置及其结构。
在图3表示这样的安装结构在以环氧玻璃衬底和陶瓷衬底等形成的绝缘衬底31上设置以所希望的铜箔和导电粘结剂等形成的导电电路32,以实现图19所示的电路,在这种导电电路32上固定MOSFET芯片33,以所述绝缘树脂34至少覆盖MOSFET芯片33。
在本安装结构中,在多个导电电路32A、32B、32C和32D上连接MOSFET芯片33的2个源电极331和2个栅电极332,用焊锡或导电粘结剂固定。MOSFET芯片33的漏电极333上以焊锡或导电粘结剂固定铜等的导电金属板36。这个导电金属板36是为了降低MOSFET芯片33串连连接的功率MOSFETQ1、Q2的通态电阻而设置的,而且,兼以散热特性良好为目的。因此,即使不用导电金属板36而仅用焊锡或导电膏35形成,也能达到降低通态电阻的目的。
作为绝缘树脂34可使用环氧树脂等的热固化树脂、聚合物树脂、对聚苯硫等的热塑性树脂。如果绝缘树脂是使用模具加强的树脂、能进行浸泡、涂布来涂覆的树脂,就能采用全部树脂。
本安装结构的特征在于由于以倒装片法在导电电路32上固定MOSFET芯片33,而不需要引出MOSFET芯片33的漏电极333、不使用焊接线,结构既薄又廉价。
本安装结构的一大特征是不使用原来使用的焊接线而以倒装片方式直接从源电极331引出到导电电路21B、21C.因此,从图18明显看出,本发明的样品C的通态电阻为8.67mΩ,样品D的通态电阻为8.74mΩ,任何一个都实现了比已有的导线焊接的样品B的通态电阻12.10mΩ有大约30%的改善。同时,在焊接导线上不需要回线,能使其部分绝缘树脂20很薄,实现了薄型化。
说明使用MOSFET的保护电路装置装置的第二实施例参考图4说明使用本发明的MOSFET的保护电路装置装置及其结构。
在图4表示这样的安装结构具有在绝缘树脂40中埋入的导电电路41、所述导电电路41上固定MOSFET芯片33,通过所述绝缘树脂40支持导电电路41。
本安装结构由MOSFET芯片33、多个导电电路41A、41B、41C和41D、导电金属板36和埋置导电电路41A、41B、41C和41D的绝缘树脂40共4种材料构成,导电电路41之间设置有以这种绝缘树脂填充的分离沟42。之后,由绝缘树脂40支持所述导电电路41。
作为绝缘树脂40可使用环氧树脂等的热固化树脂、聚合物树脂、对聚苯硫等的热塑性树脂。如果绝缘树脂是使用金属模具加强的树脂、能进行浸泡、涂布来涂覆的树脂,就能采用全部树脂。
作为导电电路41可使用以Cu为主要材料的导电箔、以Al为主要材料的导电箔或Fe-Ni等合金构成导电箔。当然,其它导电材料也可以,特别是能蚀刻的导电材料、激光蒸发的导电材料更好。
在一个芯片上集成功率MOSFETQ1、Q2的MOSFET芯片33在表面上具有源电极331和栅电极332,在里面整个面上是具有漏电极333的半导体空白芯片。MOSFET芯片33的具体结构在图2中进行了说明,这里省略了。
MOSFET芯片33之后,表面上设置的源电极331和栅电极332通过焊锡等焊料、Ag粘结剂等的导电粘结剂35被固定于预定的导电电路41A、41B、41C、41D,在里面的漏电极333上通过焊锡等焊料、Ag膏等的导电粘结剂35固定着导电金属板36。这个导电金属板36是为了降低MOSFET芯片33串连连接的功率MOSFET Q1、Q2的通态电阻而设置的,而且,兼以散热特性良好为目的。因此,即使不用导电金属板36而仅用焊锡或导电粘结剂35形成,也能达到降低通态电阻的目的。导电金属板36对其它导电电路41的连接是不必要的。
本安装由于由作为封装导电电路41的树脂的绝缘树脂40来支持而不需要支持衬底,该结构由导电电路41、MOSFET芯片33、导电金属板36和绝缘树脂40来构成,可以以最小限度的构成元件构成,从而具有薄而且廉价的特征。
由于绝缘树脂40覆盖MOSFET芯片33而且具有由该树脂填充所述导电电路41之间的所述分离沟而一整体地支持的功能,本安装结构具有导电电路41之间以绝缘树脂40来进行彼此绝缘的优点。
本安装结构的一大特征是不使用原来使用的焊接线而以倒装片方式直接从源电极331引出到导电电路41B、41C。因此,从图18明显看出,本发明的安装结构中样品C(以焊锡取出时)的通态电阻为8.67mΩ,样品D(以银粘结剂取出时)的通态电阻为8.74mΩ,任何一个都实现了比已有的导线焊接的样品B的通态电阻12.10mΩ有大约30%的改善。同时,在焊接导线上不需要回线,能使其部分绝缘树脂40很薄,实现了薄型化。
在本安装结构中,在分离沟42中填充的绝缘树脂40的表面与导电电路41的表面一致地来构成。这样,在印刷衬底上安装本安装结构时,由于通过焊锡等的焊料的表面张力能水平浮起移动,从而其具有能自动自我对齐的特征。
说明使用MOSFET的保护电路装置装置的第三实施例接着,参考图12说明使用本发明的第三MOSFET的保护电路装置装置的安装结构及其结构。
本安装结构在导电电路41的表面上形成导电覆盖膜37,此外,与图4的结构相同。因此对导电覆盖膜37进行说明。
第一特征是设置防止导电电路和电路装置的翘曲的导电覆盖膜37。
一般地,由于绝缘树脂和导电材料(下面称为第一材料)的热膨胀系数有差别,安装结构自身反过来时,导电电路弯曲而剥落。由于导电电路41的热传导率比绝缘树脂非热传导率更好,导电电路41首先温度上升而膨胀。因此,覆盖与第一材料相比热膨胀系数小的第二材料,能防止导电电路翘曲、剥落、安装结构的翘曲。特别是采用Cu作为第一材料时,可采用Au、Ni或Pt等作为第二材料。Cu的膨胀率是16.7×10-6(10的-6次方),Au是14×10-6、Ni是12.8×10-6、Pt是8.9×10-6。
第二特征是通过第二材料具有锚定(anchor)效果。由第二材料形成遮挡件38,但是由于覆盖导电电路41的遮挡件38被埋入绝缘树脂40中,产生有锚定效果,防止导电电路41的脱离。
说明使用MOSFET的保护电路装置装置的制造方法的第一实施例接着参考图5~图11说明使用第一MOSFET的保护电路装置装置的制造方法。
首先,如图5所示,准备片状导电箔50。这个导电箔50考虑焊料的附着性、焊接性、电镀性来选择其材料,作为这种材料,采用把Cu用作主要材料的导电箔、把Al用作主要材料的导电箔或Fe-Ni合金构成的导电箔。
考虑后面的蚀刻,导电薄层的厚度最好在10微米到30微米左右,这里采用70微米(2盎司)的铜箔。但是,即使是300微米以上10微米以下基本也是可以的。如后面所述,可形成比导电箔50的厚度浅的分离沟42。
还有,薄片状导电薄层50以预定宽度卷成卷状,这样可在后面的步骤中更好地搬运,准备切成预定的大小的导电箔,在后面的各个步骤中也可以搬运。
接着,是至少除去除构成导电电路41的区域以外的导电箔50使得其比导电箔50的厚度薄的步骤。之后,是在通过这个除去步骤形成的分离沟和导电箔50上涂覆绝缘树脂40的步骤。
首先,在Cu箔50上,形成光刻胶(抗蚀刻掩膜)PR,图形化光刻胶PR以露出除构成导电电路41的区域之外的导电箔50(上面参考图6)。接着,可经所述光刻胶PR进行蚀刻(上面参考图7)。
通过蚀刻形成的分离沟42的深度例如是50微米,其侧面由于由粗表面构成而提高了与绝缘树脂40的附着性。
这个分离沟42的侧壁在模式上表示为直线的,但是通过除去方法有不同结构。这个除去步骤可采用湿蚀刻、干蚀刻。湿蚀刻时,腐蚀剂主要采用二价铁盐或二价铜盐,所述导电箔被浸入在这个腐蚀剂中或在这个腐蚀剂中被淋湿。这里一般为了各向同性地蚀刻,湿蚀刻从开口部分向内部的分离沟42扩展,分离沟42的侧面被侧蚀刻成弯曲结构。
干蚀刻时,可进行各向异性的、各向同性的蚀刻。现在以反应离子蚀刻来除去Cu是不可能的,但是能除去飞溅射方法除去。根据飞溅射的条件可以是各向异性的、各向同性的。
在图6中,代替光刻胶可以选择地覆盖对蚀刻溶液具有耐腐蚀性的导电覆盖膜。如果在构成导电电路的部分上选择地覆盖,这个导电覆盖膜构成蚀刻保护膜,不采用抗蚀剂就能蚀刻分离沟。考虑作为这个导电覆盖膜的材料是Ag,Au,Pt或Pd等。但是,这些耐蚀性的导电覆盖膜具有能原样用作(tie)垫块、焊接垫的特征。
接着如图8所示,是在由分离沟42分离的导电箔50构成的导电电路41上安装MOSFET芯片33的步骤。
MOSFET芯片33在表面上具有源电极331和栅电极332,在里面整个是具有漏电极333的半导体空白芯片。MOSFET芯片33在下侧上对着源电极331和栅电极332,由芯片安装装置进行图形(pattern)识别,把每一个连接到导电电路41B、41C和41A、41D,通过焊锡等焊料或导电粘结剂35以倒装片法固定。
以焊锡等焊料或导电粘结剂35把由铜构成的导电金属板36固定在MOSFET芯片33的里面上设置的漏电极333上。由于MOSFET芯片33的里侧全部仅仅是漏电极333,这个导电金属板36不会和其它电极短路,由于不需要导电金属板36和导电电路41的连接,能够容易地使用不同形状部件进行粗略位置的安装。
如图9所示,是所述导电箔50和分离沟42上附着绝缘树脂40的步骤。这里可通过转录膜、注射膜或浸入实现。作为树脂材料,环氧树脂等的热固化树脂可以以转录膜实现,聚合物树脂、对聚苯硫等的热塑性树脂可以以注射膜实现。
本实施例调整成使得导电箔50的表面上覆盖的绝缘树脂40的厚度从电路元件的最顶部算起约被覆盖100微米。这种厚度可考虑强度而做得更厚,也可做得更薄。
本步骤的特征是在覆盖绝缘树脂40之前,由导电电路41构成的导电箔50作为支持衬底。原来,使用支持衬底形成导电电路,但是在本发明中,构成支持衬底的导电箔50是作为电极材料的必要材料。为此,安装作业中能很大程度地节省结构材料,实现了成本降低。
由于,分离沟42形成得比导电箔的厚度浅,导电箔50没有作为导电电路41被各自分离开。因此,一体地使用层状导电箔50、模压绝缘树脂时,向金属模具的运送、向9金属模具的安装作业非常容易。
接着,是化学或物理地除去导电箔50的里面,作为导电电路41进行分离的步骤。在这里这个步骤通过研磨、研削、蚀刻、激光金属蒸发等实施。
在实验中,通过研磨装置或研削装置把整个面削减到30微米左右,从分离沟42露出绝缘树脂40。这个露出的面在图9中以点线表示。结果,构成约40微米厚的导电电路41来进行分离。也可以在绝缘树脂40露出步骤之前,整个面湿蚀刻导电箔50,之后,通过研磨装置或研削装置削减整个面,露出绝缘树脂40。而且,还可以在直到点线位置之前都整个面湿蚀刻导电箔50,露出绝缘树脂40。
结果,构成在绝缘树脂40上露出导电电路41的表面的结构。接着,切削导电箔50构成图4的分离沟42(上面参考图9)。
最后,在绝缘树脂40的里面上露出的导电电路41上覆盖焊锡等的导电材料完成本安装结构。
还有,在导电电路41的里面上覆盖导电覆盖膜时,也可以在图5的导电箔的里面上形成前导电覆盖膜。这时,可选择地覆盖对应于导电电路的部分。覆盖方法例如是衬垫方法。这个导电覆盖膜可以是具有耐蚀刻特性的材料。采用这个导电覆盖膜时,不进行研磨仅通过蚀刻也能分离导电电路41。
在上述的本制造方法的说明中,作为电路部件重点是描述了MOSFET芯片33,实际上在图10所示的导电箔50上安装着多行和多列的含有MOSFET芯片33的本发明的保护电路装置装置所必须的电路部件。
图10表示形成分离沟42后的导电箔50的衬底的平面图。这个衬底大小是45mm×60mm,黑的部分形成导电电路41,白的部分形成分离沟42。因此,构成安装结构的部分排列成3列8行的矩阵状,周围设置符合位置标记511和制造中使用的索引孔512。例如把切割线51规定在两端设有的2根线的符合位置标记511的中央。
图11是图10的一个导电箔50的衬底的放大平面图。左侧所示的导电电路41A、41B、41C、41D上以倒装片法固定MOSFET芯片33。在中央部分把控制器IC9固定于导电电路41,其周围的导电电路41上用片安装装置固定与图19的CI的C3对应的芯片电容器10和与图19的R1和R2对应的芯片电阻11。
在4个角上以LP1,LP2,LP3,LP4表示的外部端子对应于图19所示的端子LP1,LP2,LP3,LP4。
因此,图10所示的导电箔50的衬底上形成的本发明的多个保护电路装置装置通过切割装置在X轴和Y轴方向切断点划线所示的切割线51上的分离沟42的绝缘树脂40的部分而被一个一个分开时,构成使用每个MOSFET的保护电路装置装置。本发明的保护电路装置装置通过焊锡等的焊料把导电电路41的里面连接于平面衬底的导电电路以供使用。
根据以上的制造方法,可实现使用在绝缘树脂40中埋入导电电路41、绝缘树脂40的里面和导电电路41的里面一致平坦的MOSFET的保护电路装置装置的安装结构。
本制造方法的特征是能够把绝缘树脂40用作支持衬底进行导电电路41的分离工作。绝缘树脂40是作为埋藏导电电路41的材料的必要材料,不需要根据已有的制造方法的支持衬底。因此,能以最小限度的材料来制造,从而具有实现成本降低的特征。
导电电路41表面开始的绝缘树脂的厚度在前面步骤的附着绝缘树脂时可作调整。在本发明中,由于以倒装片的方式把MOSFET芯片33固定于导电电路41,可不需要焊接线。因此,(绝缘树脂的厚度)因安装的MOSFET芯片33的厚度不同而不同,作为安装结构的厚度可具有很薄的特征。这里,构成约400微米厚的绝缘树脂40中埋入40微米厚的导电电路41和约200微米厚的MOSFET芯片33的安装结构。
说明使用MOSFET的保护电路装置装置的制造方法的第二实施例接着参考图13~图17、图12说明使用具有遮盖件38的MOSFET的保护电路装置装置的安装结构的制造方法。还有,由于除了覆盖构成遮盖件的第二材料60外与第一实施例实际相同,其详细说明被省略了。
首先,如图13所示,第一材料构成的导电箔50上准备覆盖蚀刻率小的第二材料60的导电箔50。
例如在Cu箔上,覆盖Ni时,用二价铁盐或二价铜盐可一次腐蚀Cu和Ni,最好通过蚀刻率的差别形成Ni构成的遮盖件38。粗实线是Ni构成的导电覆盖膜60,其膜厚最好在1到10微米左右。Ni膜的厚度厚,容易形成遮盖件38。
第二材料可以覆盖第一材料和能选择蚀刻的材料。此时,首先进行图形化以使得把第二材料构成的覆盖膜覆盖在导电电路41的形成区,如果以这个覆盖膜作为掩膜蚀刻第一材料构成的覆盖膜,能形成遮盖件38.作为第二材料,考虑Al,Ag,Au等(以上参考图13)。
接着,是至少除去构成导电电路41的区域以外的导电箔50使导电箔50的厚度变薄的步骤。
可以在Ni60上形成光刻胶PR,图形化光刻胶PR,经所述光刻胶进行蚀刻使得除构成导电电路41的区域以外的Ni60露出来。
采用前述的二价铁盐或二价铜盐蚀刻时,由于Ni60的蚀刻率比Cu50的蚀刻率小,进行蚀刻把遮盖件38露出来。
形成所述分离沟42的导电箔50上安装MOSFET芯片33的步骤(图16)、在所述导电箔50和分离沟42上覆盖绝缘树脂40、化学或物理地除去导电箔40的里面作为导电电路41来分离的步骤(图17)、以及在导电电路里面上形成导电覆盖膜直到完成的步骤(图12)由于与前述的制造方法相同而省略了对其的说明。
从以上的说明可明显看到,在本发明中,在一个芯片上集成功率MOSFETQ1、Q2的MOSFET芯片、导电电路、导电金属板和绝缘树脂以必须的最小限度构成,得到使用不浪费资源的MOSFET的保护电路装置装置的安装结构。因此,直到制造完成都没有剩余的构成部件,实现了使用能大幅度地降低成本的MOSFET的保护电路装置装置的安装结构。
由于以倒装片方式把MOSFET芯片直接固定在导电电路上,特别是拿出源电极到导电电路时没有电阻,通态电阻与已有的安装结构相比可降低30%。不需要MOSFET芯片的共用漏电极的引回,实现了非常简单的安装结构。
使用本发明的MOSFET的保护电路装置装置的安装结构可不需要焊接线,通过使绝缘树脂非覆盖膜厚度、导电箔的厚度为最适当值,实现高度薄到0.5mm以下,同时实现安装结构的小型轻量化。
由于仅把导电电路的里面从绝缘树脂露出,导电电路的里面一直用于和外部连接,有一个优点是不需要原来的结构中所必须的里面电极和通孔。
本安装结构分离沟的表面和导电电路的表面结构为具有实际一致的平坦表面,由于窄的间距QFP安装时通过焊锡的表面张力可把电路装置自身在其原来的水平方向上移动,任何一个引线的修正变得非常容易。
由于导电电路的表面侧形成第二材料,通过热膨胀系数不同能防止安装衬底翘曲,特别是细长的布线翘曲或剥落。
通过在导电电路的表面上形成第二材料构成的覆盖膜,能形成覆盖在导电电路上的遮盖件。因此,能产生锚定效果,能防止导电电路的翘曲、脱离。
在使用本发明的MOSFET的保护电路装置装置的制造方法中,构成导电电路的材料的导电箔自身具有作为支持衬底的功能,分离沟形成时或直到安装MOSFET芯片、覆盖绝缘树脂时,以导电箔支持整个产品,作为各个导电电路分离导电箔时,具有使绝缘树脂作为支持衬底的功能。因此,能以MOSFET芯片、导电箔、绝缘树脂的必须的最小限度来制造。通过不需要支持衬底、导电电路埋入绝缘树脂、而且绝缘树脂和导电箔的厚度可调以及不需要焊接线,安装能使用非常薄的MOSFET的保护电路装置装置结构。
接着,直到把导电箔的厚度变薄的步骤(例如半蚀刻)之前,由于不使导电电路各自分离来取出,在很小的衬底上集成并制造多个MOSFET芯片,提高了作业性。
由于导电电路与绝缘树脂形成同一平面,安装时,可不挡在安装衬底上的导电电路侧上。特别是位置偏离地来安装时,可直接在水平方向上的偏离地来配置。安装后,如果焊料熔化,偏离安装的装置通过熔化的焊料的表面张力自动返回到导电电路上面,通过装置自身可进行再配置。
权利要求
1.一种使用MOSFET的保护电路装置装置,在该保护电路装置装置中,串连连接2个MOSFET,使用由控制器IC对所述两个MOSFET进行开关控制的MOSFET,其特征在于在绝缘衬底上设置希望的模式的导电电路、在所希望的该导电电路上把在一个芯片上集成所述两个MOSFET的MOSFET芯片的每一个的栅电极与各个源电极固定、在所述MOSFET芯片的里面设置的共用漏电极上布置导电材料。
2.根据权利要求1的使用MOSFET的保护电路装置装置,其特征在于所述MOSFET芯片的各个栅电极和各个源电极相对于芯片的中心线分别对称地设置。
3.根据权利要求1或2的使用MOSFET的保护电路装置装置,其特征在于所述MOSFET芯片的各个栅电极和各个源电极用金凸块(bump)形成。
4.根据权利要求1的使用MOSFET的保护电路装置装置,其特征在于所述导电材料由导电金属板或导电焊料形成。
5.一种使用MOSFET的保护电路装置装置,在该保护电路装置装置中,连接2个MOSFET、使用由控制器IC对所述两个MOSFET进行开关控制,其特征在于设置埋入绝缘树脂中的所希望的模式的导电电路、在所希望的该导电电路上把在一个芯片上集成所述两个MOSFET的MOSFET芯片的每一个的栅电极与各个源电极固定、在所述MOSFET芯片的里面设置的共用漏电极上布置导电材料。
6.根据权利要求5的使用MOSFET的保护电路装置装置,其特征在于所述MOSFET芯片的各个栅电极和各个源电极相对于芯片的中心线分别对称地设置。
7.根据权利要求5或6的使用MOSFET的保护电路装置装置,其特征在于所述MOSFET芯片的各个栅电极和各个源电极用金凸块(bump)形成。
8.根据权利要求5的使用MOSFET的保护电路装置装置,其特征在于所述导电材料由导电金属板或导电焊料形成。
9.一种制造使用MOSFET的保护电路装置装置的方法,其特征在于包括准备导电箔,至少在除构成导电电路的区域以外的所述导电箔上形成比所述导电箔的厚度浅的分离沟来形成导电电路的步骤;在所希望的所述导电电路上把在一个芯片上集成两个MOSFET的MOSFET芯片的每一个的栅电极与各个源电极固定的步骤;在该MOSFET芯片的共用漏电极上布置导电材料的步骤;覆盖所述MOSFET芯片,通过模压绝缘树脂而填充所述分离沟的步骤;除去没有设置所述分离沟的较厚部分的所述导电箔的步骤。
10.一种制造使用MOSFET的保护电路装置装置的方法,其特征在于包括准备导电箔,在构成该导电箔表面的至少导电电路的区域形成耐腐蚀的导电覆盖膜的步骤;至少在除构成导电电路的区域以外的所述导电箔上形成比所述导电箔的厚度浅的分离沟来形成导电电路的步骤;在所希望的所述导电电路上把在一个芯片上集成两个MOSFET的MOSFET芯片的每一个的栅电极与各个源电极固定的步骤;在该MOSFET芯片的共用漏电极上布置导电材料的步骤;覆盖所述MOSFET芯片,通过模压绝缘树脂而填充所述分离沟的步骤;除去没有设置所述分离沟的较厚部分的所述导电箔的步骤。
11.一种制造使用MOSFET的保护电路装置装置的方法,其特征在于包括准备导电箔,至少在除构成导电电路的区域以外的所述导电箔上形成比所述导电箔的厚度浅的分离沟而形成具有多个所述搭载部的导电电路的步骤;在各个搭载部的所希望的所述导电电路上把在一个芯片上集成两个MOSFET的MOSFET芯片的每一个的栅电极与各个源电极固定的步骤;在该MOSFET芯片的共用漏电极上布置导电材料的步骤;覆盖所述MOSFET芯片,通过模压绝缘树脂而填充所述分离沟的步骤;除去没有设置所述分离沟的较厚部分的所述导电箔的步骤;切断所述绝缘树脂在各个搭载部分上进行分离的步骤。
12.一种制造使用MOSFET的保护电路装置装置的方法,其特征在于包括准备导电箔,至少在除构成导电电路的区域以外的所述导电箔上形成比所述导电箔的厚度浅的分离沟而形成导电电路的步骤;在所希望的所述导电电路上把在一个芯片上集成两个MOSFET的MOSFET芯片的每一个的栅电极与各个源电极固定的步骤;在该MOSFET芯片的共用漏电极上布置导电材料的步骤;覆盖所述MOSFET芯片,通过模压绝缘树脂而填充所述分离沟的步骤;与里面一样除去没有设置所述分离沟的较厚部分的所述导电箔使得所述导电电路的里面和所述分离沟之间的所述绝缘树脂实际上为平坦面的步骤。
13.一种制造使用MOSFET的保护电路装置装置的方法,其特征在于包括准备导电箔,至少在除构成导电电路的区域以外的所述导电箔上形成比所述导电箔的厚度浅的分离沟而形成具有多个搭载部的导电电路的步骤;在各搭载部的所希望的所述导电电路上把在一个芯片上集成两个MOSFET的MOSFET芯片的每一个的栅电极与各个源电极固定的步骤;在该MOSFET芯片的共用漏电极上布置导电材料的步骤;覆盖所述MOSFET芯片,通过模压绝缘树脂而填充所述分离沟的步骤;与里面一样除去没有设置所述分离沟的较厚部分的所述导电箔使得所述导电电路的里面和所述分离沟之间的所述绝缘树脂实际上为平坦面的步骤。
14.根据权利要求9到13的任何一项的制造使用MOSFET的保护电路装置装置的方法,其特征在于所述导电箔由铜、铝、铁、镍中的任何一项构成。
15.根据权利要求10的制造使用MOSFET的保护电路装置装置的方法,其特征在于所述导电覆盖膜由金或银电镀构成。
16.根据权利要求9到13的任何一项的制造使用MOSFET的保护电路装置装置的方法,其特征在于在所述导电箔上选择地形成的所述分离沟通过化学或物理地蚀刻来形成。
17.根据权利要求15的制造使用MOSFET的保护电路装置装置的方法,其特征在于把所述导电覆盖膜作为所述分离沟形成时的掩膜的一部分使用。
18.根据权利要求9到13的任何一项的制造使用MOSFET的保护电路装置装置的方法,其特征在于所述导电材料通过所述导电金属板或导电焊料形成。
19.根据权利要求9到13的任何一项的制造使用MOSFET的保护电路装置装置的方法,其特征在于所述绝缘树脂通过转录膜固定。
20.根据权利要求11或13的制造使用MOSFET的保护电路装置装置的方法,其特征在于通过切割在每个搭载部分上把所述绝缘树脂分离开。
全文摘要
问题是没有改善由于MOSFET芯片上面的电极取出依赖于线焊接而由影响最大的MOSFET芯片的源电极取出电阻引起的通态电阻的解决办法。通过使用MOSFET的保护电路装置,不需要共用漏电极的引回而且源电极直接被固定于导电电路,实现了低的通态电阻,其中,该MOSFET配备有:在电气上分离的多个导电电路、在所希望的该导电电路上把固定栅电极和源电极的2个功率MOSFET集成在一个芯片上的MOSFET芯片、设置该MOSFET芯片的共用漏电极的导电材料、覆盖所述MOSFET芯片并且一体地支持所述导电电路的绝缘树脂。
文档编号H01L27/04GK1342037SQ0111194
公开日2002年3月27日 申请日期2001年2月15日 优先权日2000年9月4日
发明者坂本则明, 小林义幸, 福田浩和, 江藤弘树, 高桥幸嗣 申请人:三洋电机株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1